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Abstract
Background  Despite the global commitment to ending AIDS by 2030, the loss of follow-up (LTFU) in HIV care 
remains a significant challenge. To address this issue, a data-driven clinical decision tool is crucial for identifying 
patients at greater risk of LTFU and facilitating personalized and proactive interventions. This study aimed to develop a 
prediction model to assess the future risk of LTFU in HIV care in Ethiopia.

Methods  The study used a retrospective design in which machine learning (ML) methods were applied to the 
electronic medical records (EMRs) data of adult HIV-positive individuals who were newly enrolled in antiretroviral 
therapy between July 2019 and April 2024. The data were collected across eight randomly selected high-volume 
healthcare facilities. Six supervised ML classifiers—J48 decision tree, random forest, K-nearest neighbors, support 
vector machine, logistic regression, and naïve Bayes—were utilized for training via Weka 3.8.6 software. The 
performance of each algorithm was evaluated through a 10-fold cross-validation approach. Algorithm performance 
was compared via the corrected resampled t test (p < 0.05), and decision curve analysis (DCA) was used to assess the 
model’s clinical utility.

Results  A total of 3,720 individuals’ EMR data were analyzed, with 2,575 (69.2%) classified as not LTFU and 1,145 
(30.8%) classified as LTFU. On the basis of the ML feature selection process, six strong predictors of LTFU were 
identified: differentiated service delivery model, adherence, tuberculosis preventive therapy, follow-up period, 
nutritional status, and address information. The random forest algorithm showed superior performance, with an 
accuracy of 84.2%, a sensitivity of 82.4%, a specificity of 85.7%, a precision of 83.7%, an F1 score of 83.1%, and an area 
under the curve of 89.5%. The model demonstrated greater clinical utility, offering greater net benefit than both the 
‘intervention for all’ approach and the ‘intervention for none’ approach, particularly at threshold probabilities of 10% 
and above.

Conclusions  This study developed a machine learning-based predictive model for assessing the future risk of 
LTFU in HIV care within low-resource settings. Notably, the model built via the random forest algorithm exhibited 
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Introduction
In 2023, 39.9  million people were living with human 
immunodeficiency virus (HIV) globally, of which 1.3 mil-
lion people contracted it and 630,000 died from acquired 
immunodeficiency syndrome (AIDS) [1]. Despite the 
global commitment to ending AIDS by 2030, significant 
barriers persist, particularly in low-resource settings [2]. 
One of the most critical challenges in reaching this tar-
get is the high rate of loss to follow-up (LTFU) among 
patients enrolled in HIV care [3].

LTFU refers to patients who miss their HIV care or 
antiretroviral therapy (ART) appointment by more 
than 28 days from the scheduled date [4]. It is a perva-
sive problem in low-income settings where healthcare 
systems are often under resourced and struggle with 
infrastructural limitations. For example, LTFU rates are 
alarming in several countries: 23.4% in South Africa [5], 
57.4% in Tanzania [6], 27.2% in Kenya [7], and 15.17% in 
Ethiopia [8]. These figures underscore a systemic failure 
to retain patients in care, which directly correlates with 
unsuppressed viral loads and increased morbidity and 
mortality associated with HIV [9]. Moreover, LTFU con-
tributes not only to poor individual health outcomes but 
also to ongoing HIV transmission within communities, 
thereby hampering broader public health initiatives to 
control the epidemic [10].

Recognizing the risk of LTFU in HIV care—especially 
during the first five years after initiating ART—is vital 
[11]. This timeframe is marked by increased vulnerabil-
ity, with many patients discontinuing treatment [12, 13], 
which can adversely affect their health outcomes and 
undermine the overall effectiveness of ART programs 
[11]. Therefore, an urgent solution is to address this 
risk and enhance patient retention through innovative 
approaches that leverage available data sources [14, 15]. 
Machine learning (ML) offers a promising approach for 
addressing this challenge by the use of routine electronic 
medical records (EMRs) to predict which patients are at 
risk of LTFU. In recent years, the application of ML algo-
rithms to EMRs has gained traction across various medi-
cal fields, particularly in predicting patient outcomes and 
conducting risk assessments [16, 17].

Research has identified a range of risk factors for LTFU 
by analyzing historical sociodemographic and clinical 
data within EMRs. Key predictors include sociodemo-
graphic variables such as age, sex, and marital status, 
alongside clinical indicators such as tuberculosis preven-
tive therapy (TPT) [18, 19], differentiated service delivery 

(DSD) [20], nutritional status [20, 21], adherence to treat-
ment [20, 22], and patient address information [23, 24]. 
The literature also highlights other risk factors accessible 
through EMR, including employment status [24, 25], his-
tory of missed appointments [19], poor functional status, 
low CD4 count, and advanced clinical stage [7, 26–28].

While several studies have attempted to predict the 
risk of loss to follow-up (LTFU) in HIV care, most have 
been conducted in high-income settings [27, 29–31], 
limiting their generalizability to low-resource environ-
ments. Although some research efforts have emerged 
from Sub-Saharan Africa—including South Africa [22], 
Nigeria [32], Tanzania [21], and Ethiopia [20]—these 
studies often lack comprehensive model performance 
evaluations. Moreover, few studies have addressed the 
clinical utility or practical applicability of these models 
in real-world settings. Thus, this study aimed to develop 
a machine learning-based prediction model for LTFU in 
HIV care during the first five years after initiating ART. 
This study introduces an EMR-based prediction tool that 
can help clinicians make informed decisions to improve 
HIV patient retention in care.

Methods
Study settings and participants
The study used a retrospective design in which machine 
learning methods utilizing EMR data were employed to 
predict the future risk of loss to follow-up in HIV care in 
an urban environment in Ethiopia. The estimated HIV 
prevalence in urban areas of Ethiopia is approximately 
3.4% [33], with over 465,457 adult HIV-positive individu-
als receiving ART [34]. The study included adults aged 15 
years and older who tested HIV positive and began ART 
between July 2019 and April 2024. Patients with incom-
plete information regarding the outcome variable, as well 
as those who were transferred in (TI), transferred out 
(TO), had recorded deaths, or restarted treatment, were 
excluded from the analysis.

Sample size determination and sampling procedures
To determine the sample size required for developing a 
prediction model for a binary outcome, several factors 
must be considered. Key among these are estimating the 
overall outcome proportion with adequate precision, 
targeting a small mean absolute prediction error, and 
establishing a shrinkage factor to minimize optimism in 
the apparent R² Nagelkerke [35]. In Ethiopia, the pooled 
proportion of patients lost to follow-up was 0.15 [8], 

high accuracy and strong discriminative performance, highlighting its positive net benefit for clinical applications. 
Furthermore, ongoing external validation across diverse populations is important to ensure the model’s reliability and 
generalizability.
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with 30 potential predictor parameters hypothesized. 
For logistic regression models with this outcome propor-
tion, the maximum R² value corresponds to 0.48 [35]. 
Assuming that the new model would explain 15% of the 
variability, the anticipated R² Nagelkerke value was calcu-
lated as 0.15 × 0.48 = 0.05. Using Stata with the command 
“pmsampsize, type(b) rsquared(0.07) parameters(30) 
prevalence(0.15),” the minimum sample size required for 
developing the new model was 3,706, which included 556 
events. Accounting for a 5% attrition rate, the estimated 
total sample size needed was approximately 3,891.

To select the participants, we first identified 21 high-
case-load health facilities in central Ethiopia that had 
enrolled at least 200 new HIV patients from 2019 to 2023 
[36]. We then randomly selected eight facilities: three in 
Addis Ababa—Zewditu Hospital (N = 441), ALERT Hos-
pital (N = 587), and Yekatit 12 Hospital (N = 329)—and 
five in nearby Oromia urban areas—Bishoftu Hospi-
tal (N = 827), Adama Teaching Hospital (N = 542), Geda 
Health Center (N = 402), Adama Health Center (N = 351), 
and Asella Hospital (N = 231). All eligible patients from 
these selected facilities were included in the study.

Prediction features
Outcome feature
In this study, LTFU in HIV care was the target feature. 
LTFU refers to patients who miss their HIV care or ART 
appointments for 28 days or more from the date of their 
last scheduled appointment [4]. If the patient was LTFU, 
the feature was coded as ‘Yes,’ and if the patient had not 
been LTFU within the past 5 years, the feature was coded 
as ‘No’.

Predictor features
In this study, we defined the following features used 
to predict LTFU in accordance with the national con-
solidated guidelines for comprehensive HIV prevention, 
care, and treatment [37]. The features identified include 
demographic information such as sex (male vs. female) 
and age at enrollment. Address details (green vs. yellow) 
were categorized as either green or yellow, with green 
indicating complete and accurate information, including 
a phone number and a detailed kebele address, while yel-
low signified incomplete or missing details. The follow-
up periods (time 0–12 vs. time 13–60 months) were time 
intervals after initiating ART. Adherence (good vs. poor) 
to medication was classified into two categories: good 
adherence (defined as taking at least 95% of doses) and 
poor adherence (less than 85%). Additionally, the status 
of tuberculosis prevention therapy (TPT) status (gold 
vs. bronze/silver) was recorded as gold, silver, or bronze. 
Gold indicated the completion of TPT, bronze indi-
cated that TPT had not started, and silver indicated that 
TPT had started but not completed. The differentiated 

service delivery (DSD) model category (ASM/3MMD 
vs. not-enrolled/other DSD forms) was identified for 
each patient. This included options such as the appoint-
ment spacing model, which also referred to those receiv-
ing the 6-month multimonth dispensing (MMD) model, 
3MMD, and other DSD models such as the advanced 
disease (ADH) model, key populations model, adolescent 
model, young people model, and prevention of mother‒
child transmission (PMTCT) model. Furthermore, we 
assessed nutritional status (normal vs. undernutrition) 
on the basis of body weight relative to height. The WHO 
clinical stage (WHO Stage 1/2 vs. WHO Stage 3/4) was 
noted, which indicates the severity of disease progres-
sion in adults or adolescents with a CD4 count below 200 
cells/mm³. These EMR-based features collectively pro-
vide a comprehensive framework for predicting LTFU in 
patients undergoing ART [37].

Data collection and quality control
The data extraction tool was developed using Ethiopian 
national HIV care/ART intake and follow-up forms for 
routine patient care [38]. Each health facility’s data man-
ager, under the supervision of two experienced supervi-
sors, extracted deidentified patient data. The research 
team provided a two-day training session for data col-
lection facilitators, covering the abstraction tool, data 
management protocols, extraction processes, and confi-
dentiality. A pretest of the extraction tool was conducted 
at a different ART facility. The facilitators and data man-
agers were blinded to the outcome variable while extract-
ing deidentified data. Prior to extraction, common data 
quality issues—such as duplication, completeness, con-
sistency, and validation—were addressed via smart-care-
ART’s data quality assurance features [38].

Statistical analysis and machine learning process
Patient data were extracted from the electronic data-
base in Microsoft Excel and converted to comma-sepa-
rated values (CSVs) for easier manual preprocessing and 
machine learning. We followed the model development 
process in accordance with the transparent reporting of 
a multivariable prediction model for individual progno-
sis or diagnosis (TRIPOD) guidelines [39]. Additionally, 
we employed an interpretable and transparent machine 
learning algorithm, which enabled thorough checks and 
balances [40]. Supervised machine learning methods 
were employed to develop and validate models via Weka 
3.8.6 software, the stable version [41].

Handle missing values
To improve data efficiency, we conducted data prepro-
cessing by handling missing values and transforming 
the dataset before initiating the machine learning pro-
cess. Missing data were carefully managed to enhance 
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the performance and reliability of our predictive models. 
We excluded features with more than 30% missing data. 
For example, the data on viral load suppression revealed 
that 30.8% of the values were missing because the viral 
load test was not applicable for individuals who had been 
on ART for less than six months. Instances (cases) with 
noncritical missing values were removed because of their 
minimal proportion. We also utilized conditional mean/
mode imputation, which fills in missing values on the 
basis of the conditional relationships between the miss-
ing feature and other relevant features [42].

Feature selection
First, we performed preliminary feature selection on 
the basis of the literature and relevant EMR-accessible 
features to enhance the clinical applicability of the pre-
diction tool [19]. A multivariable logistic regression 
analysis was conducted to identify predictors associated 
with LTFU. Then, via the ML process, we check feature 
correlation via the correlation attribute evaluator tech-
nique and rank features on the basis of their correlation 
with each other or with the target variable. In addition, 
we apply the information gain (IG) attribute evaluator in 
Weka, which ranks features on the basis of their informa-
tion gain with respect to the target class, to select optimal 
features. These methods enable feature selection tech-
niques to reduce data dimensionality, address multicol-
linearity, and improve model performance accuracy and 
interpretability [43].

Imbalanced data handling
Imbalanced datasets present a significant challenge in 
machine learning, often leading to the misclassifica-
tion of instances from minority or infrequently occur-
ring classes as belonging to the majority class [44, 45]. To 
mitigate this issue, we implemented several techniques 
designed to handle data imbalance, including the ‘class 
balancer’ and synthetic minority oversampling technique 
(SMOTE). The class balancing technique adjusts the 
weights assigned to different classes during training. By 
increasing the weight of the minority class and decreas-
ing the weight of the majority class, this method ensures 
that the classifier focuses more on the minority class. 
This adjustment helps improve the model’s ability to cor-
rectly identify instances from underrepresented classes 
[46]. SMOTE is another effective strategy that generates 
synthetic samples for the minority class by interpolating 
between existing samples. This technique enriches the 
dataset, making it more balanced and enhancing both the 
accuracy and fairness of the machine learning model dur-
ing training [47]. By employing these methods, we were 
able to create a more equitable training environment for 
our models, ultimately leading to improved performance 
and reliability.

Model training and validation
We implemented and evaluated the performance of six 
machine learning algorithmic classifiers: the J48 decision 
tree, random forest (RF), k-nearest neighbors (k-NN), 
support vector machine (SVM), logistic regression (LR), 
and naïve Bayes (NB) classifiers. Model performance 
was assessed through tenfold cross-validation, and the 
performance of the models was evaluated via several 
binary classification metrics, such as accuracy, sensitiv-
ity, specificity, precision, F1 score, and area under the 
receiver operating characteristic (ROC) curve (AUC) 
[48]. Accuracy measures the overall correctness of the 
model, whereas sensitivity (recall) indicates its ability to 
correctly identify true positives. Specificity reflects the 
model’s capacity to identify true negatives accurately. 
Additionally, we assessed precision, which measures the 
accuracy of positive predictions, and the F1 score, which 
provides a balance between precision and recall. To fur-
ther enhance our evaluation, we utilized the Matthews 
correlation coefficient (MCC), which considers all classes 
in the confusion matrix, as well as the AUC to gauge the 
model’s effectiveness in distinguishing between positive 
and negative classes [48]. To ensure the reliability of our 
results, we conducted additional experiments and analy-
ses to compare the performance of the algorithms via 
the corrected resampled t test (P value < 0.05) [41]. Addi-
tionally, we conducted decision curve analysis (DCA) to 
assess the model’s clinical utility. In the DCA, the model 
was evaluated against two contrasting scenarios: “inter-
vention for all” and “intervention for none” [49].

Association rule mining
Finally, to uncover hidden relationships and identify fea-
tures that frequently appear together, association rules 
were mined via the Apriori algorithm. This method 
was employed to explore and compare the most influ-
ential features contributing to the model’s predictive 
performance [50]. The algorithm was initialized with a 
minimum support threshold of 100%, which was system-
atically reduced in 5% increments. The iterative process 
continued until at least ten association rules satisfying a 
minimum confidence level of 0.9 were generated or until 
the support threshold reached a lower bound of 10%, 
whichever occurred first [41]. Notably, this approach 
aimed to enhance the interpretability and transparency 
of the machine learning model.

Ethics
This study was approved by the Ethical Review Board 
of the College of Health Sciences (CHS) at Addis Ababa 
University (AAU), under reference number 061/23/SPH, 
on September 20, 2023. The ethics committee waived 
the requirement for individual informed consent, as the 
study used deidentified secondary data. All the data were 



Page 5 of 11Endebu et al. BMC Medical Informatics and Decision Making          (2025) 25:192 

treated with strict confidentiality and used solely for the 
purposes of this research. The study was conducted in 
accordance with the ethical principles of the Declaration 
of Helsinki.

Results
Patient characteristics
In total, 3720 patients who had newly started ART within 
the past five years were included in this study. Three-
fifths of the patients, 2252 (60.5%), were female. The 
mean age of the patients was 39 years (± 11.2 SD), with 
1,384 (37.2%) between the ages of 15 and 34. With respect 
to the address information obtained from the EMR sys-
tem, 548 patients (14.7%) were labeled yellow, indicating 
that at least one required piece of address information, 
such as a phone number, kebele, or house number, was 
missing. On the basis of the categorization of patients 
by their follow-up periods since initiating ART, 1,355 
(36.4%) were in the first 12 months of treatment, whereas 
2,365 (63.6%) had been in treatment for 13–60 months. 

One-third of the patients, 1144 (30.8%), were labeled 
‘bronze/silver,’ indicating that they had either not started 
or not completed TB prevention therapy (TPT). With 
respect to the DSD model, 2519 patients (67.7%) were 
enrolled in appointment spacing (ASM) or 3-month 
multimonth dispensing (MMD), whereas 1201 patients 
(32.3%) were either not enrolled in any model or were 
enrolled in other DSD forms, such as the AHD model, 
adolescent and young DSD, or key population DSD. One-
third of the patients, 1127 (30.3%), had poor adherence to 
their medication, 1369 (36.8%) were undernourished, and 
1348 (36.2%) were in WHO advanced clinical stages 3 or 
4 (Table 1).

Feature selection
Prior to applying ML-based feature selection, the multi-
variable logistic regression analysis identified several sig-
nificant factors associated with LTFU: male sex (adjusted 
odds ratio (AOR) = 1.71; 95% confidence interval (CI): 
1.39–2.09), incomplete address information (yellow) 
(AOR = 2.60, 95% CI: 2.01–3.37), follow-up period of 
0–12 months (AOR = 2.14, 95% CI: 1.75–2.61), TPT sta-
tus (bronze/silver) (AOR = 2.66, 95% CI: 2.17–3.26), DSD 
model (not enrolled or other forms) (AOR = 7.78, 95% CI: 
6.37–9.50), poor adherence (AOR = 5.01, 95% CI: 4.05–
6.18), undernutrition (AOR = 1.92, 95% CI: 1.54–2.39), 
and WHO stage 1/2 (AOR = 1.36, 95% CI: 1.09–1.70). 
Patient age was significantly associated with the unad-
justed analysis but lost significance in the adjusted model 
(AOR = 1.21, 95% CI: 0.98–1.48, P = 0.072) [Supplemen-
tary file 1]. On the basis of the results from the correla-
tion attribute evaluator [Supplementary file 2] and the 
information gain (IG) ranking, we selected six out of nine 
features to reduce complexity and improve model effi-
ciency for easier application. The selected features were 
the DSD model, adherence, TPT status, follow-up period, 
nutritional status, and address information, which pro-
vided the most relevant information for predicting LTFU 
in HIV care (Fig. 1).

Addressing imbalanced data in machine learning
The original imbalanced data comprised a total of 3,720 
individuals, with 2,575 (69.2%) classified as not LTFU 
and a smaller group of 1,145 individuals (30.8%) classi-
fied as LTFU. To address this imbalance, a class balancer 
was utilized to increase the weight of the minority class 
while decreasing the weight of the majority class, result-
ing in both classes being adjusted to an equal weight of 
1,860 for the machine learning process. Additionally, the 
application of SMOTE techniques further balanced the 
classes, yielding 2,575 individuals classified as not LTFU 
and 2,290 classified as LTFU (Fig. 2).

Table 1  Characteristics of adult HIV patients in Ethiopia, 
2019–2024 (n = 3,720)
Features Frequency Percent (%)
Sex
  Male 1468 39.5
  Female 2252 60.5
Age (years)
  15–34 1384 37.2
  35+ 2336 62.8
Address information
  Green 3172 85.3
  Yellow 548 14.7
Follow-up Period (months)
  Time_0–12 1355 36.4
  Time_13–60 2365 63.6
TPT Status
  Gold 2576 69.2
  Bronze/Silver 1144 30.8
DSD Model
  Not enrolled/Other DSD forms 1201 32.3
  ASM/3MMD 2519 67.7
Adherence
  Good 2593 69.7
  Poor 1127 30.3
Nutritional Status
  Undernourished 1369 36.8
  Normal 2351 63.2
WHO Stage
  Stage 1/2 2372 63.8
  Stage 3/4 1348 36.2
Abbreviations: ASM = Appointment Spacing Model; DSD = Differential Service 
Delivery; MMD = Multimonth Dispensing; TPT = TB Prevention Therapy; 
WHO = World Health Organization; other DSD models include DSDs such as the 
Advanced Disease Model, Community-based models, Key Population Model, 
Adolescents and Young People Model, and Maternity and Child Health Model
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Model training and evaluation
We trained the model via six distinct algorithms—RF, 
J48, K-NN, SVM, LR, and naïve Bayes—and internally 
validated it via 10-fold cross-validation, keeping all the 
hyperparameters at their default settings. The perfor-
mance analysis in Table 2 highlights the impact of class 
balancing on machine learning algorithms applied to 
imbalanced data, with notable improvements in sensitiv-
ity and slight changes in accuracy and AUC. For example, 
RF shows a stable accuracy of approximately 84% across 
all methods (84.8% for imbalanced data, 84.1% with class 
balancing, and 84.2% with SMOTE). However, the sen-
sitivity increases from 68.3% with imbalanced data to 
82.4% with SMOTE, indicating a significant improve-
ment in detecting minority classes. The AUC for RF 
increases slightly from 89.1% (imbalanced) to 89.5% with 
SMOTE. Similarly, the sensitivity of J48 increases from 
66.8% (imbalanced) to 82.5% with SMOTE, although the 
accuracy decreases slightly from 85.2 to 83.9%. K-NN 
experiences a sensitivity increase from 66.8 to 82.4% 
with SMOTE, whereas its accuracy remains stable at 
approximately 84%. Although SVM achieves a slight 

decline in accuracy from 85.0 to 81.9%, it benefits from 
improved sensitivity, increasing from 66.3 to 80.0% with 
SMOTE. LR decreases the accuracy from 84.6 to 81.7%, 
with the sensitivity slightly lower at 78.1% when SMOTE 
is used; however, the AUC remains constant at 88.5%. 
Naïve Bayes, while improving the sensitivity from 70.9 
to 75.9% with SMOTE, maintains a constant AUC of 
88.3% (Table  2). Therefore, SMOTE was selected as the 
preferred method for balancing because of its ability to 
enhance minority class detection without compromising 
overall model performance.

Furthermore, we conducted robust experiments com-
paring six algorithms via the corrected paired t test with 
a p value < 0.05. Both RF and KNN outperform the other 
algorithms, achieving the highest values across the most 
important metrics, establishing it as the best algorithm 
for predicting LTFU in HIV care (Fig. 3) [Supplementary 
file 3]. On the basis of further considerations, we chose 
RF for its practical advantages over KNN, such as better 
handling of large datasets, noise resilience, automatic fea-
ture importance, and scalability [51].

Random forest algorithm
A random forest model using 10-fold cross-validation 
took 0.26  s to build, employing bagging with 100 itera-
tions and a base learner [Supplementary file 4]. It dem-
onstrated an accuracy of 84.2%, a sensitivity of 82.4%, 

Table 2  Performance of ML algorithms on original imbalanced 
data vs. data balanced with class balancing and SMOTE
ML 
algorithm

Comparison 
metrics

Original imbal-
anced classes 
(%)

Class bal-
ancer (%)

SMOTE 
(%)

RF Accuracy 84.8 84.1 84.2
Sensitivity 68.3 82.3 82.4
AUC 89.1 89.0 89.5

J48 Accuracy 85.2 83.7 83.9
Sensitivity 66.8 82.2 82.5
AUC 87.2 87.8 88.0

K-NN Accuracy 84.9 84.0 84.2
Sensitivity 66.8 82.3 82.4
AUC 89.1 89.1 89.5

SVM Accuracy 85.0 81.8 81.9
Sensitivity 66.3 80.1 80.0
AUC 79.8 81.8 81.8

LR Accuracy 84.6 81.1 81.7
Sensitivity 68.2 80.3 78.1
AUC 88.6 88.5 88.5

Naïve Bayes Accuracy 83.9 81.2 81.8
Sensitivity 70.9 79.3 75.9
AUC 88.3 88.3 88.3

Abbreviations: AUC - area under the curve, J48 is a decision tree algorithm based 
on the C4.5 algorithm (J48 is its implementation in Weka). K-NN = k-nearest 
neighbors, LR = logistic regression, ML = machine learning, RF = random forest, 
SMOTE = synthetic minority oversampling technique, SVM = support vector 
machine

Fig. 2  Class distribution after applying class balancing techniques to the 
target feature, addressing the original imbalanced data. Abbreviations: 
LTFU = Loss to Follow-Up, SMOTE = Synthetic Minority Oversampling 
Technique

 

Fig. 1  Information gain (IG) of features for predicting loss to follow-up 
in HIV care. Abbreviations: DSD = Differentiated Service Delivery, TPT = TB 
Prevention Therapy, WHO = World Health Organization
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a specificity of 85.7%, a precision of 83.7%, an F1 score 
of 83.1%, an MCC of 68.3%, and an area under the PRC 
(precision-recall curve) of 88.7% (Table  3). Figure  4 
shows the AUC for the random forest classifier, indi-
cating a model performance of 89.5% in distinguishing 
between the true positive rate (sensitivity) and the false 
positive rate (1-specificity) across all thresholds (Fig. 4).

Clinical utility of the model
We conducted a decision curve analysis to determine 
the clinical effectiveness of a prediction model aimed at 
assessing the risk of LTFU in HIV care. In Fig. 3, decision 
curve analysis (DCA) illustrates the optimal thresholds at 
which our model achieves the best balance between ben-
efit and harm, enhancing our understanding of when to 
intervene in cases of LTFU. Notably, at thresholds of 10% 
and above, the model demonstrates a greater net benefit 
than both the “intervention for all” and “intervention for 
none” strategies do (Fig. 5).

Association rule results
Association rules were mined via the Apriori algorithm 
to find relationships or patterns between features in a 
dataset and compare the most significant features. A 
total of ten association rules were identified, each with 
a confidence level exceeding 90% and a minimum sup-
port of 0.2. The rules indicate that TPT status, the DSD 
model, adherence, and the follow-up period are strongly 

associated with LTFU. For example, in Rule 1, if the TPT 
status is bronze/silver and the DSD model is not enrolled/
other DSD forms, then the class (LTFU) is likely to be ‘Yes’ 
with 93% confidence and a strong association (lift = 1.98). 
Rule 2: When the DSD model is not enrolled/other DSD 
forms and adherence is poor, the class is predicted to 
be ‘Yes’ with 92% confidence and a strong association 
(lift = 1.96). Rule 6: When the DSD model is not enrolled/
other DSD forms and the follow-up period is between 0 
and 12 months, the class is predicted to be ‘Yes’ with 90% 
confidence and a strong association (lift = 1.92) [Supple-
mentary file 5].

Table 3  Performance of the random forest algorithm in predicting LTFU in HIV care, Ethiopia
ML algorithm Class Sensitivity (%) Specificity 

(%)
Precision (%) F1 score (%) MCC (%) Area under 

ROC (%)
Area 
under 
PRC 
(%)

RF Not LTFU 85.7 82.4 84.6 85.2 68.3 89.5 87.5
LTFU 82.4 85.7 83.7 83.1 68.3 89.5 88.7
Weighted average 84.2 84.0 84.2 84.2 68.3 89.5 88.0

Abbreviations: LTFU = loss to follow-up, MCC = Matthews correlation coefficient, ML = machine learning, RF = random forest. ROC = receiver operating characteristic 
curve, PRC = precision-recall curve

Fig. 5  Decision curve analysis (DCA) assessing the clinical utility of the 
model for predicting LTFU in HIV care, Ethiopia

 

Fig. 4  ROC curve and AUC of the random forest algorithm for predicting 
LTFU in HIV Care, Ethiopia

 

Fig. 3  Comparison of different ML algorithms after applying SMOTE to 
balance the data. Abbreviations: J48 is a decision tree algorithm based 
on the C4.5 algorithm. K-NN = k-nearest neighbors, LR = logistic regres-
sion, RF = random forest, ROC = receiver operating characteristic curve, 
SVM = support vector machine
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Discussion
In this study, a prediction model was developed to esti-
mate the five-year risk of LTFU in HIV care after ART 
initiation via machine learning algorithms trained on 
routine electronic medical records. The dataset used 
for model development revealed a 30.8% prevalence of 
LTFU in HIV care, which is consistent with findings from 
other low-resource settings where ML-based predic-
tion models were developed for patient disengagement, 
such as a 27% LTFU rate reported in Nigeria and 23% in 
Mozambique [52]. Similarly, a study conducted in Ethio-
pia developed a prediction model using data with a 25.7% 
prevalence of LTFU [20]. However, the prevalence of 
LTFU in the current study was higher than that reported 
from South Africa, where a prediction model was devel-
oped using data with a 10.5% prevalence of LTFU in HIV 
care [22]. The higher LTFU incidence in our study might 
be attributed to the inclusion of patients who tested HIV 
positive and newly began ART within the past five years, 
a period during which LTFU rates tend to be higher. 
Additionally, the data were collected from urban settings 
and high-caseload facilities in central Ethiopia, includ-
ing the capital, Addis Ababa, where patient LTFU may be 
more prevalent.

In this study, the machine learning–based feature 
selection process identified six locally relevant and oper-
ationally defined predictors of LTFU: the differentiated 
service delivery (DSD) model, adherence level, tubercu-
losis preventive therapy (TPT) status, follow-up period, 
nutritional status, and address information. These pre-
dictors were consistent with findings from other studies 
that predict LTFU in HIV care. For example, in a previ-
ous similar study conducted in Ethiopia, factors such as 
the appointment spacing model (ASM) for DSD, TPT 
status, adherence level, and nutritional status were used 
to develop a prediction model for LTFU [20]. In a simi-
lar study conducted in South Africa, the duration of 
follow-up on ART [22, 53] was used, whereas in Tanza-
nia, body weight and WHO clinical stage were utilized 
to predict the risk of disengagement from HIV care [21]. 
Patient address information was also a factor for follow-
up efforts and interventions to re-engage patients who 
may have become LTFUs. Having or lacking complete 
and detailed information, including a phone number and 
a precise kebele address, makes it a valuable feature in 
predictive modeling [23, 24]. Other predictors previously 
reported in the literature, such as age, sex, and WHO 
stage, did not emerge as significant features in our model 
selection process. However, these factors were important 
predictors in models developed during earlier times, sug-
gesting that when historical information is lacking, they 
can still serve as valuable indicators of LTFU in HIV care.

In this study, among the six ML algorithms tested—RF, 
J48, K-NN, SVM, LR, and naïve Bayes—RF outperformed 

the other algorithms in predicting the risk of LTFU in 
HIV care. It was selected for its high accuracy (84.2%), 
sensitivity (82.4%), and AUC (89.5%). These findings were 
comparable with findings from several other studies that 
have employed machine learning techniques to address 
similar challenges in HIV care settings. A study from 
South Africa revealed that RF models were among the 
top performers for predicting patient retention, achieving 
predictive power (AUC = 0.69) [22], although this value 
was slightly lower than the findings of the current study. 
In Nigeria, the ‘Data—FI’ initiative uses machine learning 
to predict LTFU among ART clients, achieving over 70% 
accuracy and demonstrating the potential of RF models 
in HIV care settings [32]. A study conducted in Mozam-
bique applied various machine learning algorithms and 
selected a random forest, which achieved an AUC of 
0.65, to predict LTFU among ART clients, even though 
its performance was lower than that of the current study 
[52]. The predictive performance of the current study 
exceeded that of a similar study conducted in Tanzania, 
which utilized machine learning with routine EMR indi-
cators and achieved an accuracy of 75.2% and a sensitivity 
of 54.7% [21]. Similarly, the current model outperformed 
a previous study conducted in Ethiopia, which achieved 
an AUROC of 85.9%, a maximum sensitivity of 72.07%, 
and a specificity of 83.49% [20]. The improved perfor-
mance in the current study may be attributed to several 
factors, including a larger sample size, the incorpora-
tion of diverse potential predictors, and the use of robust 
machine learning algorithms such as random forest [51]. 
Furthermore, the model underwent rigorous internal 
evaluation via a 10-fold cross-validation approach, which 
helps mitigate overfitting and provides a more general-
ized estimate of its predictive power [54].

We evaluated the clinical utility of the model through 
decision curve analysis (DCA). At thresholds of 10% or 
higher, the model demonstrated a greater net benefit 
than did strategies that either intervene with all patients 
or none. The DCA in the current study was also consis-
tent with broader research trends advocating for machine 
learning’s role in enhancing clinical decision-making and 
patient management across various healthcare domains. 
For example, a study on machine learning algorithms, 
including random forests, showed that DCA effectively 
assessed model performance in predicting surgical 
outcomes, highlighting the clinical value of predictive 
models for decision-making in healthcare [55]. Often, 
a clinically relevant range (e.g., 5–30%) of thresholds 
ensures that the analysis aligns with practical decision-
making contexts and reflects patient preferences and 
clinical guidelines [56, 57]. A study conducted elsewhere 
reported that multidomain prediction models outper-
formed single-domain models in terms of net benefit 
when DCA was used, particularly at treatment threshold 
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probabilities above 10% [58]. This aligns with the current 
findings, as both studies emphasize the importance of 
tailored interventions on the basis of predictive analytics 
rather than a one-size-fits-all approach. Thus, the DCA 
in this study underscores the importance of assessing 
predictive models for targeted interventions.

One limitation of this study is the categorization of 
continuous variables, such as age and follow-up period. 
This approach can result in a loss of information that may 
be critical for understanding the relationships within the 
data. Additionally, we combined several subcategories 
within the predictor feature “differentiated service deliv-
ery (DSD) model.” While these subcategories may appear 
insignificant on their own, their merging into broader 
categories could overlook important nuances. Finally, the 
developed model was validated solely with internal data, 
which restricts its external validity, which may affect the 
model’s generalizability to new observations and diverse 
populations, potentially reducing its applicability in 
broader contexts.

Conclusions
In this study, a machine learning prediction model was 
developed to assess the future risk of LTFU within five 
years of initiating antiretroviral therapy in a low-resource 
setting. A model was built using six predictors of LTFU: 
the DSD model, adherence, TPT status, follow-up period, 
nutritional status, and address information. Notably, the 
model built via the random forest algorithm demon-
strated high accuracy and strong discriminative perfor-
mance, highlighting its potential clinical utility through 
a positive net benefit. Future research should focus on 
external validation across diverse populations to ensure 
its generalizability and effectiveness.
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