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Abstract
Background  As personalized medicine becomes more prevalent, the objective measurement and visualization of an 
individual’s health status are becoming increasingly crucial. However, as the dimensions of data collected from each 
individual increase, this task becomes more challenging. The Health Space (HS) model provides a statistical framework 
for visualizing an individual’s health status on biologically meaningful axes. In our previous study, we developed HS 
models using statistical models such as logistic regression model (LRM) and the proportional odds model (POM). 
However, these statistical HS models are limited in their ability to accommodate complex non-linear biological 
relationships.

Methods  In order to model complex non-linear biological relationship, we developed deep learning HS models. 
Specifically, we formulated five distinct deep learning HS models: four standard binary deep neural networks (DNNs) 
for binary outcomes and one deep ordinal neural network (DONN) that accounts for the ordinality of the dependent 
variable. We trained these models using 32,140 samples from the Korea National Health and Nutrition Examination 
Survey (KNHANES) and validated them with data from the Ewha-Boramae cohort (862 samples) and the Korea 
Association Resource (KARE) project (3,199 samples).

Results  The proposed deep learning HS models were compared with the existing statistical HS model based on the 
POM. Deep learning HS model using DONN demonstrated the best performance in discriminating health status in 
both the training and external datasets.

Conclusion  We developed deep learning HS models to capture complex non-linear biological relationships in HS 
and compared their performance with our previously best-performing statistical HS model. The deep learning HS 
models show promise as effective tools for objectively and meaningfully visualizing an individual’s health status.

Clinical trial number  Not applicable.
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Background
As technology advances, the collection of personal 
health-related data, such as electronic health records 
(EHRs), fitness tracker data, and multi-omics datasets, 
is becoming cheaper and easier [1]. Utilizing this data, 
comprehensive and continuous monitoring of individual 
health conditions is expected to be possible, ultimately 
contributing to the advancement of personalized medical 
treatments [2]. However, as the dimensions of data that 
can be collected from an individual increase, visualizing 
an individual’s health status becomes more challenging 
[3]. For instance, today, we measure high-dimensional 
multi-omics datasets, including genomics, transcrip-
tomics, proteomics, and epigenomics, for more precise 
diagnosis and prognosis [4]. The high dimensionality 
of these datasets makes it difficult to present multiple 
types of health-related information in a meaningful and 
understandable way to both patients and their physicians. 
Therefore, developing effective data visualization meth-
ods that can integrate and display these complex datasets 
will be essential for clinicians and patients to make clear, 
evidence-based decisions about personalized treatment 
options.

For visualization of high-dimensional data, numerous 
dimensional reduction techniques have been developed 
in the fields of statistics and machine learning [5]. For lin-
ear approaches, principal component analysis is widely 
used, while non-linear techniques such as autoencoders, 
t-distributed stochastic neighbor embedding, and uni-
form manifold approximation and projection are applied 
across various fields [5–7]. However, the axes generated 
by these dimensional reduction techniques are often dif-
ficult to interpret biologically, as most methods focus on 
statistical aspects of the data, such as finding optimal lin-
ear or non-linear combinations of features that maximize 
variance or preserve local or global structures. Although 
these axes may meet optimal statistical criteria, they 
often lack biological meaning and do not provide useful 
insights into the underlying biological processes [8].

To address the issue of biological interpretability, a 
statistical method called ‘Health Space (HS)’ was devel-
oped. HS summarizes high-dimensional health data into 
a compact and visualizable form [8]. HS provides a sta-
tistical framework for visualizing an individual’s current 
health status based on predefined axes that are param-
eterized in a biologically meaningful way [8]. There are 
several benefits to using HS for visualizing health status, 
with the primary advantage being the biological inter-
pretability of the axes. In the original development of 
HS, three axes were selected to represent overarching 
processes of human health: oxidation, metabolism, and 
inflammation [8, 9]. Large values on these three axes 
indicate that the individual has high levels of oxidative 
stress, metabolic stress, and inflammation, suggesting 

a significant deviation from normal health conditions. 
Conversely, low values suggest that the individual is in 
a healthy state. These axes are biologically meaningful, 
representing the relative health status of an individual. 
Therefore, HS models allow researchers to analyze and 
interpret the trajectory of an individual’s health status. 
These models enable continuous monitoring of health 
conditions and can be used to analyze the effects of treat-
ment in randomized controlled trials. Additionally, the 
HS models are highly flexible and can be constructed 
using various statistical models, such as logistic regres-
sion model (LRM), proportional odds model (POM), lin-
ear mixed-effects model (LMM), and machine learning 
algorithms [10–12].

An important aspect in building useful HS is to retain 
as much information as possible when reducing the high-
dimensional data into two or three dimensions [13]. The 
better HS models, the more accurately they differentiate 
between healthy and diseased cohorts. HS models can be 
constructed with many different types of statistical mod-
els, raising the question of how to choose the optimal 
HS model. In our previous work, we developed a novel 
measure called Health Space Index (HSI) to evaluate HS 
models. The HSI ranges from zero to one, with lower val-
ues indicating better model performance [14]. We tested 
three different HS models based on LRM, LMM, POM 
and showed POM performed the best [14].

HS models using POM have the advantage of utilizing 
the ordinal information of the dependent variables, but 
they lack flexibility in modeling non-linear relationships 
between the phenotype and independent variables. This 
can be attributed to the fact that systematic component 
of the model assumes linear combinations of indepen-
dent variables, as is a common assumption in statistical 
modeling. Deep learning, however, has demonstrated 
strong performance in areas where data is high-dimen-
sional and the relationships between dependent and 
independent variables are complex and non-linear [15]. 
While current statistical HS models offer benefits such as 
the ability to calculate confidence intervals and perform 
statistical tests on fitted coefficients, they may not be suf-
ficient to model complex non-linear biological processes.

In this study, we propose deep learning HS models that 
are expected to capture complex non-linear biological 
processes better than traditional statistical HS models. 
We initially consider deep learning HS models utilizing 
standard binary deep neural network (DNN), which col-
lapse ordinal phenotype information into binary pheno-
type categories. However, these binary DNN models do 
not effectively account for the ordinal nature of the phe-
notype. To address this limitation, we propose a deep 
learning HS model based on a deep ordinal neural net-
work (DONN) that preserves the ordinality of the depen-
dent variable [16]. Through empirical studies using three 
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datasets, we compared the new deep learning HS mod-
els—both binary DNNs and DONN—with the statistical 
HS model based on the POM. The results showed that 
the deep learning HS model using DONN outperformed 
the others.

Methods
Data descriptions
Three types of data were used in this study. The first data-
set was used for training the models, while the other two 
datasets were used for external validation. For training 
the HS models, we utilized data from the Korea National 
Health and Nutrition Examination Survey (KNHANES) 
2007 − 2016, which included 32,140 samples [16]. The 
two external datasets used for model validation were the 
Ewha–Boramae cohort, a medical examination dataset 
with 862 samples [17]; and a subset of the Korean Asso-
ciation Resource (KARE) project, a population-based 
cohort study, with 3,199 samples [18].

To express health status as ordered data set, we split the 
individuals into four groups in our analysis: First group is 
healthy group (labeled as 0), second group is a group with 
one metabolic risk factor (labeled as 1), third group is a 
group with two metabolic risk factors (labeled as 2), and 
the fourth group is a group with metabolic syndrome or 
oxidative stress-related disease group (labeled as 3). The 
fourth group is associated with oxidative and metabolic 
stress and is defined based on the presence of any of the 
following diseases [19–24]: metabolic syndrome, diabetes 
mellitus, dyslipidemia, severe obesity, intermediate coro-
nary syndrome, stroke, hypertension, and diet-related 
cancers (liver, colon, stomach, breast, prostate, and lung).

We constructed the HS model using two axes: oxida-
tive stress and metabolic stress. Variables associated 
with each axis were selected based on their biological 
relevance. For the oxidative stress axis, we used variables 
such as age, sex, smoking status, white blood cell count, 
and alanine aminotransferase levels. For the metabolic 
stress axis, we included age, sex, body mass index, tri-
glycerides, high-density lipoprotein cholesterol, and fast-
ing glucose levels. Detailed information on the datasets 
can be found in the methods section of our previous 
study [14].

Deep learning health space model using deep ordinal 
neural network
The HS model outputs a vector in two dimensions where 
the input is a p-dimensional vector from a single sample. 
The first value, corresponding to the oxidation score, 
ranges from 0 to 1. As the oxidation score increases, the 
individual’s health status worsens concerning oxidative 
stress. The second value, corresponding to the metabo-
lism score, also ranges from 0 to 1. As the metabolism 
score increases, the individual’s health status deteriorates 

in terms of metabolic stress. Given n samples with p 
covariates, the HS model outputs an n × 2 matrix, 
which can be visualized in a two-dimensional plot. 
Healthy individuals are typically located in the lower left 
region of the plot, as they generally exhibit low oxidation 
and metabolism scores. Conversely, individuals with met-
abolic syndrome or oxidative stress-related diseases are 
found in the upper right region, while those with one or 
two risk factors are positioned between these two groups.

We developed deep learning HS model using DONN 
which can handle multiple categories with ordinal infor-
mation. DONN was motivated by the idea from the neu-
ral network structure used for ordinal regression [25]. 
Let X  be a n × p matrix of n samples with p covari-
ates and Y  be n × 1 vector where each element can 
take values from {0,1, . . . , J − 1} representing ordi-
nal response with J  categories. We define a non-linear 
function f : Rn× p → Rn× q  that maps X(independent 
variables) with multiple hidden layers and non-linear 
activation function resulting in W = f (X) . Let Xi 
and W i be ith row of X  and W  respectively and Y i be 
ith element of Y . Deep learning HS model using DONN 
model can be represented as

	
log

Pr (Y i > j|Xi)
Pr (Y i ≤ j|Xi)

= α j + W ⊤
i β ,

where Pr (Y i ≤ j|Xi) is cumulative probability of 
for ith sample belonging in categories less or equal to 
j ∈ {0,1, . . . , J − 2}, α j ∈ R and β ∈ Rq  are inter-
cepts and coefficients for W  respectively. We define i
th individual’s health score for DONN to be W ⊤

i β . We 
fit the model twice, using covariates relevant to oxidative 
stress, Xoxi ∈ Rn× p1 , and then using covariates rel-
evant to metabolic stress, Xmeta ∈ Rn× p2 . Finally, oxi-
dation scores and metabolism scores are calculated for n 
samples as ( Ŵ oxiβ̂ oxi, Ŵ metaβ̂ meta) ∈ Rn× 2. Note 
that Ŵ = f̂ (X) is also estimated during the fitting pro-
cess of DONN as parameters in hidden layers are fitted. 
For both training dataset and validation datasets we set 
J = 4, p1 = 5, and p2 = 6.

Loss function of DONN is defined using cross-entropy 
of J − 1 binary classifiers as

	

−Σ n
i=1Σ J−2

j=0 {log (σ (f (xi) + α j) y
(j)
i

+ log (1 − σ (f (xi) + α j)) (1 − y
(j)
i )},

where σ (· ) is sigmoid function and y
(j)
i = I (Yi > j) 

with indicator function I(· ). For optimization, Adam 
optimizer was used and learning rate was set to 0.001 
[26]. For hyperparameters settings used in DONN, ReLU 
function was used for non-linear activation function, and 
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number of hidden layers were set to two [27]. Batch size 
was set to 100, and training epochs were set to 150 with 
early stopping. Implementation of the code was done 
using PyTorch (version 1.21.1) package [28] in Python 
(version 3.8.16). Figure  1 summarizes the model struc-
ture of deep learning HS model using DONN.

Deep learning health space models using binary deep 
neural network
We also considered four different deep learning HS mod-
els using binary DNN. First, we considered simple binary 
DNN model (0 vs. 3) for HS focusing only in 0 and 3 cat-
egories. In this model, we only included data with out-
come response of 0 and 3, excluding those with responses 
of 1 and 2. Using the same notation from the previous 
section of DONN, the model can be written as

	
log

Pr (Y i = 3|Xi)
Pr (Y i = 0|Xi)

= α + W ⊤
i β .

HS scores for this binary DNN (0 vs. 3) can be calculated 
as ( Ŵ oxiβ̂ oxi, Ŵ metaβ̂ meta) ∈ Rn× 2. Next, we con-
sidered three binary DNN models for HS that can utilize 
all the data by collapsing the ordinal response into binary 
response, i.e., (0 vs. 1 + 2 + 3), (0 + 1 vs. 2 + 3), and (0 + 1 + 2 
vs. 3). These models can be summarized as

	
log

Pr (Y i > j|Xi)
Pr (Y i ≤ j|Xi)

= α j + W ⊤
j,iβ j ,

where j ∈ {0,1, 2}. Note that we have three sepa-
rate models where W ⊤

j,i  is the ith row vector of jth 

W . HS scores for collapsed binary DNN with com-
bined categories can be calculated as (̂W j,oxiβ̂ j,oxi, 

Ŵ j,metaβ̂ j,meta) ∈ Rn× 2 for j ∈ {0,1, 2}. Optimiza-
tion algorithm and hyper parameters were set to be same 
with DONN to remove bias on the performance HS 
models with regard to differences in hyper-parameters.

Evaluation measures of Heath space models
Since the primary objective of the HS model is to provide 
a biologically meaningful visualization rather than clas-
sification, standard classification metrics such as AUC, 
accuracy, recall, and precision are not suitable for com-
paring HS models. To evaluate and compare HS models, 
we used the Health Space Index (HSI), which is specifi-
cally designed for this purpose [14]. HSI assesses the 
separation between different health status groups in n
-dimensional space using confidence ellipses and the Jac-
card index, making it highly flexible and generalizable. 
HSI can be applied to any number of groups and axes, 
providing a general approach for evaluating HS model. 
We slightly adjusted the original definition of HSI to 1 - 
HSI, so that higher HSI values indicate better-performing 
HS models.

In addition to HSI, we considered three additional 
measures to enhance the objectivity and comprehensive-
ness of the evaluation process. First, the Silhouette Score 
was used, which measures how similar an object is to its 
own cluster compared to other clusters [29]. It ranges 

Fig. 1  Model structure of deep learning HS model using DONN DONN can handle ordinal data in the response by using idea from POM. It shares beta 
coefficients but have different intercepts. Also, it utilizes the advantages from deep learning which can model non-linearity between independent vari-
ables and the response. This figure illustrates the case when the ordinal response is 2
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from − 1 to 1, with higher values indicating better-clus-
tered objects and better clustering quality. In the context 
of HS models, a high Silhouette Score suggests that the 
health groups are better-separated, indicating a superior 
HS model. Second, the Davies-Bouldin Index was used, 
which assesses the average similarity ratio of each cluster 
to its most similar cluster [30]. It ranges from 0 to infin-
ity, where a lower score indicates better-defined clusters 
with greater separation between them. For HS models, a 
lower Davies-Bouldin Index indicates more distinct and 
better-separated health groups, reflecting a better HS 
model. Finally, the Calinski-Harabasz Index was used, 
which evaluates the ratio of the sum of between-cluster 
dispersion to within-cluster dispersion [29]. This index 
ranges from 0 to infinity, with higher values indicating 
better-defined clusters. In evaluating HS models, a higher 
Calinski-Harabasz Index suggests that the health groups 
are more compact and better-separated, indicating a bet-
ter HS model.

Results
Comparing HSI between six different HS models in 
KNHANES data
For comparison with our previous statistical HS mod-
els, we included our previous best statistical HS model 
using POM [14]. In summary, six HS models were con-
sidered: five deep learning HS models and one statistical 
HS model using POM. Among the five deep learning HS 
models, one was DONN and three were binary DNNs 
created by collapsing the ordinal information into the 
following categories: (0 vs. 1 + 2 + 3), (0 + 1 vs. 2 + 3), 
and (0 + 1 + 2 vs. 3). The fifth DNN was developed using 

partial data, specifically comparing (0 vs. 3). HS plots 
were created from the different HS models. Traditional 
machine learning models such as random forests, sup-
port vector machines, and XGBoost primarily focus on 
classification and do not naturally provide the necessary 
xβ ( linear predictor) form or continuous scores required 
for HS visualization. Consequently, these models were 
not suitable for our framework and were excluded 
from comparison. Figure  2 summarizes HS models cre-
ated from six different models using KNHANES data 
(n = 32,140). Good HS models are the ones that discrimi-
nate the health status groups better.

Even though, HS plot can aid in choosing which HS 
model is the best, we resort to more objective quantita-
tive measure HSI in evaluating appropriateness of HS 
models. HSI was originally defined as a measure between 
two groups. Since we had four groups in total, six pair-
wise HSIs were calculated for each HS model as shown 
in Fig. 3. For most of the pairwise HSI, except for (0 vs. 1) 
and (1 vs. 2), DONN showed highest HSI meaning that it 
had best separation between the two groups.

In order to choose best HS model, we used average of 
the pairwise HSIs as the measure for comparing HS mod-
els, and model with highest HSI was chosen as the best 
HS model. We calculated average HSI for all six mod-
els using KNHANES data. POM showed HSI of 0.43, 
showing lowest performance compared to other five HS 
models. Binary DNN models trained with all data by col-
lapsing the label into binary class showed HSI of 0.45 (0 
vs. 1 + 2 + 3), 0.57 (0 + 1 vs. 2 + 3) and 0.58 (0 + 1 + 2 vs. 
3) respectively. Binary DNN model trained with par-
tial data using healthy group (0) and disease group [3] 

Fig. 2  Comparison of HS created by six different HS models using KNHANES dataset
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showed HSI of 0.46. Finally, average HSI of DONN was 
calculated showing best performance of 0.74. Figure  4a 
summarizes average HSI of HS models created from six 
different models. To ensure robustness in our evalua-
tion, we incorporated bootstrapping, which is crucial for 
accounting for the variability in the training data [31]. 
Bootstrapping allows us to generate multiple resampled 
datasets, providing confidence intervals (CI) and assess-
ing the stability and reliability of the model’s performance 
across different data subsets. The bootstrapped mean of 
HSI and 95% CI were calculated for all models. The mean 
HSI for DONN was 0.743, with a 95% CI of (0.710, 0.765), 
which does not overlap with the CIs of other models. In 

contrast, the POM had the lowest mean HSI of 0.429, 
with a CI of (0.412, 0.445). The binary DNN models 
showed intermediate performance with mean HSIs rang-
ing from 0.440 to 0.562, but none overlapped with the 
DONN’s CI, underscoring robustness and effectiveness 
of DONN. Figure 4b illustrates the bootstrapped results, 
including both the bootstrapped mean and the boot-
strapped 95% confidence interval for 200 bootstrapped 
samples.

Comparing HS models in external validation data
To test the general performance of HS models, we used 
two external validation datasets, Ewha-Boramae cohort 

Fig. 4  HS models performance comparison using average of HSI using KNHANES dataset. (a) Comparing the average HSI across different HS models, 
showcasing the direct comparison of model performance using KNHANES dataset (b) Bootstrapped mean and 95% confidence interval (CI) of the aver-
age HSI are compared between HS models. The analysis incorporates 200 bootstrapped samples to ensure a robust estimation of the distribution and to 
enhance the reliability of the comparison

 

Fig. 3  Comparison of pairwise HSI calculated by six different HS models using KNHANES dataset
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data (n = 862) and KARE cohort data (n = 3,199). These 
two external datasets were not included in the training 
process, as only KNHANES (n = 32,140) was used for 
that purpose. Figure  5 summarizes HS models created 
from six different models using Ewha-Boramae cohort 
data (Fig. 5a) and KARE cohort data (Fig. 5b). The deep 

learning HS model using DONN demonstrated superior 
performance across both external datasets, achieving 
the highest HSI, with scores of 0.53 in Ewha-Boramae 
and 0.41 in KARE, ranking first in both datasets. DONN 
also excelled in clustering measures, recording the high-
est average Silhouette Score (-0.08 in Ewha-Boramae, and 

Fig. 5  Comparison of HS created by six different HS models in external dataset. (a) HS plot of Ewha-Boramae datasets ( n = 862) (b) HS plot of KARE 
datasets ( n = 3,199)
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0.00 in KARE) and the highest Calinski-Harabasz Index 
(487.60 in Ewha-Boramae, 1475.77 in KARE), again rank-
ing first. For the Davies-Bouldin Index, DONN showed 
the lowest value of 2.41 for Ewha-Boramae and the third-
lowest value of 3.34 for KARE, ranking first and third 
respectively.

In contrast, the deep learning HS models using binary 
DNN demonstrated varied performance across the 
datasets. The binary DNN (0 vs. 3) model ranked fifth 
in HSI in Ewha-Boramae (0.43) and second in KARE 
(0.40). In terms of Silhouette Score, it ranked fourth in 
Ewha-Boramae (-0.21) and fifth in KARE (-0.15). For 
the Calinski-Harabasz Index, it ranked fourth in Ewha-
Boramae (121.16) and fourth in KARE (399.87). Lastly, 
for the Davies-Bouldin Index, it ranked second in Ewha-
Boramae (4.37) and fifth in KARE (4.42). The statistical 
HS model using POM performed consistently across 
most measures, ranking second overall, except in HSI for 
Ewha-Boramae (0.47, 4th) and the Davies-Bouldin Index 
(9.67, 5th). Overall, the DONN model consistently out-
performed the other models across almost all measures 
and datasets, demonstrating its superiority in clustering 
quality and overall model effectiveness. The results are 
summarized in Table 1.

Discussion
As the dimensions of health-related data for individuals 
continue to increase, it is becoming increasingly impor-
tant to measure and visualize an individual’s health status 
in an objective and biologically interpretable way. One 
effective statistical method for visualizing an individual’s 
health status is the HS model. The HS model maps an 
individual’s health status into two dimensions using axes 
that represent overarching processes of human health, 
enabling clear visualization and interpretation. In this 
study, we developed deep learning HS models capable 
of flexibly modeling non-linearity. Among these, the 
DONN, which utilizes ordinal information, achieved the 
highest HSI compared to other binary DNN HS models. 
It also outperformed our previous statistical HS model 
based on the POM. Bootstrapped results showed that the 
95% confidence interval for DONN did not overlap with 
any other HS models. Through empirical studies using 
external validation datasets, we demonstrated that deep 
learning HS model utilizing DONN outperforms other 
HS models across various measures.

We found that when applying deep learning to HS 
models, it’s essential to consider the data’s underlying 
structure, such as ordinality. Simply applying conven-
tional neural networks without this consideration can 
lead to suboptimal results. Improved deep learning HS 
models allow for more accurate separation of individuals 
by health status. This enhances the power of downstream 
analyses, including the precision of health intervention Ta
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evaluations. In well-crafted HS models capable of detect-
ing subtle distinctions in health status, the effects of 
dietary adjustments and other interventions can be iden-
tified with greater precision. Moreover, these models can 
also help reveal individual patterns in health trajectories, 
allowing for the identification of subgroups with distinct 
responses to interventions. To formally identify these 
subgroups, clustering analysis methods can be applied to 
trajectory data, grouping individuals based on the simi-
larity of their health trajectories within the HS space. By 
tracking changes in an individual’s position within the 
HS space over time, HS models can provide insights into 
variations in response patterns, facilitating more person-
alized and targeted healthcare strategies. Furthermore, 
if sufficient trajectory data is available and the progres-
sion patterns of specific diseases are well-characterized, 
HS models could be utilized to predict future health out-
comes. To achieve this, a prediction model can be con-
structed by incorporating trajectory data within the HS 
space. First, by tracking an individual’s movement within 
the HS space over time, patterns of health progression 
can be quantified. Using these trajectories, time-series 
modeling techniques can be applied to forecast future 
positions in the HS space. By analyzing an individual’s 
movement within the HS space, HS models may help 
identify those at high risk of developing certain diseases, 
enabling early interventions and more effective risk 
stratification.

The deep learning HS models presented in this study 
offer significant advancements in health status visualiza-
tion, but some limitations should be considered. First, 
interpretability remains a challenge, as deep learning 
models, including DONN, do not inherently provide 
feature-level explanations. Unlike statistical models such 
as POM, where β coefficients directly indicate feature 
importance, deep learning models lack transparency, 
making it difficult to pinpoint the biological factors driv-
ing individual placements within the HS space. Second, 
while our model is currently designed around oxidative 
and metabolic stress axes, these two dimensions do not 
fully capture the complexity of human health. Third, gen-
eralizability and potential overfitting remain concerns, as 
the model was trained on large but Korean-specific data-
sets, which may limit its applicability to populations with 
different genetic, environmental, and lifestyle factors. 
Finally, the computational complexity of deep learning 
models may pose challenges for widespread adoption in 
clinical settings.

For future research, several promising directions could 
further enhance the impact and applicability of HS mod-
els. First, improving model interpretability is crucial. 
Applying explainable AI (XAI) techniques such as Shap-
ley additive explanations (SHAP), attention mechanisms, 
or feature attribution methods could help elucidate the 

biological factors influencing health status visualiza-
tion [32, 33]. Second, expanding the HS framework 
beyond oxidative and metabolic stress by incorporating 
additional axes, such as inflammation or cardiovascular 
health, could improve its biological relevance and provide 
a more holistic representation of health status [34, 35].
This can be achieved by selecting biologically meaningful 
markers from multi-omics data with corresponding phe-
notype collection, fitting the DONN model to capture 
non-linear relationships, and integrating the new axes 
with the existing ones. Third, to improve generalizability, 
future studies should focus on validating HS models in 
multi-ethnic cohorts and assessing whether overfitting to 
the Korean cohort has occurred. Finally, translating HS 
models into clinical practice remains an open challenge. 
Evaluating their usability through prospective studies or 
pilot clinical implementations will be critical for deter-
mining their impact on clinical decision-making and 
patient outcomes [36]. Addressing these areas will fur-
ther strengthen the interpretability, generalizability, and 
clinical utility of HS models, advancing their role in per-
sonalized medicine and health visualization strategies.

Conclusions
The objective of this study is to build a simple and effec-
tive visualization methodology that can help easily recog-
nize the health status of individuals. Our newly developed 
deep learning HS models can handle non-linearity in the 
data and are based on oxidative and metabolic stresses, 
making them more biologically interpretable. Among the 
developed deep learning HS models, the DONN, which 
handles ordinal data, performed the best compared to 
other HS models. Our improved HS models facilitate the 
visualization of complex biological data in a two-dimen-
sional plot and demonstrate the usefulness of incorporat-
ing deep learning in HS modeling.
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