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Abstract
Background  Bloodstream Infection (BSI) is a severe systemic infectious disease that can lead to sepsis and Multiple 
Organ Dysfunction Syndrome (MODS), resulting in high mortality rates and posing a major public health burden 
globally. Early identification of BSI is crucial for effective intervention, reducing mortality, and improving patient 
outcomes. However, existing diagnostic methods are flawed by low specificity, long detection times and high 
demands on testing platforms. The development of artificial intelligence provides a new approach for early disease 
identification. This study aims to explore the optimal combination of routine laboratory data and clinical monitoring 
indicators, and to utilize machine learning algorithms to construct an early, rapid, and universally applicable BSI risk 
prediction model, to assist in the early diagnosis of BSI in clinical practice.

Methods  Clinical data of 2582 suspected BSI patients admitted to the Chongqing University Central Hospital, from 
January 1, 2021 to December 31, 2023 were collected for this study. The data were divided into a modeling dataset 
and an external validation dataset based on chronological order, while the modeling dataset was further divided 
into a training set and an internal validation set. The occurrence rate of BSI, distribution of pathogens, and microbial 
primary reporting time were analyzed within the training set. During the feature selection stage, univariate regression 
and ML algorithms were applied. First, Univariate logistic regression was used to screen for predictive factors of BSI. 
Then, the Boruta algorithm, Lasso regression, and Recursive Feature Elimination with Cross-validation (RFE-CV) were 
employed to determine the optimal combination of predictors for predicting BSI. Based on the optimal combination, 
six machine learning algorithms were used to construct an early BSI risk prediction model. The best model was 
selected by models’ performance, and the Shapley Additive Explanations (SHAP) method was used to explain the 
model. The external validation set was used to evaluate the predictive performance and generalizability of the 
selected model, and the research findings were ultimately applied in clinical practice.

Results  The incidence of BSI among inpatients at the Chongqing University Central Hospital was 12.91%. Following 
further feature selection, a set of 5 variables was determined, including white blood cell count, standard bicarbonate, 
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Introduction
Bloodstream Infection (BSI) refers to the invasion of 
microorganisms into the bloodstream, leading to a sys-
temic infection, which can cause damage to all organs 
of the body. It is prone to inducing sepsis and multiple 
organ dysfunction syndrome (MODS), and associated 
with a high mortality rate [1, 2]. Annually, approximately 
1.2 million patients are diagnosed with BSI in Europe [3]. 
Every hour of delayed treatment for BSI raises the mor-
tality rate by 8%, reaching 58% after a 6-hour delay [4]. In 
the ICU, factors like weakened immunity, frequent risky 
procedures, multiple complications, and extended hos-
pital stays heighten the risk of BSI, making it a common 
issue in these settings. Untreated BSI can rapidly lead to 
sepsis, progressing to MODS, causing poor outcomes 
and life-threatening conditions [5–7]. Early detection, 
appropriate antibiotics, and addressing the source of BSI 
greatly reduce morbidity and mortality rates [8].

Blood culture is the benchmark for diagnosing BSI but 
has limitations such as low positivity rates, long turn-
around times, contamination risks, and challenges in 
detecting certain pathogens with standard culturing [9]. 
Machine learning (ML), a vital part of artificial intel-
ligence, has advanced analytical powers that can inde-
pendently detect disease patterns in data and forecast 
unknown results [10, 11]. Compared to traditional diag-
nostic and therapeutic approaches, ML offers a deeper 
insight into complex relationships. In recent years, ML 
has shown significant promise in disease screening, 
diagnosis, prognosis prediction, and risk analysis [12]. 
Developing early prediction models for BSI using ML 
is crucial for enhancing early diagnosis, treatment, and 
personalized healthcare. However, current prediction 
models often require a large number of features [13–14]. 
While including more features can improve the predic-
tive ability of the models, it can also lead to increased 
complexity, requiring more data for training, and reduc-
ing interpretability and generalizability of the model. This 
poses a challenge in practical clinical settings, especially 
in primary care facilities where extensive testing and 

comprehensive patient data collection may not be fea-
sible. Therefore, researchers and clinicians need to find 
a balance—ensuring predictive accuracy while minimiz-
ing the number and complexity of required features—to 
make these predictive models effective in resource-lim-
ited environments, such as grassroots healthcare 
institutions.

Consequently, this study aims to analyze routine labo-
ratory/clinical data to identify key predictive factors that 
play a significant role in the early diagnosis of BSI. The 
goal is to find the optimal combination of these factors 
and use machine learning algorithm to develop a broadly 
applicable early risk prediction model for BSI. This 
model aims to facilitate early and rapid prediction of BSI 
in a variety of clinical settings and will be validated and 
implemented in real-world scenarios.

Methods
Study population
This study was a secondary analysis of a retrospective 
observational study conducted from 2021 to 2023 among 
inpatients at the Chongqing University Central Hospital. 
The inclusion criteria were (1) age ≥ 18 years; (2) inpa-
tients; (3) had at least one blood culture examination 
performed during hospital stay. The exclusion criteria 
were (1) The blood culture results indicated a probable 
contaminant; (2) Data missing rate ≥ 30%. Clinical or 
laboratory parameters related to BSI were collected for 
each adult patient. For patients with multiple positive BC 
samples, only the first episode was included. For those 
with multiple negative BC samples, a single episode was 
randomly selected.

Outcome
The outcome assessed was BSI, defined as the growth of 
a clinically significant pathogen in at least one BC bottle. 
Potential contaminants were defined by the Center for 
Disease Control and Prevention (CDC)/National Health 
Safety Network (NHSN) guidelines for Laboratory Con-
firmed Bloodstream Infection (LCBI) and were not 

base excess of extracellular fluid, interleukin-6, and body temperature. BSI early risk prediction models were 
constructed using six machine learning algorithms, with the XGBoost model demonstrating the best performance, 
achieving an AUC value of 0.782 in the internal validation set and an AUC value of 0.776 in the external validation set. 
This model is made publicly available as an online webpage tool for clinical use.

Conclusions  This study successfully identified a set of 5 features by analyzing routine laboratory data clinical 
monitoring indicators among hospitalized patients. Based on this set, a machine learning-based early risk prediction 
model for BSI was constructed. The model is capable of early and rapid differentiation between BSI and non-BSI 
patients. The inclusion of minimal risk prediction factors enhances its applicability in clinical settings, particularly at 
the primary care level. To further improve the model’s real-world applicability and more convenient for clinical use, the 
online application of the model could greatly improve the efficiency of BSI diagnosis and reducing patients’ mortality.

Keywords  Bloodstream infection, Risk prediction, Real-world, Model construction
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classified as BSIs. These potential contaminants include 
coagulase-negative Staphylococci, Corynebacterium spe-
cies, Bacillus species, Diphtheroids, Aerococcus, and 
Propionibacterium species [13].

Dataset
At the target medical centers, we constructed datas-
ets that included demographics, clinical and laboratory 
parameters, including microbiology, available within 3 h 
before and after BC sampling time [15].

The dataset included as follows: (i) blood cells; (ii) liver 
function; (iii) renal function; (iv) hemagglutination; (v) 
blood gas analysis; (vi) electrolytes; (vii) inflammatory 
markers; (viii) blood culture; (ix) clinical features. All 
examination indicators were captured based on the time 
of sample collection.

We collected datasets from two time periods: the data-
set from January 2021 to April 2023 was randomly split 
into training and validation sets comprising 70% and 30% 
respectively. The training sets were used for modelling, 
while the validation sets for internal validation. The data-
set from May 2023 to December 2023 was used for exter-
nal validation of the best model.

Data preprocessing
Data cleaning and preprocessing are critical steps in the 
data analysis process, aimed at transforming raw data 
into a format suitable for statistical analysis or ML mod-
eling [16, 17]. In this study, data cleaning and prepro-
cessing primarily involved the removal of duplicate data, 
analysis and treatment of outliers, imputation of miss-
ing values, data standardization, and balancing of data 
categories.

In this study, to ensure the uniqueness of each patient’s 
record and to avoid the duplication of patient informa-
tion, we used the hospital admission number as the 
unique identifier for patients. During the data collec-
tion process, we made sure that each patient’s admission 
number was recorded only once, meaning that only one 
record per patient was included in the study. We con-
ducted outlier detection and analysis on the variables 
contained within the data. Upon identifying outliers, 
we reviewed the original records of the corresponding 
patients and assessed these outlier values. If an outlier 
was deemed unreasonable, it was removed; otherwise, 
the record was retained. The determination of outliers 

was primarily based on the opinions of clinical experts, 
with detailed information provided in Table 1. For miss-
ing data, we employed forward and backward filling algo-
rithms to impute the values. In our study, we utilized the 
min-max standardization method for data preprocess-
ing. This method does not rely on a specific data distri-
bution and maintains the original characteristics of the 
data while simplifying the model training process, mak-
ing it particularly effective for handling non-normally 
distributed data. Due to the imbalance in the proportion 
of positive and negative samples in the collected dataset, 
we used random oversampling techniques to balance the 
dataset. This is a common strategy in the field of machine 
learning.

Feature selection and modeling
Feature selection: (i) In this study, the initial method for 
selecting predictive factors involved univariable logis-
tic regression. Univariable logistic regression allowed 
for the assessment of whether each biomarker was 
independently associated with BSIs, thus enabling the 
preliminary selection of predictive factors for model 
development. (ii) The study also incorporated the Boruta 
algorithm [18–20], Lasso regression [21–22], and Recur-
sive Feature Elimination with Cross-validation (RFE-CV) 
[23–25] to optimize the results obtained from the uni-
variable logistic regression analysis.

Modeling: In this study, we used the Light Gradi-
ent Boosting Machine (LightGBM), eXtreme Gradient 
Boosting (XGBoost), Gradient Boosting Decision Tree 
(GBDT), Random Forest (RF), Support Vector Machine 
(SVM) and Gaussian Naive Bayes (GNB) algorithms to 
predict the risk of BSI in inpatients by analyzing clinic/
laboratory data [26–31]. Throughout the model develop-
ment phase, we implemented a grid search technique to 
refine the hyperparameters.

Validation and explanation
We evaluated the performance of the model by apply-
ing several different indices, namely (i) AUC, (ii) accu-
racy, (iii) sensitivity, and (iv) specificity. The performance 
assessment for selecting the best model will primarily be 
based on the AUC value. First, we conducted an assess-
ment on the internal validation set, which comprised 30% 
of the original data that was initially set aside for valida-
tion purposes only. After model selection, we used the 
Shapley Additive Explanations (SHAP) algorithm from 
model-agnostic approaches to explain the best-perform-
ing model [32–34]. Finally, the dataset from May 2023 to 
December 2023 was utilized for external validation of the 
optimal model.

Table 1  Vital-signs values assumed to be plausible
Items Values
Temperature (Celsius) 32–42
Heart-Rate (bpm) 30–190
Systolic arterial pressure (mmHg) 30–250
Diastolic arterial pressure (mmHg) 15–175
Mean arterial pressure (mmHg) 15–200
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Statistical analysis
Binary variables were presented as counts and percent-
ages, and their significance was assessed using the Chi-
square test or Fisher’s exact test. Continuous variables 
that were normally distributed were compared with a 
t-test and reported as means ± SEM. For variables with a 
non-normal distribution, the Mann–Whitney U test was 
applied. A P-value of less than 0.05 was deemed statisti-
cally significant. All statistical analyses were conducted in 
the Beckman Coulter DxAI platform (​h​t​t​p​​s​:​/​​/​w​w​w​​.​x​​s​m​a​​r​
t​a​​n​a​l​y​​s​i​​s​.​c​​o​m​/​​b​e​c​k​​m​a​​n​/​l​o​g​i​n​/).

Results
Patient characteristics
Our model construction database initially contained 
5,057 inpatients suspected of having BSI. Following a 
series of exclusions, 43 patients were under the age of 
18, 70 patients had blood culture results suspected to 
be contaminated, and 2,621 patients had a data missing 
rate exceeding 30%. Ultimately, 2,323 adult inpatients 
were included in this study, of which 300 patients devel-
oped BSI, accounting for 12.9% of the study population. 
The missing rates of the included patients were shown 
in Supplementary Fig.  1.The patient selection process is 
illustrated in Fig.  1. The baseline characteristics of the 
patients are presented in Supplementary Table 1.The 
training and internal validation datasets comprised of 
1,626 and 697 patients, respectively. A total of 74 vari-
ables, including age, sex, Temperature, White Blood Cell 
Count (WBC), D-dimer, and other laboratory or clinical 

parameters related to BSI, were collected for each patient. 
A comparison of basic information between the two sets 
were shown in Supplementary Table 2.

For external validation of the model, 259 patients were 
included, of whom 34 developed BSI (13.13%). The base-
line characteristics of the patients are presented in Sup-
plementary Table 3.

Variables of importance
The model’s accuracy increased as more variables were 
incorporated. However, increasing the number of vari-
ables did not correspond with the practicality needed for 
clinical application. In order to identify the most signifi-
cant features, we employed univariate logistic regression 
to preliminarily screen the variables associated with BSI 
within the training set. We identified 27 variables that are 
crucial for predicting BSI, which were shown in Supple-
mentary Table 4.

Based on the results of the univariate logistic regres-
sion analysis, the individual indicators that were screened 
(WBC, EOS, EOS%, Neu%, Mon, Mon%, RDW, Hct, PLT, 
A/G, Alb, CHE, PA, Cr, UA, Urea, Fib, SB, AB, BEf, Lac, 
TCO2, Cl, Mg, IL-6, hs-CRP, and T) were used separately 
to predict whether patients had BSI. As shown in Fig. 2, 
the AUC values for Neu%, Cr, Urea, and T exceeded 
0.600, while the AUC values for the remaining indicators 
were all below 0.600. The efficacy of single indicators for 
predicting BSI was poor.

We utilized the Boruta algorithm, Lasso regression, 
and RFE-CV to further reduce the number of variables. 

Fig. 1  Flow chart depicting number of patients who were included in analysis after exclusion criteria. The total included encounters were divided into 
those with and without BSI
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As shown in Fig. 3, the Boruta algorithm indentified 19 
variables such as Hct, Fib, UA, Cl, Alb, hs-CRP, WBC, 
TCO2, Urea, AB, Cr, Mg, Mon, IL-6, Mon%, BEf, SB, 
Neu%, and T. The Lasso regression analysis highlighted 
15 features that help minimize the model’s prediction 
error: WBC, EOS, PLT, PA, Lac, UA, TCO2, AB, SB, BEf, 
Na, Cl, hs-CRP, IL-6, and T. Meanwhile, the RFE-CV 
method selected the top five feature indicators based on 
their contribution rankings, which are WBC, SB, BEf, 
IL-6, and T. Ultimately, by taking the intersection of the 
results from these three algorithms, we identified the 5 
key features that contribute the most to the model’s pre-
dictive capability: WBC, SB, BEf, IL-6, and T.

Classification results
Based on the selected 5 key features (WBC, SB, BEf, IL-6, 
and T), we constructed six early prediction models for 
BSI risk using machine learning algorithms: the Light-
GBM model, the XGBoost model, the GBDT model, the 
RF model, the SVM model, and the GNB model. The 
model construction process involved hyperparameter 
optimization using grid search techniques.

As shown in Fig.  4, the average AUC values for the 
XGBoost, LightGBM, RF, GBDT, GNB, and SVM mod-
els on the internal validation set were 0.782 (95% CI: 
0.715–0.849), 0.700 (95% CI: 0.627–0.773), 0.772 (95% 
CI: 0.704–0.841), 0.723 (95% CI: 0.650–0.797), 0.562 
(95% CI: 0.483–0.642), and 0.528 (95% CI: 0.446–0.611), 

respectively. The XGBoost model had the highest AUC 
value of 0.782, while the SVM model had the lowest AUC 
value of 0.528. For the hyperparameters of each model, 
please refer to Supplementary Table 5 in the supplemen-
tary Information section.

As shown in Table  2, the RF model had the highest 
accuracy rate at 0.882; the GNB model had the high-
est sensitivity at 0.747; and the XGBoost model had the 
highest specificity at 0.824. Considering the AUC values 
and the evaluation metrics, the XGBoost model emerged 
as the best model.

In the external validation, the AUROC of the XGBoost 
model decreased to 0.776 (95% 0.685–0.864), with an 
accuracy of 0.685, sensitivity of 0.647, and specificity 
of 0.800. The calibration curve was close to the 45° line, 
indicating a good fit between the model’s predictions and 
the actual values. The results are shown in Fig. 5.

Model interpretation and online application
To better understand the prediction results of the 
XGBoost model and the basis for decision-making, the 
SHAP algorithm was used to quantify the contribution 
of each feature to the model’s predictive outcomes. Fig-
ure 6a displays the ranking of feature contributions in the 
XGBoost model, with the indicators ranked from highest 
to lowest contribution being SB, BEf, IL-6, T, and WBC.

For individual patients, as shown in Fig.  6b and c, 
the figure uses color coding to represent the impact of 

Fig. 2  The ROC curves of predictive factors identified by univariate logistic regression analysis
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features on the prediction. Blue indicates features that 
negatively influence the prediction (leftward arrows, 
which correspond to a decrease in SHAP values), and 
red signifies features that positively affect the prediction 
(rightward arrows, indicating an increase in SHAP val-
ues). The base value represents the average model output 
for the training set, and the SHAP values for an individ-
ual patient’s model output are indicated by f(x). In Fig. 6b, 
the f(x) value is below the base value (0.03 compared to 
0.20), which suggests the model predicts a low risk of 
BSI for this patient. In contrast, in Fig. 6c, the f(x) value 
exceeds the base value (0.62 compared to 0.20), leading 
the model to predict a high risk of BSI for the patient.

To enhance the practicality and broad applicability of 
the constructed model in clinical practice, early risk pre-
diction for patients can be conducted via an online link. 
The URL for the online prediction tool is: [​h​t​t​p​​:​/​/​​w​w​w​.​​x​s​​
m​a​r​​t​a​n​​a​l​y​s​​i​s​​.​c​o​​m​/​m​​o​d​e​l​​/​l​​i​s​t​​/​p​r​​e​d​i​c​​t​/​​m​o​d​​e​l​/​​h​t​m​l​​?​m​​i​d​=​​1​
3​8​​8​5​&​s​​y​m​​b​o​l​=​1​1​i​m​7​1​S​W​N​C​2​1​1​Q​j​9​1​8​0​6].

Discussion
In this study, we developed a machine learning algo-
rithm that utilizes clinical data to predict the risk of BSI 
in adult patients suspected of bacteremia. Traditional 
blood culture methods typically require several days to 
yield results, whereas our model can predict the like-
lihood of BSI within 3  h before and after blood culture 
collection. The XGBoost model outperformed other 
models, achieving an AUC of 0.782, with high specific-
ity, closely aligning with the 45-degree line on the cali-
bration curve. Therefore, this model was identified as the 
optimal model and will be used for subsequent external 
validation and clinical application. Clinicians can access 
the model online and input values for WBC (white blood 
cell count), SB (standard bicarbonate), T (body tempera-
ture), BEf (base excess), and IL-6 (interleukin-6) to obtain 
BSI risk predictions. It is particularly noteworthy that our 
model relies on only five common indicators to predict 
the occurrence of BSI, which significantly enhances the 
model’s applicability and facilitates its widespread use in 
medical institutions at all levels.

Our study findings revealed a 12.91% incidence rate of 
BSI among hospitalized patients between 2021 and 2023. 

Fig. 3  Selection of key features for BSI. (a) Variable Selection Plot of Boruta; (b) Variable Selection Plot of Lasso; (c) Variable Selection Plot of RFE-CV; (d)
Venn graph displaying 5 features shared by Boruta, Lasso and RFE-CV
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This rate was higher than that reported in a 6-year retro-
spective study in the U.S. (12.91% vs. 5.90%) [35], likely 
due to the hospital’s status as a national critical care cen-
ter, which treats a higher volume of critically ill patients 
susceptible to BSI. The data collection period coincided 
with the COVID-19 pandemic, which may also have con-
tributed to the increased BSI rates [36]. Finnish research 
has indicated higher BSI incidence and mortality in the 
elderly, particularly those over 80 years old [37–38]. 
Our study population had a median age of 68.0 years 
for the cohort and 72.0 years for BSI cases, which may 
explain the higher incidence. Given the aging population, 
addressing BSI in elderly patients is particularly crucial. 
It is important to note that pre-admission BSI cases were 
not excluded, which could have contributed to the higher 
incidence rate by including community-acquired BSI.

Early diagnosis of BSI is vital for lowering mortal-
ity and enhancing patient outcomes. As artificial intel-
ligence evolves, ML algorithms are becoming pivotal 

in medicine, particularly for BSI diagnosis. Studies like 
Roimi’s achieved an AUC of 0.930 with 50 features [13], 
Zhang’s LSTM model reached 0.892 with over 100 fea-
tures [15], and Zoabi et al. reported 0.810 with 25 fea-
tures [39]. While more features can improve model 
performance, extensive data collection complicates 
practical use, especially in primary care where early BSI 
diagnosis is challenging. This study initially narrowed 74 
predictors to 27 via univariate logistic regression, but sin-
gle-factor prediction was inadequate. Further analysis led 
to feature selection using ML methods, including Boruta, 
Lasso, and RFE-CV, pinpointing 5 key indicators for early 
BSI risk, including SB, BEf, IL-6, Temperature, and WBC. 
WBC, IL-6, and Temperature are standard in infec-
tious disease management and are key in BSI diagnosis. 
When a patient develops a BSI, the increase in WBC 
count, IL-6 levels, and body temperature is generally 
considered to be a result of the pathogen invasion acti-
vating the immune system, triggering an inflammatory 

Table 2  Evaluation metrics results of six models
Model AUC

(95%CI)
Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

PPV
(95%CI)

NPV
(95%CI)

F1-score
(95%CI)

XGBoost 0.782(0.715–0.849) 0.763(0.724–0.802) 0.633(0.518–0.749) 0.824(0.720–0.927) 0.309(0.267–0.352) 0.936(0.932–0.940) 0.41(0.372–0.447)
LightGBM 0.700(0.627–0.773) 0.83(0.816–0.844) 0.527(0.435–0.619) 0.788(0.691–0.886) 0.346(0.291–0.401) 0.905(0.896–0.914) 0.408(0.378–0.438)
RF 0.772(0.704–0.841) 0.882(0.874–0.889) 0.653(0.574–0.733) 0.799(0.740–0.857) 0.665(0.555–0.774) 0.889(0.884–0.894) 0.652(0.585–0.718)
GBDT 0.723(0.650–0.797) 0.729(0.689–0.769) 0.643(0.541–0.745) 0.738(0.647–0.829) 0.257(0.225–0.290) 0.92(0.913–0.928) 0.365(0.327–0.402)
GNB 0.562(0.483–0.642) 0.47(0.253–0.688) 0.747(0.520–0.973) 0.416(0.174–0.657) 0.155(0.142–0.168) 0.918(0.884–0.953) 0.254(0.223–0.286)
SVM 0.528(0.446–0.611) 0.595(0.389–0.801) 0.51(0.250–0.770) 0.642(0.395–0.889) 0.169(0.136–0.203) 0.882(0.850–0.914) 0.24(0.190–0.289)

Fig. 4  ROC curves of six models in the internal validation set
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response. WBC are mobilized as immune cells to com-
bat the infection, IL-6 is released as a pro-inflammatory 
cytokine to enhance the immune response, and the rise 
in body temperature serves as a defense mechanism to 
create an environment unfavorable for the survival of 
the pathogen [40–45]. Blood gas analysis, often focus-
ing on TCO2 and pH, has seen less research on SB and 
BEf for early BSI detection. Some studies have indicated 
that during the early stages of infectious diseases, more 
pronounced changes occur in SB and BEF. Research sug-
gests that the systemic inflammatory response induced 
by infection can impair the normal function of the circu-
latory system, thereby affecting tissue oxygenation. Even 
when the blood pH of patients has not shown significant 
fluctuations, the SB level begins to decline in the context 
of hypoxia [46]. When BSI patients experience acid-base 
balance disorders, BEF exhibits marked abnormalities. 
Song-Mao Ouyang and colleagues have observed sta-
tistically significant differences in BEF values between 
infected and non-infected patients (P < 0.05) [47]. These 
five indicators are easier to obtain compared to the 
numerous features required by other studies. This means 
that the model can be more conveniently applied in other 
medical institutions.

Our model also has its limitations. As evidenced by 
the research results, the AUC values across all models, 
including the top-performing XGBoost model, remain 
suboptimal. We attribute this outcome to several key fac-
tors. First, the real-world patient dataset utilized in this 
study contains substantial missing values. While vital sign 
records exhibit relatively complete documentation, other 
laboratory test indicators suffer from severe data scarcity. 
The forward and backward filling methods employed for 

data imputation may have compromised data authen-
ticity. We conducted additional experiments predicting 
BSI occurrence using only vital signs with fewer missing 
entries, yet the predictive performance remained unsatis-
factory. Second, our BSI prediction framework incorpo-
rates only five clinical indicators—an intentional design 
choice to enhance clinical applicability. Although this fea-
ture scarcity inherently limits model predictive capability, 
we prioritized practical utility over theoretical perfor-
mance. Excessive feature requirements would render the 
model operationally burdensome in real-world health-
care settings. This trade-off between predictive accuracy 
and clinical feasibility represents a deliberate compro-
mise to ensure hospital adoption potential. Future itera-
tions could explore balancing feature parsimony with 
enhanced predictive power through advanced feature 
engineering or multimodal data integration. Addition-
ally, factors such as the empirical use of antibiotics by 
patients and the presence of multiple underlying diseases 
may impact the model’s performance. The calibration 
curve results of the XGBoost model suggest a tendency 
to overestimate the risk of mortality. However, consid-
ering the severity of BSI as an infectious disease, clini-
cians may prefer overestimating the risk of death as a risk 
management strategy over missing a diagnosis [48–50]. 
In cases of BSI, early identification and intervention are 
vital for enhancing patient survival rates. Thus, despite 
the model’s potential to overestimate risk, it still offers 
clinicians a more cautious foundation for treatment deci-
sions, preventing the delay of necessary treatment due to 
underestimating the risk [51]. Addressing the issues high-
lighted by the calibration plot, future research will focus 
on developing a comprehensive decision support system 

Fig. 5  Performance evaluation of the XGBoost model. (a) ROC curve of external validation set in the XGBoost model; (b) calibration curve of XGBoost 
model

 



Page 9 of 12Hu et al. BMC Medical Informatics and Decision Making          (2025) 25:186 

that merges clinical experience with model predictions. 
Depending on the evaluation results, we will consider 
whether model adjustments are necessary to enhance 
calibration, while preserving its high sensitivity and abil-
ity to effectively identify high-risk patients.

This study aims to develop an early BSI risk prediction 
model utilizing standardized, cost-effective, and readily 
accessible laboratory indicators, with the goal of provid-
ing clinicians with an accurate yet simple diagnostic tool. 
Leveraging machine learning techniques, we have estab-
lished a prediction framework intentionally designed for 
universal adaptability, ensuring seamless implementation 
across diverse healthcare facilities. Future research direc-
tions should prioritize multicenter validation studies to 
strengthen the model’s generalizability and robustness. 
Subsequent investigations should further examine the 
model’s predictive performance through clinical datas-
ets spanning varied demographic populations, temporal 

contexts, and environmental settings, thereby compre-
hensively evaluating its clinical utility in decision-making 
processes. From clinical practice perspectives, our find-
ings empower healthcare providers to enhance early BSI 
risk identification capabilities, enabling timely therapeu-
tic interventions that optimize patient prognosis. For 
patient care, this translates to personalized treatment 
protocols and accelerated recovery trajectories. Regard-
ing healthcare policy, the evidence-based insights derived 
from this research inform strategic optimization of medi-
cal resource allocation, fostering sustainable improve-
ments in healthcare system efficiency.

In conclusion, this work not only advances meth-
odological approaches to BSI risk assessment but also 
delivers practical solutions and conceptual frameworks 
that bridge clinical practice with health policy formula-
tion. The developed model serves as both a predictive 

Fig. 6  Model Interpretation of XGBoost. (a) Importance ranking of features; (b) Example of Low-risk Patient; (c) Example of hight-risk patient
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instrument and a catalyst for transforming infection 
management paradigms.
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