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Abstract
Background The RIKEN BRC develops and maintains the RIKEN BioResource MetaDatabase to help users explore 
appropriate target bioresources for their experiments and prepare precise and high-quality data infrastructures. The 
Swiss Institute of Bioinformatics develops two databases across multi-species for the study of gene expression and 
orthology: Bgee and Orthologous MAtrix (OMA, an orthology database).

Methods This study combines the RIKEN BioResource data with Resource Description Framework (RDF) datasets 
from Bgee, a gene expression database, the OMA, the DisGeNET, a human gene-disease association, Mouse Genome 
Informatics (MGI), UniProt, and four disease ontologies in the RIKEN BioResource MetaDatabase. Our aim is to 
evaluate the distributed SPARQL query performance when exploring which model organisms are most appropriate 
for specific medical science research applications across the aforementioned interoperable datasets. More precisely 
in our biomedical use cases, we investigate disease-related genes, as well as anatomical parts where these genes 
are expressed and subsequently identify appropriate bioresource candidates available for specific disease research 
applications.

Results We illustrate the above through two use cases targeting either Alzheimer’s disease or melanoma. We 
identified 14 Alzheimer’s disease-related genes that were expressed in the prefrontal cortex (e.g., APP and APOE) 

Federated SPARQL query performance 
evaluation for exploring disease model 
mouse: combining gene expression, 
orthology, and disease knowledge graphs
Tatsuya Kushida1* , Tarcisio Mendes de Farias2,3 , Ana C. Sima2 , Christophe Dessimoz2,3 , Hirokazu Chiba4 , 
Frederic B. Bastian2,3  and Hiroshi Masuya1

From International SWAT4HCLS Conference– Semantic Web Applications and Tools for Health Care and 
Life Sciences Basel, Switzerland 13-16 Febraury 2023 https:/ /www.sw at4ls.o rg/w orkshops/basel2023/

http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0784-4113
http://orcid.org/0000-0002-3175-5372
http://orcid.org/0000-0003-3213-4495
http://orcid.org/0000-0002-2170-853X
http://orcid.org/0000-0003-4062-8903
http://orcid.org/0000-0002-9415-5104
http://orcid.org/0000-0002-3392-466X
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-025-03013-8&domain=pdf&date_stamp=2025-5-15


Page 2 of 18Kushida et al. BMC Medical Informatics and Decision Making          (2025) 25:189 

Introduction
Bioresources are biological materials used for experimen-
tal life science research. They are widely used to elucidate 
the mechanisms of biological processes, including func-
tional analyses, drug discovery, breeding, and practical 
chemical compound production as examples. Research-
ers generally source their bioresources from dedicated 
centers worldwide. These bioresource centers must 
develop retrieval systems to help users explore appropri-
ate target bioresources for their experiments and to pre-
pare precise and high-quality data infrastructure.

The BioResource Research Center (BRC) at the Jap-
anese Institute of Physical and Chemical Research 
(RIKEN) is one of the largest and most comprehensive 
resource centers and manages a wide array of biore-
sources, such as experimental mouse strains, cultured 
cell lines and genetic material of human and animal ori-
gin, plant seeds, and microorganisms. The mission of the 
BRC is to contribute to the improvement of living stan-
dards, and the development and prosperity of human 
beings through distribution of its bioresources. These 
bioresources are developed and prepared under rigid 
quality control, so as to provide reliable infrastructure to 
firmly underpin life science research development. For 
its bioresource data infrastructure, RIKEN BRC adopted 
the Resource Description Framework (RDF), due to 
its advantages for data interoperability and its current 
adoption by institutions of the BRC’s interest for reuse. 
RIKEN BRC is working to continuously provide high-
quality information by developing metadata and knowl-
edge graphs (KG) and providing information retrieval 
systems. In order to leverage bioresources, we have been 
effectively building interconnected KGs by integrating 
bioresource data with datasets of cutting-edge research 
results provided by external institutions. However, effi-
ciently retrieving the relevant information from a KG 
presents technical challenges. These challenges include 
infrastructure development, building and maintaining a 

KG that encompasses database integration, and writing 
complex technical queries.

The RIKEN BRC develops and maintains the RIKEN 
BioResource MetaDatabase (MetaDB) [1, 2]. This data-
base integrates RIKEN BioResource RDF data with sev-
eral life science datasets to support researchers in making 
a comprehensive use of RIKEN BRC’s research results. 
We call the integrated bioresource data the “RIKEN Bio-
resource Knowledge Graph.” So far, we have integrated 
the KG with the Orthologous MAtrix (OMA) data-
base [3], DisGeNET [4], and disease ontologies, includ-
ing MONDO Disease Ontology [5], Human Disease 
Ontology (DOID) [6], Orphanet Rare Disease Ontology 
(ORDO) [7], and Nanbyo Disease Ontology (NANDO) 
[8], which are provided by external organizations (Fig. 1). 
As a result, we are able to fully explore RIKEN BRC 
experimental mice, cell lines, and genetic materials avail-
able for research purposes [9].

The SIB—Swiss Institute of Bioinformatics develops 
and maintains a growing catalog of publicly accessible KG 
across many disciplines in the life sciences. For this study, 
we used two of the SIB RDF datasets for the study of gene 
expression and orthology: Bgee and OMA. Bgee [10] is a 
well-established gene expression database that integrates 
curated healthy wild-type expression data across a wide 
range of data sources to provide a comparable reference 
of normal gene expression across multiple animal spe-
cies. OMA [3] (Orthologous MAtrix) is a database of 
orthologs among complete genomes across a wide range 
of species spanning the entire tree of life. Orthologs are 
pairs of genes that have evolved from a single gene in 
their last common ancestor. The OMA database provides 
orthologous information in the form of Hierarchical 
Orthologous Groups (HOGs), which are defined as gene 
families that contain genes that are all homologous to 
each other. The RDF version of OMA relies on the ORTH 
Ontology [11, 12].

In this article, we present a case study that explores 
candidate mice expected to be used for human disease 

and 55 RIKEN bioresources, which were genetically modified mice related to these genes, predicted to be relevant to 
Alzheimer’s disease research. Furthermore, executing a transitive search for the Uberon terms by using the Property 
Paths function, we identified 14 melanoma-related genes (e.g., HRAS and PTEN), and 12 anatomical parts in which 
these genes were expressed, such as the “skin of limb” as an example. Finally, we compared the performance of the 
federated SPARQL query via the remote Bgee SPARQL endpoint with the performance of a centralized SPARQL query 
using the Bgee dataset as part of the RIKEN BioResource MetaDatabase.

Conclusions As a result, we confirmed that the performance of the federated approach degraded. We concluded 
that we reduced the degradation of the query performance of the federated approach from the BioResource 
MetaDatabase to the SIB by refining the transferred data through a subquery and enhancing the server specifications 
thereby optimizing the triple store query evaluation.

Keywords Database integration, Gene-disease association, Gene expression, Knowledge graph, Model organism, 
Ontology, Orthology, RDF, SPARQL
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research (disease model mice). To do so, we used a large 
KG consisting of bioresources, OMA for human-mouse 
orthologs, DisGeNET for associations between human 
genes and diseases (GDA), and gene expression data 
(Bgee). Specifically, we focus on creating federated 
SPARQL queries utilizing Bgee’s information on gene 
expression sites and expression levels of genes associ-
ated with human diseases, which are related to RIKEN’s 
genetically modified mice. Furthermore, we evaluated the 
search performance of these queries and examined the 
effectiveness of federated searches, which are expected 
to enable real-time searches against the latest data from 
the original data sources, and considerably reducing 
maintenance efforts on keeping data up–to-date. The 
rest of the paper is organized as follows: section “Related 
Work” reviews related work describing representa-
tive KG development cases and research in the life sci-
ences. Section  “RIKEN Bioresource Knowledge Graph” 
explains the RIKEN Bioresource KG, and section  “Data 
Integration and Interoperability” presents external data-
sets and ontologies integrated with the RIKEN Biore-
source KG. In section  “Exploring Bioresources Relevant 
to Human Diseases” we performed SPARQL queries to 
retrieve bioresource candidates suited to a given disease 
research application. Section “Comparison Between Fed-
erated and Centralized Query Performance” presents 
the performance comparison results using the remote 

(federated) query over Bgee’s official SPARQL endpoint 
compared to using the local datasets (centralized) in Bio-
Resource MetaDB over a set of representative SPARQL 
query examples. Section “Discussion” discusses the out-
comes acquired using the integrated KG, a revealed issue, 
and a solution. Section  “Future Work” outlines future 
work.

Related work
The Monarch Initiative is an international consortium 
working to expand the use of genome information in 
biology and biomedical research. The Monarch Initia-
tive publishes RDF data related to bioresources [13]. The 
published RDF data include relationships between mouse 
genes provided by Mouse Genome Informatics (MGI) 
[14] and related diseases and genome variation data. 
However, the Monarch initiative does not provide an offi-
cial SPARQL endpoint, and users need to implement the 
triple store themselves to use the RDF data.

Research on optimizing distributed SPARQL que-
ries is essential for efficient data access and processing. 
DARQ [15] adopts heuristic–based approaches that 
generate query plans based on empirical rules and prior 
knowledge, such as the statistics provided in the service 
descriptions. It also employs dynamic programming 
and uses cost models to optimize query plans to some 
extent, similar to SPARQL-DQP [16]. FedX [17] uses 

Fig. 1 Data schema of RIKEN BioResource RDF data integrated with external RDF data and ontologies
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heuristic–based approaches that do not rely on statistical 
data to generate query plans. SPLENDID [18] primarily 
uses statistics from VoID descriptions and cost models 
to optimize query plans. HiBISCuS [19], SemaGrow [20], 
and CostFed [21] primarily use cost models to opti-
mize query plans, but there are subtle differences in 
their approaches. HiBISCuS is characterized by a novel 
source (e.g., datasets, and SPARQL endpoints) selection 
approach, while SemaGrow and CostFed focus on cost 
evaluation based on statistical information. Odyssey [22] 
employs dynamic programming instead of heuristics to 
break down the query into manageable subqueries, which 
are then solved optimally and combined to form the final 
result. FedUP [23] optimizes SPARQL queries by gener-
ating Result-Aware Query Plans based on query results, 
ensuring high performance even in large-scale SPARQL 
federations. Although, these approaches are applied for 
optimizing federated query plans, we do not apply them 
to our case study because of several reasons: the major-
ity of them are not mature enough (i.e., either a proof-of-
concept or a prototype) and mostly focus on data source 
selection instead of federated join operations; lack of sup-
port by the original SPARQL 1.1 endpoints (e.g., absence 
of VoID descriptions); there are no guarantees that they 
will improve the query plan of federated join operations 
of complex queries such as demonstrated in experiments 
in [23]. In [23], without any query federation optimizer, 
hand-crafted SPARQL 1.1 queries perform either bet-
ter or slightly worse than the others for complex, multi-
domain and cross-domain queries. Finally, in these 
experiments, all federation graphs are stored as named 
graphs in a single triple store endpoint in contrast to our 
use case where the graphs are stored in different end-
points across the globe. Therefore, in our work we pro-
vide a real-world practical case study that can contribute 
to development of a next generation of SPARQL feder-
ated query optimizers focusing on improving distributed 
join operations.

The Knowledge Graph Hub (KG-Hub) [24, 25] is a col-
lection of biological and biomedical Knowledge Graphs, 
including their component data sources. It is provided 
by the Berkeley Bioinformatics Open-source Projects 
(BBOP) of the Lawrence Berkeley National Labora-
tory. KG-Hub tools comprise kghub-downloader, Koza 
(for data transformation), and KGX (Knowledge Graph 
Exchange), and KG-Hub uses these tools to transform 
data sources into standalone Biolink Model [26] compli-
ant graphs. KG-Hub currently includes seven biomedical 
KG projects, including KG-COVID-19 [27] and KG-OBO 
[28]. The above-mentioned Monarch KG is also devel-
oped using these KG-Hub tools. KG-OBO translates the 
biological and biomedical ontologies on OBO Foundry 
[29] into graph nodes and edges. Ontology graphs 

translated by KG-OBO include Gene Ontology [30], 
ChEBI [31], and Uber-anatomy ontology (Uberon) [32].

Ubergraph [33] is an RDF triple store which provides a 
SPARQL query endpoint to an integrated suite of OBO 
ontologies, and includes precomputed inferred edges 
allowing logically complete queries over those ontologies 
for a subset of axioms in the Web Ontology Language 
(OWL) [34], and allows users to more efficiently access 
the integrated semantic knowledge graph. Ubergraph 
currently includes 39 OBO ontologies, including GO, 
ChEBI, Uberon, Cell Ontology (CL) [35], Mammalian 
Phenotype Ontology [36], and Human Phenotype Ontol-
ogy [37].

RIKEN Bioresource Knowledge Graph
RIKEN BRC publishes metadata related to managed 
experimental animals, cell lines, genetic materials, exper-
imental plants, and microorganism strains on its web-
page [38]. Furthermore, the BRC is also developing RDF 
data and integrating bioresource metadata with external 
public datasets to enhance information and knowledge 
relevant to these bioresources. The Biological Resource 
Schema Ontology (BRSO) [39] is an RDF data model 
for various model organisms and the types, such as indi-
vidual, cell, and DNA, which is largely developed by the 
Database Center for Life Science (DBCLS), RIKEN, and 
National Institute of Genetics (NIG). RIKEN BRC is 
developing bioresource RDF data based on the BRSO 
(Fig. 2) [2].

We term the RIKEN BRC bioresource RDF datasets the 
“RIKEN Bioresource Knowledge Graph.” The KG con-
tains administrative information (e.g., bioresource devel-
opers, their affiliation), organisms (e.g., Mus muscles), 
bioresource types (e.g., spontaneous mutation mouse), 
gene id (e.g., MGI:94859), the related phenotypes and 
diseases [e.g., amyotrophic lateral sclerosis (ALS)]. To 
date, we have developed KGs containing approximately 
7800 experimental mice, 9600 cell lines, 125,000 genetic 
materials, 290,000 experimental plants, and 19,000 
microorganisms. Users can browse KG data through a 
web interface, execute SPARQL queries, and download 
all the data from the BioResource MetaDB [40].

Data integration and interoperability
We are integrating the RIKEN Bioresource KG with 
external public datasets to enhance information and 
knowledge relevant to bioresources. Because almost all 
users are experimental researchers, the data retrieval sys-
tem needs to enable researchers to explore candidate bio-
resources through a search of the KG using their familiar 
identifiers or keywords, such as MGI, NCBI, Ensembl 
Gene IDs and UniProtKB accession numbers. We there-
fore enhanced the KG to integrate the following informa-
tion and knowledge.
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MGI gene ID, Ensembl and NCBI gene ID mapping datasets
We developed RDF data representing relationships 
among MGI Gene ID, NCBI Gene ID, and Ensembl Gene 
ID from MGI Marker associations to Entrez Gene (tab-
delimited) [41] provided from the MGI download page 
(Fig.  3). We stored the RDF data as a named graph in 
the BioResource MetaDB (Fig.  4). As a result, we could 
identify relationships between mouse resources, such 
as gene-modified mice and related NCBI Gene IDs and 
Ensembl Gene IDs in addition to MGI Gene IDs.

UniProtKB accession number and NCBI gene ID mapping 
datasets
We developed RDF data representing relationships 
between the UniProtKB accession number and the NCBI 
Gene ID based on tab delimited files provided by Uni-
Prot [42]. We stored the RDF data as a named graph in 
the BioResource MetaDB (Fig. 4). As a result, we could 
identify relationships between mouse resources, such as 
gene-modified mice and related UniProtKB accession 
numbers, in addition to gene IDs.

OMA RDF datasets
We integrated the Bioresource KG with ortholog RDF 
datasets: OMA developed and provided by the Swiss 
Institute of Bioinformatics (SIB) as a named graph 
(Figs.  1 and 4). This allowed us to acquire information 
on human Ensembl and NCBI gene IDs and UniProtKB 
accession numbers from gene-modified mouse gene IDs 
and UniProtKB accession numbers that are orthologous 
to human genes and proteins.

Bgee RDF datasets
We integrated the Bioresource KG with the gene expres-
sion RDF dataset Bgee, developed and provided by SIB 
as a named graph (Fig. 4). As a result, we could access 
information on gene expression patterns, confidence lev-
els and expressed anatomical parts from human Ensembl 
and NCBI gene IDs and UniProtKB accession numbers.

Gene-disease association RDF datasets
We integrated the Bioresource KG with human gene-
disease association RDF datasets: DisGeNET and Med-
Gen as named graphs [43] (Figs.  1 and 4). The former 

Fig. 3 An example of RDF mapping data among MGI Gene, NCBI Gene and Ensembl Gene

 

Fig. 2 A part of RIKEN mouse (RBRC06344*) RDF data (KG) developed based on BRSO. *:  h t t p  s : /  / k n o  w l  e d g  e . b  r c . r  i k  e n .  j p /  r e s o  u r  c e /  a n i  m a l /  c a  r d ?  _ _ l  a n g _  _ 
=  e n % 2 6 b r c _ n o = R B R C 0 6 3 4 4

 

https://knowledge.brc.riken.jp/resource/animal/card?__lang__=en%26brc_no=RBRC06344
https://knowledge.brc.riken.jp/resource/animal/card?__lang__=en%26brc_no=RBRC06344
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was developed by the Institute for Research in Biomedi-
cine (IRB, Barcelona), and the latter was developed by 
National Center for Biotechnology Information (NCBI), 
and the RDF data were generated and provided by 
DBCLS. This study used the GDA datasets of which the 
GDA score was 0.5 or more extracted from DisGeNET 
RDF v7.0.0 in the RDF Portal [44, 45]. As a result, we 
could access information on related human disease 
identifiers, such as UMLS IDs or MedGen IDs [e.g., 
C0002736, amyotrophic lateral sclerosis (ALS)] from 
human Ensembl and NCBI gene IDs and UniProtKB 
accession numbers.

Disease Ontologies
We incorporated the OWL version of four disease ontol-
ogies that are used as controlled vocabularies: MONDO 
[5], DOID [6], ORDO [7], and NANDO [8] as named 
graphs, into the BioResource MetaDB (Fig. 1). The Mon-
arch Initiative developed MONDO. The University of 
Maryland mainly developed DOID. ORDO was mainly 
developed by the National Institute of Health and Medi-
cal Research (INSERM) and the European Bioinformat-
ics Institute (EBI). NANDO was mainly developed by 
DBCLS and RIKEN. As a result, we could access informa-
tion on related human gene IDs from English and Japa-
nese disease names, Disease Ontology IDs, and ICD-11 
(International Classification of Diseases 11th Revision) 
[46] through these ontologies and DisGeNET.

Exploring bioresources relevant to human diseases
In this study, we aim to identify disease-related genes, the 
anatomical parts where the genes were expressed, and 
the RIKEN bioresource relevant to the disease, by explor-
ing the extended Bioresource KG using SPARQL queries. 
We applied this to two concrete use cases, targeting the 
study of Alzheimer’s disease and melanoma.

Example 1-1: Federated query for Alzheimer’s dis-
ease (see Additional file 1) is a query for exploring AD- 
(UMLS:C0002395) related genes expressed in specific 
anatomical parts (e.g., prefrontal cortex) and the biore-
sources expected to be available for AD research. This 
study partially revised SPARQL queries used in our pre-
vious report [47] to improve the query performance and 
executed the revised queries in the SPARQL endpoint 
[48] of the RIKEN BioResource MetaDB. The executed 
query included these query conditions: the prefrontal 
cortex (UBERON:0000451) as location of gene expres-
sion, a high confidence level for expression data, and 
the sex condition for “any sex type”. The strain type and 
developmental stage were not specified. We used the 
DisGeNET as gene-disease association datasets with the 
GDA score [4] of 0.5 or more.

We present the query results in Table  1. We 
identified that the 14 AD-related genes includ-
ing APP gene (ENSG:00000142192) and APOE gene 
(ENSG:00000130203) and 55 RIKEN mouse resources 
expected to be of relevance for AD research including 
RBRC06344 and RBRC03390. APP and APOE genes have 
previously been linked to experimental AD, as reported 
in [49, 50]. The query runtime was over 600 s (Table 2).

Fig. 4 A simplified visualization of the query graph patterns
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In this study, we ran SPARQL query tests and obtained 
the retrieval results and runtimes on 4 August 2023 and 6 
June 2024.

Comparison between federated and centralized 
query performance
Furthermore, we evaluated two query execution sce-
narios [47]. One scenario considers a SERVICE SPARQL 
subquery to be executed against the resulting remote 
Bgee SPARQL endpoint, assuring access to the lat-
est data. The second scenario replaces the centralized 
SPARQL query example with a subquery matching triple 
patterns from the named graph containing Bgee data and 
stored in the RIKEN BioResource MetaDB. We obtained 
the Bgee RDF data [51] on 20 July 2023 and incorporated 
it into the RIKEN BioResource MetaDB. To avoid longer 
runtimes and query timeout, we used the locally stored 
OMA and DisGeNET as named graphs in the BioRe-
source MetaDB in both scenarios (Fig. 4).

Example 2-1: Centralized query for Alzheimer’s dis-
ease (see Additional file 2) is based on the second sce-
nario. Table 1 shows the query results of examples 1–1 
and 2-1. The results of both were identical. The average 
query runtime of Example 2–1 was 307  seconds, and it 
was faster than that of Example 1–1 (Table 2, Fig. 5).

Namespaces
bgee: <http://bgee.org/#>
brso: < http://purl.jp/bio/10/brso/>
ensembl: <  h t t p  : / /  r d f .  e b  i . a  c . u  k / r e  s o  u r c e / e n s e m b l />
gda: <  h t t p  : / /  r d f .  d i  s g e  n e t  . o r g  / r  e s o u r c e / g d a />
genex: < http://purl.org/genex#>
lscr: <http://purl.org/lscr#>
ncbigene: <  h t t p  s : /  / w w w  . n  c b i  . n l  m . n i  h .  g o v / g e n e />
obo: <  h t t p  : / /  p u r l  . o  b o l  i b r  a r y .  o r  g / o b o />
oma: <  h t t p  : / /  o m a b  r o  w s e  r . o  r g / o  n t  o l o g y / o m a #>
omagenome: <  h t t p  s : /  / o m a  b r  o w s  e r .  o r g /  o m  a / g e n o m e />
omahog: < h t t p  s : /  / o m a  b r  o w s  e r .  o r g /  o m  a / h o g / r e s o l v e />
omainfo: < h t t p  s : /  / o m a  b r  o w s  e r .  o r g /  o m  a / i n f o />
orth: <http://purl.org/net/orth#>
rbrc: <  h t t p  : / /  p u r l  . o  r g /  r b r  c / r e  s o  u r c e />
rdfs: < h t t p  : / /  w w w .  w 3  . o r  g / 2  0 0 0 /  0 1  / r d f - s c h e m a #>
riken: < h t t p  : / /  m e t a  d b  . r i  k e n  . j p /  d b  / r i k e n b r c _ m o u s e />
sio: <  h t t p  : / /  s e m a  n t  i c s  c i e  n c e .  o r  g / r e s o u r c e />
taxon: <  h t t p  : / /  p u r l  . u  n i p  r o t  . o r g  / t  a x o n o m y />
umls: <  h t t p  : / /  l i n k  e d  l i f  e d a  t a . c  o m  / r e s o u r c e / u m l s / i d />
uniprot: < h t t p  : / /  p u r l  . u  n i p  r o t  . o r g  / u  n i p r o t />
We further compared federated versus centralized 

data access and storage approaches for other use cases. 
Example 3-1 and Example 4-1 are queries for melanoma 
(UMLS:C0025202) using the federated query (see Addi-
tional file 3) and centralized query (see Additional file 
4) for Bgee data, respectively. These queries include the 
melanoma-related genes that were expressed in the skin 
of body (UBERON:0002097) as a query condition. The 
other query conditions were the same as the Examples 
1–1 and 2-1.

Table  3 shows the query results of Examples 3–1 
and 4-1. The findings were identical and included the 

Table 1 Results of Example 1-1: federated query for Alzheimer’s 
disease and Example 2-1: centralized query for Alzheimer’s 
disease
Query 
approach

No. of 
re-
trieved 
mice

No. of 
re-
trieved 
genes

Gene labels (ensembl gene IDs)

Example_1-1: 
Federated 
query for AD

55 14 PICALM (ENSG00000073921)
PSEN1 (ENSG00000080815)
NPY (ENSG00000122585)
APOE (ENSG00000130203)
APP (ENSG00000142192)
PSEN2 (ENSG00000143801)
ACE (ENSG00000159640)
INSR (ENSG00000171105)
BCL2 (ENSG00000171791)
BDNF (ENSG00000176697)
MAPT (ENSG00000186868)
CD2AP (ENSG00000198087)
INS (ENSG00000254647)
Novel protein (ENSG00000288674)

Example_2-1: 
Centralized 
query for AD

55 14 PICALM (ENSG00000073921)
PSEN1 (ENSG00000080815)
NPY (ENSG00000122585)
APOE (ENSG00000130203)
APP (ENSG00000142192)
PSEN2 (ENSG00000143801)
ACE (ENSG00000159640)
INSR (ENSG00000171105)
BCL2 (ENSG00000171791)
BDNF (ENSG00000176697)
MAPT (ENSG00000186868)
CD2AP (ENSG00000198087)
INS (ENSG00000254647)
Novel protein (ENSG00000288674)

Table 2 The query execution time of Examples 1-1, 2-1, 3-1, and 
4-1. The queries were executed 10 times each at  h t t p s :   /  / k n o w l  e d 
g   e . b  r  c .  r i  k  e n .  j p / s p a r q l
Query approach Mean of 

runtime
No. of 
re-
trieved 
mice

No. of re-
trieved genes 
(disease re-
lated genes)

Example 1-1: Federated query 
for AD

> 600 s 55 14

Example 2-1: Centralized query 
for AD

307 s 55 14

Example 3-1: Federated query 
for melanoma

> 600 s 102 14

Example 4-1: Centralized query 
for melanoma

502 s 102 14

Values in bold indicate the shortest mean runtime for each disease context

http://bgee.org/#
http://purl.jp/bio/10/brso/
http://rdf.ebi.ac.uk/resource/ensembl/
http://rdf.disgenet.org/resource/gda/
http://purl.org/genex#
http://purl.org/lscr#
https://www.ncbi.nlm.nih.gov/gene/
http://purl.obolibrary.org/obo/
http://omabrowser.org/ontology/oma#
https://omabrowser.org/oma/genome/
https://omabrowser.org/oma/hog/resolve/
https://omabrowser.org/oma/info/
http://purl.org/net/orth#
http://purl.org/rbrc/resource/
http://www.w3.org/2000/01/rdf-schema#
http://metadb.riken.jp/db/rikenbrc_mouse/
http://semanticscience.org/resource/
http://purl.uniprot.org/taxonomy/
http://linkedlifedata.com/resource/umls/id/
http://purl.uniprot.org/uniprot/
https://knowledge.brc.riken.jp/sparql
https://knowledge.brc.riken.jp/sparql
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demonstration that 14 genes including the HRAS gene 
(ENSG:00000174775) were expressed in the skin of body 
as melanoma-related genes, and identified 102 RIKEN 
bioresources were expected to be relevant to melanoma 
research, such as RBRC10866 [52] and RBRC01088 [53]. 
Table 2 shows the runtimes of Examples 3–1 and 4-1. 
The runtime of Example 3–1 (using a federated query) 
was over 600 seconds, while that of Example 4–1 (using 
a centralized query) was 502 seconds, which is less than 
the time of Example 3-1.

Comparing Examples 1–1 and 2-1, and 3–1 and 4-1, 
revealed that the query execution performance was sig-
nificantly better in the centralized setup. Note that we 
executed the centralized queries Examples 2–1 and 
4–1 for the same data as available via the remote Bgee 
SPARQL endpoint [54]. Thus, the significant perfor-
mance differences between the federated and the central-
ized runtimes were not due to the Bgee data version.

Given that in our experimental setup we did not con-
sider any engines for optimizing federated SPARQL 
queries [15–23], we expected that the performance of 
federated queries would be significantly worse than the 
corresponding centralized query, notably, due to network 
latency and poorer query optimization plan of feder-
ated queries. Large datasets such as KEGG, ChEBI, and 
DrugBank were benchmarked to evaluate these federated 
SPARQL query optimizations. However, the SPARQL 
queries used in the evaluation consisted of several triple 

patterns that were not deeply nested and had a consid-
erably simple structure. On the other hand, the SPARQL 
queries (e.g., Additional file 2, and Fig. 5) used in this 
paper consisted of various triple patterns and were more 
complicated than those used in the benchmark evalu-
ation. As a future work, we plan to carefully investigate 
whether the aforementioned proposed approaches would 
be effective in optimizing the real-world queries in this 
paper.

Discussion
Analysis and improvement of query performance
To ensure that bioresources are appropriately used as 
research materials in a wider range of studies, biore-
source centers need to provide users with up–to-date 
and detailed information on the characteristics of bio-
resources. For this purpose, it is essential to integrate 
independently collected data by bioresource centers 
with publicly available datasets, for example, public bio-
medical databases. As a use case for the integration and 
exploitation of remote data using the Semantic Web 
technologies and RDF, we evaluated the performance dif-
ferences between SPARQL queries by specifically exam-
ining variations in their use of subqueries and federated 
search techniques.

Subqueries represent a way to embed queries within 
other SPARQL queries, normally to achieve results 
which cannot otherwise be achieved, such as limiting 

Fig. 5 An example of the graph representation of the query result of Example 2–1 in the case of RIKEN Mouse No. RBRC06344. RBRC06344 is a knock-in 
mouse with a mutation inserted into the amyloid beta region of the App gene. We have added some triples (e.g., obo:UBERON_0000451 rdfs:label “pre-
frontal cortex”) that were not used in the query to better understand the graph
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the number of results from some sub-expression within 
the query [55]. The appropriate usage of subqueries is 
expected to improve query performance. In some cases, 
this is essential to avoid query timeouts and therefore to 
enable results to be obtained. For example, queries 1-1, 
2-1, 3-1, and 4–1 contain one subquery because it would 
not be possible to obtain query results without the sub-
query due to transaction timeout (data not shown). To 
estimate how the usage of subqueries will affect query 
performance, we divided the SPARQL queries into four 
query subparts and investigated how the arrangement of 
subqueries could improve query performance (see Fig. 6). 
Examples 1-2 (see Additional file 5), 2-2 (see Additional 
file 6), 3-2 (see Additional file 7), and 4-2 (see Additional 
file 8) each include two subqueries, and the remaining 
query conditions are the same as Example 1-1, Example 
2-1, Example 3-1, and Example 4-1. Examples 1-3 (see 
Additional file 9), 2-3 (see Additional file 10), 3-3 (see 
Additional file 11), and 4-3 (see Additional file 12) each 
include three subqueries, and the remaining query con-
ditions are the same as Examples 1-1, 2-1, 3-1, and 4-1, 
respectively. For example, in Example 1-2, Query subpart 
1 is nested inside Query subpart 2. Furthermore, Query 
subparts 1, 2, and 3 are nested inside Query subpart 4 
(that is Bgee’s query). The nested subquery is evaluated 
first, and the outer query uses the results.

Table  4 shows the average runtimes of Example 1-x, 
2-x, 3-x, and 4-x. Numbers highlighted in bold represent 
values when search results are returned within 600 sec-
onds. For instance, in the row of Example 2-x (i.e., among 
Examples 2-1, 2-2, and 2-3), Example 2–1 with one 
subquery was the fastest, although all example queries 
had the same graph structures. On the other hand, we 

Table 3 Results of Example 3-1: Federated query for melanoma 
and Example 4-1: Centralized query for melanoma
Query 
approach

No. of 
retrieved 
mice

No. of 
retrieved 
genes

Gene labels (Ensembl 
Gene IDs)

Example_3-1: 
Feder-
ated query for 
melanoma

102 14 TYR (ENSG00000077498)
PPP6C (ENSG00000119414)
PIK3CA (ENSG00000121879)
BRCA2 (ENSG00000139618)
TP53 (ENSG00000141510)
AKT1 (ENSG00000142208)
ATM (ENSG00000149311)
KIT (ENSG00000157404)
TERT (ENSG00000164362)
CTNNB1 (ENSG00000168036)
PTEN (ENSG00000171862)
HRAS (ENSG00000174775)
MITF (ENSG00000187098)
NRAS (ENSG00000213281)

Example_4-1: 
Centralized 
query for 
melanoma

102 14 TYR (ENSG00000077498)
PPP6C (ENSG00000119414)
PIK3CA (ENSG00000121879)
BRCA2 (ENSG00000139618)
TP53 (ENSG00000141510)
AKT1 (ENSG00000142208)
ATM (ENSG00000149311)
KIT (ENSG00000157404)
TERT (ENSG00000164362)
CTNNB1 (ENSG00000168036)
PTEN (ENSG00000171862)
HRAS (ENSG00000174775)
MITF (ENSG00000187098)
NRAS (ENSG00000213281)

Fig. 6 Four query subparts within the SPARQL query examples and the position of the subqueries. For the outline of query graph patterns, refer to Fig. 4
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observed that the performance of the query could be sig-
nificantly improved when we used the subquery in par-
ticular places, thereby providing a more effective query 
plan. The average runtimes for Example 2–1 (centralized 
for AD) and Example 4–1 (centralized for AD) were con-
siderably lower than those for Example 1–1 (federated for 
AD) and Example 3–1 (federated for melanoma), respec-
tively. The query results, such as the AD-related genes, 
were consistent, i.e. results of Examples 1–2 and 1–3 
were the same as those of Example 1-1, and similarly for 
Examples 2-x and Examples 3-x. These consistent results 
obtained across different query formulations confirmed 
the appropriate use of subqueries for all Examples.

In all Examples, we arranged Query subpart 4 (see 
Fig. 6) to nest other Query subparts. Next, we measured 
the runtimes from Query subpart 1 to 3 and that of Query 
subpart 4 to presume the breakdown of the runtimes. 
Table 5 shows the runtimes of Query subparts 1 through 

3. In both the Alzheimer’s Disease (AD) and melanoma 
examples, we compared different query types. For AD, 
we have Example 5–0 without subqueries (Additional 
file 13), Example 5–1 with one subquery (Additional file 
14), and Example 5–2 with two subqueries (Additional 
file 15). Similarly, for melanoma, we have Example 6–0 
without subqueries (Additional file 16), Example 6–1 
with one subquery (Additional file 17), and Example 6–2 
with two subqueries (Additional file 18). We found that 
the queries with one or two subqueries (Examples 5-1, 
5-2, 6-1, and 6-2) ran significantly faster than those with-
out any subqueries (Examples 5–0 and 6-0), as shown in 
Table 5. These results also indicated that Query subparts 
1 to 3 took 4–7 s to process.

Table  6 shows the runtime of Query subpart 4. The 
runtimes of the federated query for the prefrontal cor-
tex [Example 7 (Additional file 19)] and the skin of body 
[Example 8 (Additional file 20)] AD-related genes were 

Table 4 The average runtime from 10 executions of the SPARQL query Examples 1-x, 2-x, 3-x, and 4-x, including one-time, twice, and 
three-times subqueries for the Query subparts 1 to 3, respectively
Query approach Federated or 

Centralized
Target diseases The runtime of 1 

subquery (for whole of 
query subparts) [x = 1]

The runtime of 2 subque-
ries (for whole of query 
subparts) [x = 2]

The runtime of 3 
subqueries (for 
whole of query 
subparts) [x = 3]

Example 1-x Federated AD > 600 s > 600 s > 600 s
Example 2-x Centralized 307 s > 600 s > 600 s
Example 3-x Federated melanoma > 600 s > 600 s > 600 s
Example 4-x Centralized 502 s > 600 s > 600 s
Bold values represent the best values in each row, indicating that the search results were returned within 600 s

Table 5 The average runtime from 10 executions of the SPARQL query Examples 5-x and 6-x, including zero, one, and two-times 
subqueries for the Query subparts 1 to 3, respectively
Query approach Target diseases The runtime of 0 subqueries 

(Query subpart 1, 2, and 3) 
[x = 0]

The runtime of 1 subquery 
(Query subpart 1, 2, and 3) 
[x = 1]

The runtime of 
2 subqueries 
(Query subpart 
1, 2, and 3) [x = 2]

Example 5-x AD 285 s 4 s 4 s
Example 6-x melanoma 465 s 7 s 7 s
Bold values represent the best values in each row

The numbers of retrieved bioresources and disease-related genes in Example 5-x were 56 and 15, respectively (Additional file 13, 14, and 15). The numbers of 
retrieved bioresources and disease-related genes of 6-x were 102 and 14, respectively (Additional file 16, 17, and 18)

Table 6 The average runtime from 10 executions of the SPARQL query Examples 7, 8, 9, and 10 without using the subqueries in Query 
subpart 4
Query approach Federated or Centralized Anatomical parts where genes 

were expressed
The runtime of 0 subqueries 
(Query subpart 4)

The difference 
between the 
Federated and 
the Centralized

Example 7 Federated prefrontal cortex 48 s 34 s (between 
Example 7 and 
9), and
42 s (between Ex-
ample 8 and 10)

Example 8 skin of body 58 s
Example 9 Centralized prefrontal cortex 14 s
Example 10 skin of body 16 s

Bold values represent the best values in each column. We executed the federated search from the BioResource MetaDB SPARQL endpoint to the official Bgee SPARQL 
endpoint. We performed the centralized search from the BioResource MetaDB SPARQL endpoint to the Bgee data stored in the BioResource MetaDB

The numbers of retrieved genes in Examples 7 and 9 were the same at 42,448 (Additional file 19, and 21). The numbers of retrieved genes in Examples 8 and 10 were 
the same and 45,724 (Additional file 20, and 22)



Page 11 of 18Kushida et al. BMC Medical Informatics and Decision Making          (2025) 25:189 

48 and 58 s, while those of the centralized query execu-
tion for the prefrontal cortex [Example 9 (Additional 
file 21)] and the skin of body [Example 10 (Additional 
file 22)] were 14 and 16 s, respectively. The time differ-
ences between the federated and centralized approaches 
for AD and melanoma were 34 and 42 s, respectively. The 
retrieved bioresources and disease-related genes were the 
same among Examples 7 and 9, and Examples 8 and 10, 
respectively (Table 6).

Moreover, we measured the runtime of the federated 
approach between the BioResource MetaDB (Tsukuba in 
Japan) and the Bgee (Lausanne in Switzerland), and the 
centralized approach for Bgee data in Tsukuba and Lau-
sanne (Table 7). We executed the centralized approaches 
for Bgee data stored at the RIKEN BRC (Tsukuba) and 
the SIB (Lausanne), from each place. The executed query 
includes the query conditions: the prefrontal cortex 
(UBERON:0000451) as the location of gene expression, 
a high confidence level for expression data, and the sex 
condition for “any sex type”. As a result, the runtime of 
the federated approach (Tsukuba to Lausanne) was 48 
s, including data transfer time and the Bgee triple store 
query evaluation time. The centralized approach runtime 
in Lausanne (Lausanne to Lausanne) was 11 s, and that 
in Tsukuba (Tsukuba to Tsukuba) was 14 s. From these 
results, we estimated the data transfer time between 
Tsukuba and Lausanne was 37 s (the column of [A–B] 
in Table 7), and the difference between the query evalu-
ation time of the BioResource MetaDB in Tsukuba and 
Bgee in Lausanne was 3 seconds (the column of [C–B] in 
Table 7).

From the results of Tables 5, 6, and 7, we concluded that 
one of the reasons for the query performance degradation 

in the federated approach and the improvement was 
as follows, (1) the difference in the total runtime of the 
federated and centralized approach (e.g., 34  seconds 
between Examples 7 and 9 in Table 6) mainly depended 
on the data transfer time between Tsukuba and Lausanne 
and the query evaluation time of Query subpart 4 (Bgee 
data) since the runtime of Query subpart 1 (see Fig.  6) 
through 3 took 4–7 s by using the subqueries (Examples 
5-1, 5-2, 6-1, and 6–2 in Table 5). (2) We estimated the 
data transfer time between Tsukuba and Lausanne took 
37 seconds (the column of [A–B] in Table 7). At this time, 
the number of data transferred from Tsukuba to Laus-
anne was 42,448 genes (Table 7). Table 8 shows the exe-
cution time when the LIMIT and OFFSET modifiers in 
SPARQL were used to limit the number of search results 
to 100 rows (genes) in Examples 7 and 9, as well as in the 
centralized approach in Laurence. We estimated the total 
time, including data transfer between Tsukuba (RIKEN 
BRC) and Lausanne (Bgee), and the time to display search 
results to be 2 s (the column of [A–B] in Table 8). The dif-
ference between the query evaluation time of the BioRe-
source MetaDB in Tsukuba and Bgee in Lausanne was 3 s 
(the column of [C–B] in Table 8). We found that the data 
transfer time was reduced since we refined the quantity 
of transferred data from Tsukuba to Lausanne by using 
subqueries and SPARQL’s LIMIT and OFFSET modifi-
ers (see Additional file 19, and Additional file 21). (3) On 
the other hand, the query evaluation times of Bgee data 
(Query subpart 4) in the BioResource MetaDB (Tsukuba) 
and the Bgee database (Lausanne) took 11 ([B] in Table 

Table 7 Comparison of the runtimes of the federated approach 
from the BioResource MetaDB (Tsukuba) to the Bgee (Lausanne), 
and the centralized approach at Tsukuba and Lausanne
Query approach Federated or 

Centralized
No. of 
re-
trieved 
genes

Mean of 
runtime

[A–
B]

[C–
B]

Federated (Tsu-
kuba to Lausanne): 
Example 7

Federated 42,448 48 s [A] 37 s

Centralized (Laus-
anne to Lausanne)*

Centralized 42,448 11 s [B] 3 s

Centralized (Tsukuba 
to Tsukuba): Example 
9

42,448 14 s [C]

We conducted the performance by executing the SPARQL query for Bgee data 
(Examples 7 and 9). The executed query includes the query conditions: the 
prefrontal cortex (UBERON:0000451) as location of gene expression, a high 
confidence level for expression data, the sex condition for “any sex type”

*: After we removed a row including the SERVICE keyword from Example 7 and 
executed it

A–B: Data transfer time between Tsukuba (RIKEN BRC) and Lausanne (Bgee)

C–B: The difference in the retrieval time of the BioResource MetaDB and Bgee

Table 8 Comparison of the runtimes of the federated approach 
from the BioResource MetaDB (Tsukuba) to the Bgee (Lausanne), 
and the centralized approach at Tsukuba and Lausanne
Query 
approach

Federated or 
Centralized

No. of 
re-
trieved 
genes

Mean of 
runtime

[A–B] [C-
B]

Federated 
(Tsukuba to Lau-
sanne): Example 
7

Federated 100 3 s [A] 2 s

Centralized 
(Lausanne to 
Lausanne)*

Centralized 100 1 s [B] 3 s

Centralized 
(Tsukuba to Tsu-
kuba): Example 9

100 4 s [C]

We conducted the performance by executing the SPARQL query for Bgee data 
(Examples 7 and 9). The executed query includes the query conditions: the 
prefrontal cortex (UBERON:0000451) as location of gene expression, a high 
confidence level for expression data, the sex condition for “any sex type”. 
Furthermore, we used the LIMIT and OFFSET modifiers in SPARQL to limit the 
number of search results to 100 rows (genes)

*: After we removed a row including the SERVICE keyword from Example 7 and 
executed it

A–B: Data transfer time between Tsukuba (RIKEN BRC) and Lausanne (Bgee)

C-B: The difference in the retrieval time of the BioResource MetaDB and Bgee
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7) and 14 seconds ([C] in Table 7), respectively, and the 
difference between them was 3 s (the column of [C–B] in 
Table 7).

As a result, the reasons for the differences depend on 
the server’s specification (e.g., the memory capacity) and 
the database type (e.g., Virtuoso), the versions, the set-
tings, and scalability issues. Therefore, we could improve 
the degradation of the query performance of the feder-
ated approach from the BioResource MetaDB to the SIB 
by enhancing the server specifications and by optimizing 
the triple store. First, we questioned whether the longer 
runtimes in the federated approach could be caused by 
network latency (Section  “Comparison Between Feder-
ated and Centralized Query Performance”), and asked 
whether its extent could be mitigated by reducing the 
quantity of data transfer during the execution of subque-
ries. Indeed, by optimizing the evaluation of triple store 
queries in Bgee’s triple store as an additional query per-
formance test, the execution times of Examples 1–1 and 
3–1 for the federated approach were improved to the 
same level as that of Examples 2–1 and 4–1 for the cen-
tralized approach. (see README.md in this project [56]).

In addition, using the federated search exhibited sev-
eral important advantages. For institutions such as the 
RIKEN BRC, which combines its own RDF data with 
external datasets, using the federated approach should 

leverage the latest, most up–to-date information from 
each external dataset and thereby reduce operational 
costs that would be required to maintain a local copy 
in-sync when the external sources are updated. The fed-
erated approach is therefore particularly beneficial for 
institutions that use multiple third-party datasets. The 
federated approach is an essential technology for explor-
ing bioresources relevant to biomedical research, which 
requires the combination of several external datasets.

Execution of a transitive search using external data
This study used Uberon ontology terms, such as pre-
frontal cortex (UBERON:0000451) or skin of body 
(UBERON:0002097), as anatomical parts where genes 
are expressed. However, we realized we could not com-
prehensively acquire expressed genes at specific anatomi-
cal locations using the example queries shown so far. In 
Examples 3–1 and 4-1, we specified the “skin of body” as 
the target anatomical parts and observed genes expressed 
at those anatomical parts. However, in these cases, 
we cannot find expressed genes on the “zone of skin” 
(UBERON:0000014) that is a part of “skin of body” or on 
the “skin of limb” (UBERON:0001419) that is subClassOf 
“zone of skin” (Fig.  7). When the users specify “skin of 
body” as target anatomical parts, they would often expect 
to acquire expression information from both the “skin of 

Fig. 7 A part of the ontological tree of the Uberon ontology. Red rectangles indicate anatomical sites where melanoma-related genes were expressed. 
The “P” mark represents the “part of” relation. This ontological tree was made from a diagram of the Ontology Lookup Service (OLS) at https://www.ebi.
ac.uk/ols4

 

https://www.ebi.ac.uk/ols4
https://www.ebi.ac.uk/ols4
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body” and the subclass concepts that are subClassOf or 
part of “skin of body.”

Balhoff et al. [33] cited “index_finger is_a finger” and 
“finger part_of_hand” as examples and they mentioned 
that a user would expect that when querying for parts 
of the hand they would receive not only ‘finger’ but any 
concepts stated to be parts thereof (e.g., fingernails) or 
subclasses of ‘finger,’ and SPARQL property paths can-
not be easily employed to retrieve nodes linked by a 
chain of properties over such OWL expressions. Further-
more, OBO library ontologies include a wealth of inter-
ontology semantic links, which require OWL reasoning 
to be fully utilized. One way to accomplish this would 
be to import all the needed ontologies into the Protégé 
tool [57, 58] or an RDF store with an inference engine 
such as Stardog [59], and run an OWL reasoner, while 
it will need to be aware of the OWL-RDF serialization 
in order to match these complex triple patterns. Subse-
quently, they developed the Ubergraph, which currently 
includes 39 OBO ontologies including the Uberon with 
precomputed relations, to solve this issue by performing 
SPARQL queries that make use of the semantics of the 
included ontologies [33].

On the other hand, we strove to solve the problem of 
mixed subClassOf and partOf relationships between ana-
tomical terms in Uberon, where the depth of the hier-
archy is unknown, by reusing existing public resources 
and using SPARQL. We acquired the latest uberon_kgx_
tsv_edge.tsv [60] that was published from the KG-OBO 
project and converted the downloaded tsv format file to 
two turtle (ttl) format files by a Python script (see Addi-
tional file 23). The uberon_kgx_tsv_edge.tsv was a KGX 
TSV format file by being transformed from uberon.
owl [61] using the Koza tool [24]. Our converted two 
ttl format files included subject_broader_object_from_
BFO_0000050.ttl (see Additional file 24) and subject_
broader_object_from_subClassOf.ttl (see Additional file 
25). The former file was converted from part of the rela-
tion between subject and object terms to the “broader” 
predicate [62], the latter file was converted from sub-
ClassOf relation to the “broader” predicate. The broader 
relation is a predicate directly connecting among uberon 
terms instead of partOf and subClassOf relations. We 
stored these two ttl format files as a named GRAPH: < h 
t t p  : / /  m e t a  d b  . r i  k e n  . j p /  d b  / u b  e r o  n R D F  _ b  r o a d e r _ f r o m K G 
X> into the BioResource MetaDB. We term these two ttl 
format data the uberonRDF-KGX.

Figure  8 demonstrates a path between the “skin 
of limb” (UBERON:0001419) and the “skin of body” 
(UBERON:0002097) in the uberon.owl (diagram A) and 
the named GRAPH < h t t p  : / /  m e t a  d b  . r i  k e n  . j p /  d b  / u b  e r o  n R 
D F  _ b  r o a d e r _ f r o m K G X> (diagram B) within the RIKEN 
BioResource MetaDB. In the uberon.owl (diagram A), 
the “skin of body” connects to the “skin of limb” through 

the rdfs:subClassOf and owl:someValueFrom, while in 
the diagram B, the “skin of body” connects to the “skin 
of limb” through two broader predicates. Since it is dif-
ficult to execute a transitive search among Uberon terms 
by using the SPARQL query for uberon.owl (diagram A), 
we successfully executed a transitive search by using the 
Property Paths function of SPARQL query for the named 
GRAPH < h t t p  : / /  m e t a  d b  . r i  k e n  . j p /  d b  / u b  e r o  n R D F  _ b  r o a d 
e r _ f r o m K G X> (diagram B), whereby data was converted 
from part of and subClassOf relations to the broader 
predicate.

Example 11-1: Centralized query for melanoma 
using the uberonRDF-KGX (see Additional file 26) is a 
SPARQL query where we added the named GRAPH: < h t t 
p  : / /  m e t a  d b  . r i  k e n  . j p /  d b  / u b  e r o  n R D F  _ b  r o a d e r _ f r o m K G X> 
to the Example 4–1 so as to execute a transitive search for 
the Uberon terms by using the Property Paths function.

Example 11-2: Federated query for melanoma using 
the Ubergraph data instead of the uberonRDF-KGX 
is a SPARQL query (see Additional file 27). This query 
includes a service keyword to execute a transitive search 
for Uberon RDF data in the Ubergraph through the fed-
erated approach to the Ubergraph SPARQL endpoint 
[63]. In advance, we performed a preliminary test for 
Examples 11–1 and 11-2, identifying the same results.

Table 9 shows the average runtimes of Examples 11–1 
and 11-2. The runtime of Example 11–1 was 627 s, on 
the other hand, we did not obtain the result of Example 
11–2 due to a transaction timeout (over 3600 s). Table 10 
shows the query result of Example 11-1. We found 14 
genes including the HRAS gene (ENSG:00000174775) 
and PTEN gene (ENSG:00000171862), which were 
expressed in the “skin of body” or 12 anatomical loca-
tions that comprise the partOf or subClassOf the skin 
of body (Table  10). HRAS and PTEN genes are highly 
relevant for melanoma research, as shown in [64, 65]. 
The anatomical locations on which the 14 genes were 
expressed include 12 locations, such as the skin of limb 
and forelimb skin (UBERON:0003531) in addition to the 
skin of body (Table 10, Fig. 7). Furthermore, we explored 
102 RIKEN bioresources expected to be suitable for 
melanoma research (Table 10). Specifying ‘skin of body’ 
as a query condition (Example 11-1), we identified mela-
noma-associated genes, the gene expression levels, each 
gene expression site (e.g., ‘skin of limb’, a narrower term 
of ‘skin of body’), and bioresources predicted to be suit-
able for melanoma research (Additional file 26, Figs.  7 
and 8). We concluded that this is because Example 11–1 
could execute a transitive search for the Uberon data 
using the SPARQL query’s Property Paths function.

http://metadb.riken.jp/db/uberonRDF_broader_fromKGX
http://metadb.riken.jp/db/uberonRDF_broader_fromKGX
http://metadb.riken.jp/db/uberonRDF_broader_fromKGX
http://metadb.riken.jp/db/uberonRDF_broader_fromKGX
http://metadb.riken.jp/db/uberonRDF_broader_fromKGX
http://metadb.riken.jp/db/uberonRDF_broader_fromKGX
http://metadb.riken.jp/db/uberonRDF_broader_fromKGX
http://metadb.riken.jp/db/uberonRDF_broader_fromKGX
http://metadb.riken.jp/db/uberonRDF_broader_fromKGX
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Future work
The bioresource KG integrated with OMA, Dis-
GeNET, Bgee enable bioresource users, such as medical 
researchers and experimental researchers, to efficiently 
obtain accurate and comprehensive information on the 

disease-related human genes, gene expression levels at 
any anatomical parts, and the related experimental mice 
of their interested disease at once. The distribution of 
high-quality bioresources, which serve as research plat-
forms, contributes to the development of biomedical 

Fig. 8 A path between the “skin of limb” (UBERON:0001419) and the “skin of body” (UBERON:0002097) in the uberon.owl (A) and that in the named 
GRAPH <  h t t p  : / /  m e t a  d b  . r i  k e n  . j p /  d b  / u b  e r o  n R D F  _ b  r o a d e r _ f r o m K G X> within the RIKEN BioResource MetaDB (B). These diagrams were created using  h t t p  
s : /  / w w w  . k  a n z  a k i  . c o m  / w  o r k  s / 2  0 0 9 /  p u  b / g r a p h - d r a w

 

http://metadb.riken.jp/db/uberonRDF_broader_fromKGX
https://www.kanzaki.com/works/2009/pub/graph-draw
https://www.kanzaki.com/works/2009/pub/graph-draw
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research. In this paper, we only shared information 
on disease model mice, but the KG also included gene 
materials (e.g., disease-related cDNA clones) and cell 
materials (e.g., patient-derived iPS cells) [9]. As a result, 
bioresource users can simultaneously acquire these dif-
ferent types of bioresources, namely mice, cells, and DNA 
materials related to any diseases, thanks to the integrated 
KG. Furthermore, by combining other bioresource or 
model organism data, such as a rat, Xenopus, and zebraf-
ish from external institutes, we could find novel disease 
model organisms through GeneIDs, disease ontology, 
and phenotype terms.

In the demonstration of Section  “Exploring Biore-
sources Relevant to Human Diseases”, we only used the 
DisGeNET as a GDA dataset. However, in the prelimi-
nary trials we performed, we successfully demonstrated 
the use of other datasets, such as MedGen, and MGI, 
instead of the DisGeNET (see this project webpage [66]). 
Therefore, we can select one of these GDA datasets or 
combine several. In the latter case, we can use common 
(intersection of ) GDA data among DisGeNET, MedGen, 
and MGI datasets. In addition, the integration of the Bgee 
dataset allows us to handle information on gene expres-
sion levels at specific anatomical locations. The Bgee 
dataset includes the development stage (e.g., late adult 
stage), sex, strain, and data source (e.g., RNA Seq) in 
addition to the anatomical location. The use of Bgee gene 
expression data is expected to lead to the exploration of 
more specific disease-related genes and bioresources.

In this article, we introduced a method to explore 
bioresources used for specific disease research using 

SPARQL queries. However, not all users of bioresources 
can perform information retrieval using SPARQL. Fur-
thermore, the SPARQL query’s runtime sometimes takes 
several hundreds of seconds depending on the query 
conditions (Tables  2 and 4), and we observed that it 
needs to be shorter to provide efficient retrieval results 
for users. Therefore, we have developed a keyword 
search engine and interface for bioresource users and 
have accomplished a few seconds of runtime. The Search 
for bioresources tab [2, 67] leverages the technology of 
SPARQList [68], which provides a REST API server for 
a SPARQL query against bioresource association data 
collected by crawling the KG (Fig. 1) [69] and is a biore-
source search service that enables keyword search using 
disease name, gene name, resource name, and species 
name. We plan to expand the keyword search function in 
the Search for bioresources tab to enable searching by the 
Uberon Ontology term. Moreover, we are also develop-
ing an interface that allows users to select ontology terms 
from the ontology tree structure so as to search for the 
related bioresources.

Abbreviations
AD  Alzheimer’s disease
BRC  BioResource Research Center
GDA  Gene Disease Associations
KG  Knowledge Graphs
MGI  Mouse Genome Informatics
OMA  Orthologous MAtrix
RDF  Resource Description Framework

Table 9 The average runtime from 10 executions of the SPARQL query Examples 11–1 and 11-2
Query approach Target diseases Which Uberon data was used Mean of runtime
Example 11-1 melanoma The Uberon data converted from KGX stored in the BioResource 

MetaDB (Centralized approach)
627 s

Example 11-2 The Ubergraph data through the SPARQL endpoint (federated 
approach)

Transaction timed 
out (over 3600 s)

Table 10 Results of Example 11-1: Centralized query for melanoma using the broader predicate to perform the property path 
function
Query approach No. of re-

trieved mice
No. of re-
trieved genes

Gene labels (Ensembl Gene IDs) No. of anatomi-
cal entities

Anatomical entity labels 
(Uberon IDs)

Example_11-1: 
Centralized query 
for melanoma 
using the broader 
predicate

102 14 TYR (ENSG00000077498)
PPP6C (ENSG00000119414)
PIK3CA (ENSG00000121879)
BRCA2 (ENSG00000139618)
TP53 (ENSG00000141510)
AKT1 (ENSG00000142208)
ATM (ENSG00000149311)
KIT (ENSG00000157404)
TERT (ENSG00000164362)
CTNNB1 (ENSG00000168036)
PTEN (ENSG00000171862)
HRAS (ENSG00000174775)
MITF (ENSG00000187098)
NRAS (ENSG00000213281)

12 zone of skin (UBERON_0000014)
skin epidermis (UBERON_0001003)
skin of abdomen 
(UBERON_0001416)
skin of limb (UBERON_0001419)
skin of leg (UBERON_0001511)
skin of hip (UBERON_0001554)
hair follicle (UBERON_0002073)
skin of body (UBERON_0002097)
forelimb skin (UBERON_0003531)
hindlimb skin (UBERON_0003532)
upper leg skin (UBERON_0004262)
upper arm skin 
(UBERON_0004263)
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