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reported in 2018 as lung cancer, which is around 18.4% of 
all reported cancer cases that year [2, 3].

Lung cancer is classified into two major types, the 
first is Small Cell Lung Cancer (SCLC), while the other 
is Non-small Cell Lung Cancer (NSCLC) [4]. A sample 
of cells where lung cancer is suspected is called a “Lung 
Biopsy”. It is important not to confuse the “stages” of 
lung cancer with the “types” of lung cancer. Under the 
umbrella of NSCLC, there are tens of different subtypes 
of lung cancer. The most common subtypes are Lung 
Adenocarcinoma (LUAD) and Lung Squamous Cell Car-
cinoma (LUSC) [5]. However, modern research indicates 
that these two subtypes are supposed to be treated and 
classified as two different major types of lung cancer.

Different types of lung cancer are caused by different 
factors. Among these factors, the most common con-
tributors to developing lung cancer are an unhealthy 
environment and lifestyle. Air pollution and toxic gases 
are all forms of unhealthy environment. Given that most 
people who live in cities breathe unclean air and, in some 

Introduction
Lung cancer is defined as the uncontrolled growth and 
undesired spread of a sample of cells within the lungs. It 
kills more people than colon cancer, breast cancer, and 
prostate cancer all combined, making it the leading can-
cer killer in the United States [1]. Around 20% of lung 
cancer cases are caused by non-tobacco factors, such as 
genetics. Recent statistics indicate that less than 20% of 
patients diagnosed with lung cancer survive for more 
than five years. There are around 225,000 reported cases, 
150,000 deaths, and more than 12 billion dollars in total 
healthcare costs in the United States alone each year [1]. 
Globally, 2.1 million cases and 1.8 million deaths were 
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Lung cancer is one of the most prevalent diseases affecting people and is a main factor in the rising death 
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samples and the high number of features. These issues were mitigated by deeply analyzing the gene dataset 
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the optimized CNN model using F-test feature selection method, achieved high classification accuracies of 
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areas, breathe carbon emissions from factories in indus-
trial areas, it is reasonable to say that early detection of 
lung cancer is crucial. However, many people with lung 
cancer do not exhibit symptoms, which makes it more 
challenging to detect the cancer at early stages [6, 7]. 
When symptoms do appear, they may include a persis-
tent cough, unusual wheezing, coughing up blood, diffi-
culty breathing, and weight loss. Over the past decades, 
the main and most common method for detecting lung 
cancer has been Computerized Tomography (CT), com-
monly known as a CT scan. Other diagnostic techniques 
include Chest Radiography (CXR), Positron Emission 
Tomography (PET), and Magnetic Resonance Imaging 
(MRI) [8]. Despite these advanced diagnostic methods, 
lung cancer is often not detected until it has progressed 
to an advanced stage [9].

The diagnosis of lung cancer is often performed at a late 
stage due to poor prediction and absence of symptoms 
in most cases. The emerging field of high-throughput 
sequencing has revolutionized the way of approaching 
lung cancer diagnosis. High-throughput sequencing 
(gene sequencing) allows researchers to explore the 
genomic evolution of premalignant conditions through 
various stages, including tumorigenesis [10]. This insight 
has led to significant advancements in our understanding 
of the molecular, immunological, and cellular character-
istics of lung cancer at different stages, especially in the 
early stages. Today, these studies have gone beyond con-
ventional methods, offering more reliable approaches for 
early detection and potential cures.

The evolution in technology over the past two decades, 
starting from computer development and medical equip-
ment to the utilization of smart technologies and big 
data, is playing a key role in improving lung cancer detec-
tion [11]. As time passes, more and more techniques 
appear from the evolution of new technologies, set-
ting up higher standards and raising hope. One of these 
techniques that have dominated the field of studies and 
research is the utilization and development of Machine 
Learning (ML) algorithms. ML algorithms have enabled 
different approaches to predict lung cancer, including 
Support Vector Machines (SVM) [12], K-nearest neigh-
bor (KNN) [13], and Naïve Bayes.

Gene expression datasets pose several significant chal-
lenges when detecting lung cancer. One common chal-
lenge is the size of the dataset. Many gene expression 
datasets may be relatively small, limiting the diversity and 
volume of data available for analysis. In addition, high 
dimensionality is another challenge, as these datasets 
often contain a vast number of genes or features, mak-
ing it complex to process and extract meaningful infor-
mation. Moreover, data imbalance can be an issue, where 
the number of cancer samples is significantly smaller 
than non-cancer samples, potentially leading to biased 

results [14]. Most of the genes are not involved in lung 
cancer and the goal is to identify, isolate, and eliminate 
the irrelevant genes. To achieve this, a well-developed 
ML or DL method that can differentiate relevant from 
irrelevant genes is required.

The primary contribution of this research is the devel-
opment of a Deep Learning (DL) model that effectively 
learns from sequential data and captures complex rela-
tionships within datasets. Specifically, the study proposes 
an optimized Convolutional Neural Network (CNN) 
model for classifying the severity of lung cancer using 
gene expression data. A significant aspect of this research 
is its approach to the common problem of imbalanced 
class distribution in gene datasets. This issue is addressed 
through a detailed analysis of the dataset and the stages 
of lung cancer from a medical standpoint by transform-
ing dataset labels into a binary format and applying a fea-
ture selection method to identify the most relevant genes 
for classification. Additionally, the performance of the 
developed DL model in predicting lung cancer severity 
is evaluated and validated by comparing it with different 
ML models and existing research studies. The workflow 
of the proposed methodology is depicted in Fig. 1.

The contributions of this paper can be illustrated as 
follows:

  • Developing a DL-based classification method 
using gene expression data for lung cancer severity 
classification.

  • Identifying what is the most effective model to 
classify the severity of two types of lung cancer using 
gene expression data.

  • Addressing common problems in gene datasets, 
such as imbalanced samples and a high number of 
features, by proposing effective solutions.

  • Enhancing the model efficiency by utilizing feature 
selection methods.

  • Tuning the hyperparameters of the proposed DL 
model to investigate the optimal parameters values 
to provide the highest classification results.

The research addresses the following research questions:

1. Can the severity of lung cancer be detected by ML 
using gene expression data?

2. What is the most effective ML or DL model to detect 
the severity of lung cancer?

3. How does feature selection affect the performance of 
ML models on genetic datasets?

4. How does tuning the hyperparameters affect the 
performance of a DL model?

The remaining sections of this research are organized as 
follows: A brief technological foundation concepts are 
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covered in Section “Technical background”, then Section 
“Literature review” discusses the recent ML methods in 
lung cancer detection performed by other researchers, 
while the methods employed in our work are explained 
in Section “Methodology”. After that, the details of the 
model design are illustrated in Section “Model design”, 
followed by the results and analysis in Section “Results 
and discussion”, and finally, the conclusion and future 
work in Section “Conclusion”.

Technical background
This section discusses the technical concepts that will 
be used in this research. It will cover a brief background 
about different ML models that will be used to classify 
the severity of lung cancer, the CNN model, the F-test 
feature selection method, and the employed performance 
metrics.

A) Adaboost: It is an example of the ensemble 
methods. It is a simple procedure for enhancing 
weak classification models, which improves data 
classification performance through recurrent 
training. Learning the training samples produces 
the initial weak classifier, and then merging the 
incorrect samples with the untrained data produces 
a new training sample. Therefore, the second weak 
classifier is generated. After that, by mixing the 
incorrect sample with the untrained data, another 
novel training sample is produced, which may 
then be trained to generate a third weak classifier. 

Consequently, by using this process repeatedly for 
multiple iterations, an improved and robust classifier 
can be established. The AdaBoost approach uses 
various sample weights to boost the percentage of 
correct classifications [15].

B) Support Vector Machine (SVM): It is a machine 
learning technique that is utilized in classification. It 
seeks to establish a decision boundary between two 
different classes such that output may be predicted 
using one or more feature vectors [16]. The decision 
boundary, also called the hyperplane, is oriented 
to be as far as possible away from the closest data 
points (support vectors) from each class. The 
simplest SVM model utilizes two hyperplanes to 
linearly separate the data, with the distance between 
these two hyperplanes being maximized to reduce 
error [17].

C) K-Nearest Neighbor (KNN): It is a supervised learning 
approach that can be utilized to classify data. It is a 
non-parametric classification technique that divides 
the dataset’s samples into groups (classes) based on 
whose neighbors’ labels are most similar. The size of 
the classes is determined by K-values. There are two 
possible ways for classification, either compare the 
testing sample with its neighbor, or it will depend on 
how close the testing sample is to its neighbors. The 
test sample will then be classified depending on most 
of the samples [18].

D) Random Forest (RF): It is a supervised learning 
method that can be utilized in data prediction and 

Fig. 1 The proposed workflow diagram for predicting the severity of lung cancer using gene expression data
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classification applications. However, it is mostly 
employed to solve classification problems. A forest 
is just a collection of different trees. Consequently, 
boosting the number of trees will strengthen the 
forest and make it more robust. Like this, the 
random forest technique builds decision trees from 
samples of data, extracts predictions from each, and 
then asks for a vote on which prediction is the best. 
Since it averages the results to reduce the overfitting 
of the data, this approach is viewed as an ensemble 
method that outperforms the single decision tree 
method [19].

E) Convolutional Neural Network (CNN): It is a deep 
learning model that learns from data directly. There 
are several applications of CNN models, including 
recognizing objects and categories in images by 
determining patterns in the images. In addition, a 
CNN model is utilized to learn the multiple layers 
of kernel filters along with learning the classifier’s 
weights. The CNN architecture is composed of 
three main layers: the convolution layer, the pooling 
layer, and the fully connected layer. The Convolution 
layer is responsible for feature extraction, while the 
pooling layer is used for data size reduction. Finally, 
the fully connected layer is responsible for data 
classification. Figure 2 presents the architecture of 
the CNN models [20].

F) F-test: F-test is a feature selection method that is 
used to evaluate the averages of several groups 
mathematically. Each feature is scored and ranked 
based on its relationship to the label, with the 
highest-scoring feature being selected. The number 
of attributes and the F-ratio can be obtained using 
ANOVA, where the F-ratio value indicates the 
degree of class separation. The F-ratio is calculated 
as the variance between classes divided by the 

variance within classes. The score of each attribute 
is determined using Eq. 1, where X̄i  is the mean of 
the class, X̄  is the mean of the attribute, ni is the 
frequency with which class i appears in the set, and k 
is the number of classes [22].

 
σ2

cl =
∑ (

X̄i − X̄
)2

ni

(k − 1)
 (1)

F) Performance Metrics

G) Various performance metrics are employed to 
evaluate ML models in this research, which are:

i. Accuracy: It is the number of positively and 
negatively classified samples over the total number 
of samples [23]. The accuracy can be calculated 
using the formula:

 
Accuracy = TP + TN

TP + FN + TN + FP
 (2)

ii. Confusion matrix: This is one of the evaluation 
methods that includes four main values to 
measure the model performance in classifying 
negative and positive samples, which are 
represented by true positive (TP), true negative 
(TN), false negative (FN), and false positive (FP). 
After that, these classification results are used in 
measuring the following metrics [24]:

Fig. 2 CNN model architecture [21]
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  • True Positive Rate (TPR): It refers to the number 
of samples that are classified as positive correctly 
over all the number of samples that are actually 
positive.

 
TPR = TP

Actual Positvie
= TP

TP + FN
 (3)

  • False Positive Rate (FPR): It refers to the 
number of samples that are classified as positive 
incorrectly over all the number of samples that are 
actually negative.

 
FPR = FP

ActualNegative
= TP

TN + FP  (4)

  • False Negative Rate (FNR): It refers to the 
number of samples that are classified as negative 
incorrectly over all the samples that are actually 
positive.

 
FNR = FN

FN + TP
 (5)

  • True Negative Rate (TNR): It refers to the samples 
that are classified as negative correctly over all the 
samples that are actually negative.

 
TNR = TP

TN + FP
 (6)

iii. Precision: It refers to the model’s ability to predict 
and classify the samples positively.

 
Precision = TP

TP + FP
 (7)

iv. Recall: It refers to the model’s ability to detect the 
class label correctly.

 
Recall = TP

TP + FN
 (8)

v. F-score: It refers to the weighted average accuracy 
of the model.

 
F − score = 2 × precision × recall

precision + recall  (9)

vi. Area Under the Curve (AUC): It measures a 
model’s ability to distinguish between classes by 
evaluating the trade-off between the TPR and the 
FPR across different thresholds.

vii. Training Time: It refers to the required time to 
build and train the model.

Literature review
This section reviews published studies on lung cancer 
classification using gene expression data. The review has 
identified two main categories of classification methods: 
classical ML models and DL models, both of which are 
examined in the following discussion.

A) Classical Machine Learning Models

In [25], the authors developed a DL-based multi-model 
ensemble method by utilizing k-nearest-neighbor, SVM, 
decision trees, random forests, and gradient-boosted 
decision trees in the classification stage. Then, the neu-
ral network is applied to ensemble the outputs of the 
five classical ML models. In addition, feature selection 
is implemented by using the DESeq method, and the 
model is designed and built by applying 4-fold cross-
validation. The proposed model is evaluated using three 
gene expression datasets for three types of cancer: LUAD, 
Stomach Adenocarcinoma (STAD), and Breast Inva-
sive Carcinoma (BRCA). The results of the proposed 
model achieved high precision values for the three types 
99.4%, 99.5%, and 99.6 for LUAD, STAD, and BRCA, 
respectively.

Authors in [26] used SVM and random forest learning 
models on a gene dataset that includes two types of lung 
cancer, LUAD and LUSC. The evaluations of the mod-
els are performed using the Monte Carlo feature selec-
tion method (MCFS). Basically, the authors focused on 
using SVM to classify the type of lung cancer as LUAD 
or LUSC using gene expression data. There are some sig-
nificant genes that are extensively analyzed for the dif-
ferentiation between the two types, which are (CSTA, 
TP63, SERPINB13, CLCA2, BICD2, PERP, FAT2, BNC1, 
ATP11B, FAM83B, KRT5, PARD6G, PKP1). The perfor-
mance evaluation is performed with randomly selected 
features and with informative features using MCFS, 
where 1100 and 260 features are selected randomly to 
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evaluate the SVM and random forest models, respec-
tively. The accuracy results of randomly selected features 
showed 96.7 % for SVM and 87.1% for RF. While using 
the informative features, only 43 features were selected 
for both models, and the accuracy results were 75.4% and 
77.2% for SVM and RF, respectively.

Authors in [27] implemented the light gradient boost-
ing machine (Light-GBM) model to predict if there exists 
cancerous tissue in the lungs and then specified the lung 
cancer subtype as LUAD or LUSC using gene expres-
sion quantification (RNA-seq) dataset from The Cancer 
Genome Atlas (TCGA) project. The dataset consists of 
598 LUAD samples and 553 LUSC samples with a total 
of 20,531 genes as features. The results show the accuracy 
and average AUC values are around 97.1%.

B) Deep Learning Models

Authors in [28] proposed a semi-supervised DL method 
called the Stacked Sparse Autoencoder (SSAE) to predict 
three different types of cancer, which are lung, stomach, 
and breast, based on the RNA sequence datasets. The 
SSAE consists of multiple single autoencoder layers. The 
middle layers are the extracted features of the dataset, 
which have the most significant features and low-dimen-
sional data, and a neural network classifier is used in the 
output layer. The number of selected features to predict 
LUAD cancer is 1385 out of 20,532. Moreover, a com-
parison is conducted between the proposed model and 
other ML models, such as SVM, RF, NN, and SSAE. The 
proposed SSAE model outperforms the other ML mod-
els in predicting lung cancer (LUAD) with an accuracy of 
around 99.89%.

In [29], five types of tumor cancer are classified using 
gene expression data by applying CNN based on binary 
particle swarm optimization with a decision tree. The 
CNN model was developed and includes several pre-
possessing steps, which are converting the dataset to 2D 
images and data augmentation. The augmentation was 
used to increase the number of samples from 2086 to 
5 times larger, with 971 total number of genes. The five 
types of cancer are breast invasive carcinoma, kidney 
renal clear well carcinoma, LUAD, LUSC, and Uterine 
Corpus Endometrial Carcinoma. The results are com-
pared with other work that has implemented DL tech-
niques without applying any optimization methods, 
where the overall accuracy is 95.20% with a gene dataset 
of 10,267 samples and 20,531 genes (features). The overall 
accuracy of classifying the five types of cancer is 96.20%, 
which outperforms the other work.

Authors in [30] have developed an immunotherapy-
related gene signature to predict the stage of LUAD by 
analyzing the RNA-seq data and clinical data by imple-
menting four ML classification models, which are SVM, 

naïve Bayes, random forest, and neural network-based 
DL, using RNA-seq dataset from TCGA. In addition, 
the random forest regression method was applied to fig-
ure out the association between gene mutations and the 
immune-related gene signature, where from 610 genes, 
271 genes were immune-related genes. Moreover, the 
risk stratification capacity of each patient is measured by 
using five GEO validation datasets showing the risk strat-
ification capacity of the immune-related gene signature 
for disease predictions. All the classification models show 
high accuracy in discriminating against high-risk patients 
with early-stage LUAD.

In [31], a deep neural network model is developed to 
predict the survival stage of lung cancer patients by pre-
dicting the cancer stage based on gene expression data of 
non-small cell lung cancer. The method used is to merge 
six independent Gene Expression Omnibus (GEO) data-
sets with a total of 614 patients to compare the perfor-
mance of a DNN model with a random forest model. 
The datasets consist of microarray data and clinical data, 
where seven common NSCLC biomarkers are used to 
combine the datasets. The prognosis relevance values 
(PRV) are used to select eight additional gene biomark-
ers. So, in the end, 15 biomarkers in addition to the clini-
cal data, are used to predict the patient’s survival within 
5  years. The evaluation of the model’s performance 
showed that DNN achieves better than RF, with an accu-
racy of around 75.44 and an AUC value of around 0.816.

In [32], multiple cancer tumor types (kidney renal 
clear cell carcinoma (KIRC), BRCA, LUSC, LUAD, and 
uterine corpus endometrial carcinoma (UCEC) are clas-
sified using RNA-seq dataset that consists of 2,086 rows 
and 972 columns. Eight DL models are implemented 
and compared, which are CNN, Alex-net, Google Net, 
VGG16, VGG19, ResNet50, ResNet101, and ResNet152. 
The experimental results included many training and 
testing methods, such as different splitting percentages 
and 10-fold validation to select the best method to build 
the model, which ended up with selecting 70–30 splitting 
as the best among others. The experimental results show 
that CNN achieved the best among other techniques 
with 97% classification accuracy.

In [33], lung cancer prediction was performed using 
genomics dataset from TCGA, which consisted of 471 
samples, and the GEO dataset, which consisted of 197 
samples. The prediction results were compared using 
classical ML models (KNN, SVM, RF, Logistic regres-
sion, and MLP) and CNN with a four-input model. The 
proposed model converts the gene expression data 
into two types of gene expression images, which are 
gene functional information and the second kind with 
KEGG Pathway information. The prediction results of 
lung cancer are represented by the disease stage. The 
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highest performance is achieved by CNN, with 71.48% 
and 72.51% AUC values for the TCGA and GEO datasets, 
respectively.

Authors in [34] performed different ML and DL mod-
els, including random forest, SVM, logistic regression, 
gradient boosting, X-Gradient boosting, LSTM, and 
CNN. The evaluation of the classical ML models showed 
that RF achieved the lowest MSE value of 0.08% and the 
highest accuracy value of 0.97%. LSTM achieved the 
highest with an accuracy value of 0.94% and MSE value 
of 0.30%, while CNN showed the lowest performance, 
where the highest accuracy was 84%.

Authors in [14] proposed a DL model based on Focal 
Loss as a loss function and used the K-fold cross-valida-
tion method to select the optimal model. The selected K 
value in implementing the model was 5. The proposed 
DL model works based on several stages, which are data 
collection and preprocessing, Kullback-Leibler (KL) 
divergence gene selection, constructing the deep neu-
ral network, and then the validation stage. Two datasets 
were used, each of which consists of 19,565 genes and 
a total of 1,135 samples. The performance evaluation 
is performed on the entire dataset and on the selected 
dataset using the KL divergence gene selection method. 
Overall, the result of the proposed method outperforms 
the entire dataset with an accuracy above 99.8%.

Authors in [21] provided a review of the existing 
research on different cancer diseases that are predicted 
using gene expression data and various DL techniques, 
such as feedforward neural network (FFN), CNN, auto-
encoder (AE), and recurrent neural network (RNN). The 
authors compared the published work and illustrated that 
the highest accuracy of predicting lung cancer (LUAD) 
was achieved using the FFNN model with an accuracy 
of 96.67%, and the highest accuracy achieved by CNN to 
classify LUAD was 84.8%.

C) Limitations

Through the review of various research papers, several 
gaps have been identified in the classification of lung 
cancer stages using gene expression data. Most existing 
studies have focused on implementing binary classifica-
tion to predict lung cancer or multi-class classification. 
However, limited research has specifically addressed the 
classification of lung cancer stages, which requires appro-
priate datasets. A major limitation of existing gene datas-
ets is the small number of samples (patients) available for 
each stage, particularly for advanced stages (stage III and 
stage IV). This scarcity arises from the low survival rates 
of patients in advanced stages, resulting in imbalanced 
datasets due to their multi-classification output, as illus-
trated in Fig. 7 and Fig. 8.

Furthermore, applying machine learning methods to 
these datasets often leads to suboptimal performance 
or overfitting due to the high dimensionality of gene 
data. To address this challenge, previous research has 
employed various feature selection techniques. However, 
there remains significant potential to explore additional 
feature selection methods to enhance ML performance in 
analyzing gene datasets.

Moreover, previous studies often lack critical details 
about the performance of the applied approaches. Key 
aspects, such as the time required for the model to learn 
gene variations, the complexity of the proposed model, 
and the generality of the method to be applied to other 
types of cancer, are frequently overlooked. Therefore, 
there is a need for further investigation into these aspects 
to comprehensively assess the effectiveness and applica-
bility of the methodologies employed in the literature.

The gaps and limitations in the current literature can 
be summarized as follows:

  • Limitations of the methods used in previous 
literature:

1) Insufficient focus on lung cancer stage 
classification: Limited studies have concentrated 
on the binary classification of lung cancer severity, 
leaving a gap in understanding this aspect of 
classification.

2) Inadequate evaluation metrics: Many models lack 
detailed performance evaluations, such as training 
and testing times and their generalizability to 
other contexts.

  • Limitations of the available datasets:

1) High dimensionality: The large number of genes in 
datasets increases the risk of overfitting.

2) Small sample size: The limited number of samples 
per stage leads to imbalanced datasets, reducing 
the reliability of findings and potentially biasing 
results.

Methodology

A. Dataset Collection

The dataset is collected from The Cancer Genome Atlas 
(TCGA), which is a landmark cancer genomics project 
that consists of gene expression, DNA, protein expres-
sion, and microRNA expression datasets for different 
cancer types. TCGA was considered a pilot project in 
2006 when the National Cancer Institute (NCI) and 
National Human Genome Research Institute (NHGRI) 
authorized TCGA for a full production phase for a 
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complete database of the molecular changes that hap-
pen in the tumors [29]. LUAD and LUSC are two types of 
non-small cell lung cancer, which can be detected using 
the gene expression that is included in the TCGA data-
base, which is available in cBIoPortal for Cancer Genom-
ics [35]. The gene expression dataset for each cancer type 
contains values for 20,530 genes, 566 LUAD patients, and 
487 LUSC patients without any further details about the 
output label of the gene’s variations for each patient. The 
patients’ information, such as gender, age, race, and can-
cer tumor stage, are included in a different dataset file. 
Therefore, combining the gene expression dataset and 
the stage of the cancer tumor as an output is the first step 
before proceeding with other steps. In the end, the data-
set used to build ML models consists of the gene expres-
sion values and the stage of the tumor.

B. Data exploration

While dealing with data, it is significant to understand 
the dataset before using it. Therefore, various types of 
analytic methodologies will be utilized to learn the vari-
ous characteristics of the dataset and closely understand 
the data for more research.

Access to a set of data allows us to test how one sample, 
category, or subcategory of data affects another. There-
fore, it is important to know the characteristics of the 
dataset samples. Since this work is a binary classifica-
tion for classifying the stages of two different lung cancer 
types called LUAD and LUSC, it is important to know the 
overall survival status in each dataset. As shown in Fig. 3, 
the total number of patients in the LUAD dataset is 566, 
where the number of living patients reached 328, repre-
senting 58.0% of the dataset. While 186 patients are clas-
sified as deceased cases, and the remaining 9.2% were not 
specified. For the LUSC dataset, 277 patients out of 487 
are categorized as living cases, representing 56.9% of the 
total number of patients. It is observed that the number 
of living status exceeds the deceased status by 13.8%.

In addition, both datasets will be explored from differ-
ent features, including the sex of the patient, the age at 
which a condition was first diagnosed, and the subtype of 
lung cancer. Figure 4 shows that the LUAD dataset con-
tains 275 female and 239 male patients, which means that 
the frequency of the data is 48.6% and 42.2% for females 
and males, respectively, while the remaining 52 patients 
were not specified. However, the LUSC dataset contains 
127 female and 358 male patients, which means that the 
frequency of the data is 26.1% and 73.5% for females and 
males, respectively. Only two patients in the LUSC data-
set were not applicable to be classified.

Figure  5 represents the appearance of any other cate-
gories or subtypes of lung cancer in the dataset. For the 
LUAD dataset, 502 cases are classified as LUAD can-
cer, while the remaining samples were categorized as 
non-applicable. In other words, 88.7% of the dataset is 
classified as LUAD cancer. However, for the LUSC data-
set, 464 cases are classified as LUSC cancer, which is 

Fig. 5 Lung cancer subtype samples in: (a) LUAD, and (b) LUSC datasets 
[36, 37]

 

Fig. 4 Sex of the patients in: (a) LUAD, and (b) LUSC dataset [36, 37]

 

Fig. 3 Overall survival status of: (a) LUAD, and (b) LUSC datasets [36, 37]
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approximately 95% of the whole dataset, while only 23 
samples were classified as non-applicable.

The age at which a condition or disease was first diag-
nosed is shown in Fig. 6. As observed in the LUAD data-
set, most of the patients are in the range (55, 75). The 
LUAD dataset contains a few samples under the age of 
40 and over the age of 85. However, around 70 and 10 
patients were not specified in the LUAD and LUSC data-
sets, respectively. For the LUSC dataset, the patients’ ages 
range between (60 and 75).

C. Data Preprocessing

Building an ML model requires proper exploration and 
analysis of the dataset. Before building and evaluating 
the ML models, several preprocessing steps are required, 
such as data cleaning, handling imbalanced data, and 
value normalization.

1) Cleaning and Preparing each Dataset This 
preprocessing workflow aims to integrate two 
datasets related to LUAD, which are gene expression 
data and clinical patient information, both featuring 
the same patients identified by unique patient 
IDs. The first dataset contains gene expression 
data, which is initially transposed to facilitate 
manipulation, followed by removing missing values. 
Renaming the first column to ‘patient_id’ ensures 
consistency with the second dataset (clinical patient 
dataset). The second dataset, containing clinical 
information of the patients, retains only relevant 
columns (‘patient_id’ and ‘tumor stage’). Then, the 
two datasets are merged based on the ‘patient_id’ 
column to create a new data frame. As a result, the 
final LUAD dataset will contain patient IDs, gene 
expression data, and tumor stage (label), comprising 
a total of 508 samples (rows) and 20,520 genes 
(columns). The same preprocessing steps have been 
implemented on the LUSC dataset, which also 
comprises gene expression data and clinical patient 

information for different patients. Consequently, 
the resulting LUSC dataset comprises 481 samples 
(rows) and 20,520 genes (columns).

2) Handling Imbalanced Data The problem tackled 
with the chosen datasets pertains to the multi-label 
output represented by the tumor stages. These stages 
correlate with survival statistics, signifying the extent 
of cancer cell presence in the body. Moving from 
stage I to stage IV, the survival probability decreases, 
as higher stages mean the cancer has spread more 
in the body [38]. Stage I lung cancer is limited to the 
lungs and has not spread to the lymph nodes. Stage 
II lung cancer may have spread to the nearby lymph 
nodes. Stage III lung cancer has spread to the lymph 
nodes and other nearby tissues. Stage IV lung cancer 
has spread from the lungs to other parts of the body. 
The sub-stages, A and B, are based on the size of the 
tumor.

As illustrated in Fig. 7 and Fig. 8, the multi-class distri-
bution is imbalanced in terms of the number of samples 
between the stages, which accordingly results in inaccu-
rate classification of the disease. Therefore, the samples 
are regrouped into two categories only (severe and non-
severe), based on the stage severity and survival prob-
ability, which resulted in a balanced dataset, where the 
sample distribution of the binary classification is demon-
strated in Fig. 8 and Fig. 10.

As can be seen in Fig. 9 and Fig. 10, the first step per-
formed in dataset preprocessing is transforming the data 
from multi-classification output format to binary classi-
fication to have a balanced dataset. In order to create a 
more balanced dataset, multiple experiments have been 
performed using all the output classes in the multi-
classification (9 classes) and by applying (9-n) where 
n = {1,2,3,4…,7}, where the highest result was achieved 
when n = 3. Therefore, the three lowest stages samples 
have been eliminated from the dataset.

Based on the opinion of medical experts, stage one can 
be considered as non-severe, and everything else can 

Fig. 6 Diagnosis ages in: (a) LUAD, and (b) LUSC datasets [36, 37]
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be severe, which will improve the accuracy as the data-
set will be more balanced. Therefore, the output classes 
are regrouped into two categories only: severe and non-
severe, as shown in Fig. 9 and Fig. 10, and encoded as 0 
for non-severe stage and 1 for severe stage. After that, the 
data values are normalized, achieved by utilizing a stan-
dard scaler to rescale the mean of the data to 0 and the 
standard deviation of the data to 1. Figure 11 summarizes 
the overall implemented steps to preprocess the data and 
prepare it to be well fitted into different testing models.

D. Feature Selection

Feature selection is the process of filtering the features 
in the dataset to select the most significant features [39]. 
Handling the high dimensionality problem in a dataset 
using feature selection methods is crucial for improving 

the efficiency and accuracy of data analysis and ML. 
High-dimensionality datasets are often characterized by 
a large number of features, which can lead to increased 
computational complexity and negatively impact model 
performance. Feature selection techniques aim to miti-
gate these challenges by identifying and retaining the 
most informative features while discarding irrelevant or 
redundant ones.

In this research, the F-test feature selection method 
has been implemented in the data preprocessing steps to 
minimize the dataset dimensionality, considering three 
different percentages of the total feature count: 15%, 
25%, and 40%. The F-test is a simple and well-established 
statistical method that evaluates the variance between 
groups or classes. It identifies features with statistically 
significant differences in variance across classes, mak-
ing it an effective tool for distinguishing between classes 
within a dataset. It can handle multivariate feature selec-
tion, meaning it considers the joint effects of multiple 
features simultaneously. This is particularly important in 
cases where the interactions between features are crucial 
for classification, such as in a gene dataset that contains a 
huge number of genes.

Model design

A. Training-testing Method

Various training and testing methods have been imple-
mented in this research, including k-fold cross-valida-
tion and hold-out methods. Through performing and 
evaluating both methods on classical ML models, it was 
figured out that the hold-out method achieved higher 
results compared to k-fold cross-validation. The experi-
ments included evaluating 80–20 and 70–30 data splits 
and k-fold cross-validation with k = 5 and 10. As can be 

Fig. 8 LUSC-Sample distribution in multi-class classification

 

Fig. 7 LUAD-Sample distribution in multi-class classification
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shown in Table 3, 70–30 splitting achieves the highest 
accuracy without using feature selection in the LUAD 
dataset, while 80–20 splitting achieves the highest results 
in the three remaining evaluating cases, which are: (1) 
LUAD using feature selection, (2) LUSC using feature 
selection, and (3) without using feature selection.

B. Parameters of the Models

Each model has specific parameters that must be pre-
defined during the building and training processes. 
Moreover, some parameters are used to validate the 
model over multiple runs of the code. The details of 
these parameters are explained in this section, and the 

proposed architecture of the CNN model is illustrated in 
Fig. 12.

i. Training and testing splitting parameters: the 
training and testing splitting parameters are 
explained in Table 1.

ii. Model parameters: The parameters of the model are 
initially selected, as illustrated in Table 2. Some of the 
parameters are selected based on the nature of the 
dataset, such as setting the activation of the output 
layer as sigmoid as the label is binary. However, other 
parameters are tuned based on the performance of 
the model, where several parameters are evaluated 
and updated to improve the model’s performance. 
The optimal parameters are determined based on 
performance metrics, which are assessed through 
the dataset-splitting method. Table 2 summarizes the 
parameters used in developing the models.

Results and discussion
This section presents the experimental results. Figure 13 
illustrates the experiments conducted. The results are 
divided into two main parts. In the first part, preprocess-
ing steps were implemented on the LUAD and LUSC 
datasets, followed by the construction of five models 
without the use of feature selection. The four classical ML 
models (KNN, SVM, RF, AdaBoost) models were then 
compared with the proposed CNN model, which is a DL 
approach. In the second part, the F-test feature selec-
tion method was applied to each dataset, and the results 
were compared using varying numbers of features. The 
results obtained using feature selection outperformed 
those without the feature selection method, highlight-
ing the impact of feature selection on model accuracy. 

Fig. 10 LUSC-Sample distribution in binary classification

 

Fig. 9 LUAD-Sample distribution in binary classification
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Furthermore, various evaluation metrics were used to 
compare and evaluate the proposed model.

In this research, several experiments are performed to 
select the best and optimal model. Firstly, we will start 
by building the ML models and training them using all 
the features in the datasets. Different training and test-
ing methods are applied, such as k-fold cross-validation 
and hold-out methods. Table 3 illustrates the accuracy 
results of SVM, RF, KNN, and Adaboost using 5-fold 

and 10-fold cross-validation, as well as 80–20 and 70–30 
data splitting methods. The results show that the 70–30 
data splitting achieved the highest accuracy in the LUAD 
dataset without employing feature selection. In contrast, 
the 80–20 data splitting produced the highest results in 
three other evaluation scenarios: LUAD with feature 
selection, LUSC with feature selection, and without fea-
ture selection.

Table 1 Training and splitting parameters
Parameter Value Meaning
Test size 0.2 and 0.3 Refers to the total number of test samples.
Shuffle True Shuffling the samples before splitting.
Stratify None It helps in retaining the same proportion of classes in the training and testing dataset.
Random state 2 It controls how the data is shuffled before splitting. It helps for getting the same output over multiple runs.

Fig. 12 CNN model architecture of the proposed work

 

Fig. 11 Detailed preprocessing and steps of the proposed work
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A. Results without Feature Selection

The first part of the experimental results, as shown in Fig. 
13, involves preprocessing the two datasets and employ-
ing different models to classify the severity of lung can-
cer using all the features within these datasets. Notably, 

hold-out splitting methods consistently yield superior 
results compared to k-fold cross-validation in classi-
cal ML models. Consequently, the accuracy results of 
the CNN model on the LUAD and LUSC datasets were 
evaluated using both 70–30 and 80–20 data splits. The 
results illustrated that 70–30 data splitting obtained bet-
ter accuracy for LUAD, while 80–20 data splitting was 
more effective for LUSC. Table  4 presents the accuracy 
results of the CNN model in classifying samples as severe 
or non-severe. The results show the performance of the 
CNN for both LUAD and LUSC datasets using 80–20 
and 70–30 train-test splits, with the highest accuracy val-
ues reaching 61.49% and 57%, respectively.

Furthermore, the CNN model has been built with dif-
ferent architectures and parameter values. Two CNN 
architectures are mainly evaluated in this research. The 
first network architecture consists of an input convolu-
tional layer, one flattening layer, and one dense layer that 

Table 2 The parameters of CNN model
Parameter Value Meaning
Random Seeds 7 To fix the reproducibility of the results over multiple runs of the code.
No. of epochs 50 The number of iterations of all the training dataset.
Activation function of the hidden layer RELU The default activation function for the hidden layers in CNN.
Activation function of the output layer Sigmoid It is a binary classification activation function of the output layer.
Patience value 5 It refers to the number of epochs the model can stop the training 

process, if there are no improvements.
Optimizer Adam It refers to Adaptive movement estimation algorithm that is utilized 

to update the network weight iterative based in training data.
Loss function Binary cross entropy It is used to compare the actual label with the predicted output.
Filter size 16 The number of channels in the output of the convolutional layer.
Kernel size 5 The size of the convolutional filters.

Table 3 Evaluating classical ML models’ accuracy using different 
training/testing methods without feature selection

Training – testing method SVM RF KNN Adaboost
LUAD 10-fold cross-validation 0.57 0.54 0.58 0.54

5-fold cross-validation 0.57 0.57 0.58 0.56
80–20 splitting 0.61 0.58 0.57 0.60
70–30 splitting 0.63 0.60 0.59 0.56

LUSC 10-fold cross-validation 0.56 0.53 0.50 0.52
5-fold cross-validation 0.55 0.52 0.51 0.55
80–20 splitting 0.61 0.59 0.59 0.57
70–30 splitting 0.58 0.57 0.54 0.50

Fig. 13 Flow diagram of the results
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includes two output neurons (severe and non-severe) 
without adding max-pooling layers. On the other hand, 
the second evaluated architecture consists of an input 
convolutional layer, two hidden convolutional layers, 
three max-pooling layers, one flattening layer, and three 
dense layers that include 128, 64, and 2 neurons, respec-
tively. In addition, hyperparameters were optimized 
to ensure the models yield the best results. Table 5 and 
Table  6 describe a detailed performance comparison 
between the models by selecting the highest training and 
testing method: 70–30 splitting for the LUAD dataset 
and 80–20 splitting for the LUSC dataset, respectively.

B. Results with Feature Selection

Carrying on from the first part, a feature selection 
method was implemented before fitting the dataset to 

the ML models. Three different percentages of the total 
number of features have been evaluated, which are 15% 
(8000 genes), 25% (5000 genes), and 40% (3000 genes). 
After selecting the features, the same ML models were 
used to classify the severity of lung cancer. The classical 
ML models were evaluated through k-fold cross-valida-
tion and hold-out splitting methods, employing the three 
selected feature quantities for both the LUAD and LUSC 
datasets. The objective is to identify the most effective 
training approach and the optimal number of features.

For the LUAD dataset, the highest accuracy results 
were achieved using 80–20 data splitting and select-
ing 25% of the features, equating to approximately 5000 
features. In contrast, for the LUSC dataset, the highest 
accuracy results were achieved using an 80–20 data split-
ting and selecting 15% of the features, which amounts to 
around 3000 features. Table 7, Table 8, and Table 9 illus-
trate the accuracy results for ML models obtained using 
15%, 25%, and 40% feature percentages, respectively. The 
findings indicate that selecting 5000 features from the 
LUAD dataset outperforms the other feature amount, 
while in the case of the LUSC dataset, selecting 3000 
features yields the best results. Consequently, the CNN 

Table 4 Evaluating CNN using 80–20 and 70–30 splitting methods without feature selection
Dataset Training – testing 

method
Convolutional 
layers

Max-pool-
ing layer

Max-pooling 
layer size

Dense layer Learning 
rate

Batch size Accu-
racy

LUAD 70–30 splitting 1 NA NA 1 0.01 128 61.49%
80–20 splitting 60.61%

LUSC 70–30 splitting 1 NA NA 1 0.01 128 55%
80–20 splitting 57%

Table 5 Detailed performance comparison between all the 
models without feature selection for LUAD dataset using 70–30 
splitting method
Performance Metric KNN (K = 7) SVM RF AdaBoost CNN
Accuracy 0.59 0.63 0.60 0.56 0.61
Recall 0.50 0.51 0.55 0.56 0.57
Precision 0.49 0.65 0.56 0.56 0.58
F-score 0.46 0.42 0.55 0.55 0.57
AUC 0.49 0.51 0.55 0.55 0.56
TPR 0.36 0.66 0.46 0.43 0.48
TNR 0.62 0.62 0.65 0.67 0.66
FPR 0.37 0.37 0.34 0.32 0.33
FNR 0.63 0.33 0.53 0.56 0.51
Training Time (Seconds) 0.09 0.87 1.31 22.60 30.09

Table 6 Detailed performance comparison between all the 
models without feature selection for LUSC dataset using 80–20 
splitting method
Performance Metric KNN (K = 7) SVM RF AdaBoost CNN
Accuracy 0.59 0.61 0.59 0.57 0.57
Recall 0.56 0.56 0.56 0.55 0.55
Precision 0.56 0.58 0.56 0.55 0.55
F-score 0.56 0.56 0.56 0.55 0.55
AUC 0.56 0.56 0.55 0.55 0.54
TPR 0.65 0.65 0.65 0.65 0.64
TNR 0.47 0.5 0.46 0.45 0.44
FPR 0.52 0.5 0.53 0.55 0.55
FNR 0.34 0.34 0.34 0.34 0.35
Training Time (Seconds) 0.20 1.13 1.53 23.98 35.86

Table 7 Accuracy evaluation of classical ML models using 
different training-testing methods with 3000 features
Dataset Training – testing method SVM RF KNN AdaBoost
LUAD 10-fold cross-validation 0.71 0.58 0.58 0.58

5-fold cross-validation 0.70 0.61 0.59 0.58
80–20 splitting 0.79 0.63 0.61 0.67
70–30 splitting 0.78 0.63 0.61 0.61

LUSC 10-fold cross-validation 0.711 0.63 0.60 0.58
5-fold cross-validation 0.719 0.59 0.60 0.59
80–20 splitting 0.76 0.67 0.67 0.62
70–30 splitting 0.69 0.66 0.61 0.58

Table 8 Accuracy evaluation of classical ML models using 
different training-testing methods with 5000 features
Dataset Training – testing method SVM RF KNN AdaBoost
LUAD 10-fold cross-validation 0.68 0.56 0.56 0.58

5-fold cross-validation 0.67 0.58 0.56 0.58
80–20 splitting 0.79 0.65 0.62 0.66
70–30 splitting 0.73 0.69 0.59 0.62

LUSC 10-fold cross-validation 0.698 0.594 0.559 0.58
5-fold cross-validation 0.696 0.596 0.554 0.567
80–20 splitting 0.74 0.65 0.62 0.59
70–30 splitting 0.69 0.62 0.60 0.51
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model was evaluated using 5000 features for LUAD and 
3000 features for LUSC.

It can be observed from Table 7, Table 8, and Table 9 
that 80–20 data splitting consistently leads to the high-
est overall accuracy in both the LUAD and LUSC data-
sets. For instance, SVM achieved the highest accuracy 
values of 79% in LUAD and 76% in LUSC using 5000 
and 3000 features, respectively. However, CNN outper-
formed the classical ML models by achieving accuracy 
rates of 93.94% and 88.42% in LUAD and LUSC datasets, 
respectively. As demonstrated in Table  10, in the case 
of the LUSC dataset, two different batch sizes (128 and 
256) resulted in identical accuracy. Therefore, the train-
ing time was considered for both batch sizes to select the 
best parameter.

Moreover, for optimal selection for the number of fea-
tures, the CNN is evaluated using a different number 
of features, as illustrated in Table  11. The results show 
that for LUAD severity classification, 5000 features are 
achieving the best result, and 3000 features are required 

to classify LUSC severity to achieve the best results. 
Tables 12 and 13 describe the detailed performance com-
parison between the classical ML models and the CNN 
model using feature selection for LUAD and LUSC data-
sets, respectively. Overall, in LUAD and LUSC datas-
ets, the CNN model outperforms the other classical ML 
models in terms of classification accuracy, but it requires 
more time to be trained.

Table 9 Accuracy evaluation of classical ML models using 
different training-testing methods with 8000 features
Dataset Training – testing method SVM RF KNN AdaBoost
LUAD 10-fold cross-validation 0.64 0.58 0.57 0.52

5-fold cross-validation 0.62 0.57 0.58 0.56
80–20 splitting 0.75 0.64 0.60 0.65
70–30 splitting 0.72 0.64 0.60 0.57

LUSC 10-fold cross-validation 0.68 0.597 0.58 0.559
5-fold cross-validation 0.66 0.592 0.57 0.552
80–20 splitting 0.72 0.62 0.61 0.49
70–30 splitting 0.68 0.58 0.57 0.54

Table 10 Evaluating CNN with feature selection using 80–20 splitting method using different parameters values
Dataset Convolutional 

layers
Max-pool-
ing layer

Max-pooling 
layer size

Dense layer Learning 
rate

Batch size Accuracy

LUAD using 5000 
features

1 NA NA 1 0.001 32 88.89%
0.01 32 89.90%

16 89.90%
64 89.90%

128 93.94%
256 91.92%

3 3 1 3 0.01 128 91.92%
3 0.01 75.76%
1 0.001 81.82%

LUSC using 3000 
features

1 NA NA 1 0.001 32 85.26%
0.01 32 82.11%

16 85.26%
64 84.21%

128 88.42% (training time = 5.7 Sec)
256 88.42% (training time = 5.6 Sec)

3 3 1 3 0.01 128 75%
2 0.01 128 78%
1 0.001 128 75%

Table 11 The accuracy results of CNN for different number of 
features

No. of selected features Accuracy
LUAD 3000 91.92%

5000 93.94%
8000 88.89%

LUSC 3000 88.42%
5000 85.26%
8000 82.11%

Table 12 Detailed performance comparison between all the 
models using F-test for LUAD dataset using 5000 features
Performance Metric KNN (K = 7) SVM RF AdaBoost CNN
Accuracy 0.62 0.79 0.65 0.66 0.94
Recall 0.55 0.75 0.64 0.64 0.94
Precision 0.60 0.83 0.64 0.64 0.94
F-score 0.50 0.76 0.64 0.64 0.94
AUC 0.54 0.74 0.64 0.64 0.93
TPR 0.58 0.91 0.57 0.57 0.92
TNR 0.62 0.75 0.71 0.71 0.94
FPR 0.37 0.25 0.28 0.28 0.05
FNR 0.41 0.08 0.42 0.42 0.07
Training Time (Seconds) 0.02 0.35 6.49 6.49 10.63
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Finally, it is crucial to mention that DL-based mod-
els are computationally expensive. To address this issue, 
feature selection methods are employed during data 
preprocessing. This practice significantly decreases 
model training and running time and facilitates model 

convergence. Generally, feature selection is becoming 
more and more relevant in discovering and studying sig-
nificant genes.

Figure  14 illustrates all the model’s accuracy results, 
both with and without feature selection. Remarkably, the 
CNN model achieved the best accuracy in classifying the 
severity of LUAD and LUSC when feature selection was 
applied. On the other hand, Fig. 15 shows the training 
time taken by each model to learn the gene variations, 
clearly illustrating that CNN requires the highest training 
time. Therefore, in future work, a hyperparameter opti-
mization technique will be used to reduce it.

C. Comparison with Previous Work

Overall, the CNN model shows effective results by test-
ing it on two different gene datasets for two types of 
lung cancer disease. The CNN model is chosen due to 
its prevalent use in the literature review for managing 

Table 13 Detailed performance comparison between all the 
models using F-test for LUSC dataset using 3000 features
Performance Metric KNN (K = 7) SVM RF AdaBoost CNN
Accuracy 0.67 0.76 0.67 0.62 0.88
Recall 0.63 0.74 0.65 0.60 0.87
Precision 0.65 0.75 0.65 0.60 0.89
F-score 0.64 0.74 0.65 0.60 0.87
AUC 0.63 0.73 0.64 0.60 0.86
TPR 0.70 0.78 0.72 0.68 0.87
TNR 0.60 0.70 0.58 0.51 0.90
FPR 0.39 0.29 0.41 0.48 0.09
FNR 0.29 0.21 0.27 0.31 0.12
Training Time (Seconds) 0.02 0.11 0.60 3.72 5.6

Fig. 15 Models’ training time comparison

 

Fig. 14 Models’ accuracy comparison
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high-dimensional data, especially in genomic studies. 
Its effectiveness is in its ability to extract features and 
reduce data dimensionality through convolutional, which 
improves both efficiency and helps to minimize overfit-
ting. Therefore, a comparative analysis has been done in 
Table  14 to compare the performance of our proposed 
model with previous works in terms of detection accu-
racy. Our study demonstrates a significant improvement 
in predicting lung cancer severity using an optimized 
CNN model. For instance, the study in [21] utilized a 
CNN model for lung cancer prediction and achieved an 
accuracy of 84.8%, while the study in [26] applied a ran-
dom forest model for predicting lung cancer subtypes 
with a 77.2% accuracy. Additionally, the authors in [31] 
used a deep neural network model for lung cancer sur-
vival prediction, resulting in a 75.44% accuracy, and the 
authors in [33] employed a CNN model for lung cancer 
long-term survival prediction, reaching 72.51% accuracy. 
Notably, the study in [40] achieved a 90% accuracy in 
lung cancer subtype prediction using Naive Bayes model. 
Our work surpasses these results, achieving an impres-
sive 94% accuracy in predicting lung cancer severity, 
highlighting the efficacy of our optimized CNN model in 
this application.

Conclusion
Globally, cancer is a serious health issue. To classify the 
severity of lung cancer, we have compared classical ML 
models with the CNN model in this research. We specifi-
cally examined gene expression data from two kinds of 
lung cancer (LUAD and LUSC). The output is converted 
from multi-class classification to binary classification 
based on the tumor spread to address the imbalanced 
dataset. Additionally, the F-test feature selection 
approach is used to minimize the dimensionality of the 
datasets to prevent overfitting in classification. The find-
ings demonstrate that the F-test method is essential for 
reducing data dimensionality and choosing useful infor-
mation, enhancing prediction accuracy, and substantially 
reducing computational time.

To sum up, this research applied several classical ML 
models, including SVM, KNN, RF, and Adaboost, to 
detect two different lung cancer types (LUAD and LUSC) 
using gene expression data. However, since the obtained 
performance of the model has demonstrated very low 
results using all features, the F-test feature selection 
method has been utilized to improve the performance of 
the models. Furthermore, these classical ML models have 
been compared with the proposed CNN model. Experi-
mental results showed that the proposed CNN model 
outperformed the other ML models and obtained the 
highest performance in detecting lung cancer with an 
accuracy of 93.94% for the LUAD dataset and 88.42% for 
the LUSC dataset using the feature selection method.

Using the F-test feature selection method, we identified 
3000 and 5000 significant genes out of more than 20,000 
genes for LUSC and LAUD, respectively. Subsequently, 
through analysis of TCGA data from cancer patient sam-
ples, these genes hold the potential for clinical utilization 
by physicians in classifying the severity of lung cancer. 
We are confident that if doctors check these genes for 
their patients, they will be able to determine the stage of 
lung cancer, especially since the used evaluation datas-
ets are highly variable in terms of the collected samples, 
thereby enhancing the diagnostic process and enabling 
more personalized treatment strategies. Eventually, this 
research has proven the power of the feature selection 
method in improving the classification accuracy using all 
the models by evaluating the models using different per-
formance metrics to ensure the efficiency and reliability 
of the proposed model.

A. Answers to Research Questions

To conclude the analysis of the results of this research, 
we will address the research questions outlined in Sec-
tion “Introduction”.

 
Research Question 1: Can the severity of lung cancer be 
detected by ML using gene expression data?

 
The experimental results confirm that ML models can 
effectively detect the severity of lung cancer using gene 
expression data. The classification performance varies 
depending on the model, dataset, and feature selection 
method applied. In Table 5 and Table 6, models trained 
without feature selection on the LUAD and LUSC datas-
ets achieved moderate accuracy, with SVM achieving the 
highest accuracy (0.63) for LUAD and (0.61) for LUSC. 
However, when the F-test feature selection method 
was applied, the accuracy of all models significantly 
improved, as can be seen in Table 12 and Table 13. CNN 
achieved the best performance, reaching 0.94 accuracy 
for LUAD and 0.88 for LUSC, indicating that DL models 

Table 14 Comparison of models’ performance between our 
work and related works
Paper Application Model Accuracy
[21] Lung cancer prediction CNN 84.8%
[26] Lung cancer subtypes prediction Random 

Forest
77.2%

[31] Lung cancer survival prediction Deep Neural
Network

75.44%

[33] Lung cancer long-term survival
prediction

CNN 72.51%

[40] Lung cancer subtypes prediction Naive Bayes 90%
Our 
work

Lung cancer severity prediction Optimized 
CNN

94%
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can leverage high-dimensional gene expression data 
more effectively.

 
Research Question 2: What is the most effective ML or 
DL model to detect the severity of lung cancer?

 
From the performance comparisons, CNN demonstrated 
the highest classification performance in both LUAD 
and LUSC datasets when feature selection was applied. 
In Table 12 and Table 13, CNN achieved an accuracy of 
0.94 and 0.88 for LUAD and LUSC, respectively. Tradi-
tional ML models such as SVM and RF performed well, 
with SVM reaching 0.79 accuracy for LUAD and 0.76 for 
LUSC. However, deep learning models outperformed 
ML models in handling gene expression data, making 
CNN the most effective model for lung cancer severity 
detection.

 
Research Question 3: How does feature selection affect 
the performance of ML models on genetic datasets?

 
Feature selection significantly improves the performance 
of ML models by reducing the dataset dimensionality and 
enhancing classification accuracy. When models were 
trained without feature selection (Table 5 and Table 6), 
their accuracy ranged between 0.56 and 0.63. However, 
after applying the F-test feature selection, the accu-
racy of all models improved significantly (Table 12 and 
Table 13). For instance, CNN’s accuracy increased from 
0.61 (LUAD) and 0.57 (LUSC) without feature selec-
tion to 0.94 (LUAD) and 0.88 (LUSC) after selecting rel-
evant features. Similarly, SVM’s accuracy improved from 
0.63 (LUAD) and 0.61 (LUSC) to 0.79 (LUAD) and 0.76 
(LUSC). These findings demonstrate that selecting the 
most relevant features enhances model efficiency and 
accuracy while reducing computational costs.

 
Research Question 4: How does tuning the hyperparam-
eters affect the performance of a DL model?

 
Hyperparameter tuning plays a crucial role in optimiz-
ing deep learning models for better classification per-
formance. Table 10 highlights the impact of different 
hyperparameter settings on CNN performance for LUAD 
and LUSC datasets. For LUAD using 5000 features, 
increasing the batch size from 32 to 128 resulted in a sig-
nificant accuracy improvement from 88.89% to 93.94%. 
Similarly, adjusting the number of convolutional layers 
and max-pooling settings influenced performance, with 
a three-layer configuration achieving 91.92% accuracy 
when using a batch size of 128. For LUSC using 3000 fea-
tures, batch size adjustments also played a key role, with 
128 achieving an accuracy of 88.42% while maintaining 
reasonable training time (5.7 seconds). A learning rate of 

0.01 produced variable results, highlighting the impor-
tance of selecting an optimal value to balance model con-
vergence and generalization. These results highlight the 
crucial role of hyperparameter tuning, including batch 
size, learning rate, and the number of convolutional lay-
ers, in optimizing CNN performance. Choosing optimal 
hyperparameters improves both accuracy and efficiency.

B. Future Work and Suggestions

 
Through reviewing the literature and addressing the 
research problems, we have investigated some areas of 
improvement that can be implemented in the future, 
such as:

  • Due to the insufficient samples in the used datasets, 
merging the LUAD and LUSC datasets together as 
they share the same features (genes) and creating 
a binary classification problem to classify the two 
subtypes would lead to better classification results.

  • Develop other deep learning models.
  • Test and evaluate various feature selection methods 

that have been used in the literature to identify the 
most suitable approach for this problem.
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