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Abstract
Background The rapid advancement of Artificial Intelligence (AI) has led to its widespread application across 
various domains, showing encouraging outcomes. Many studies have utilized AI to forecast emergency department 
(ED) disposition, aiming to forecast patient outcomes earlier and to allocate resources better; however, a dearth of 
comprehensive review literature exists to assess the objective performance standards of these predictive models 
using quantitative evaluations. This study aims to conduct a meta-analysis to assess the diagnostic accuracy of AI in 
predicting ED disposition, encompassing admission, critical care, and mortality.

Methods Multiple databases, including Scopus, Springer, ScienceDirect, PubMed, Wiley, Sage, and Google Scholar, 
were searched until December 31, 2023, to gather relevant literature. Risk of bias was assessed using the Prediction 
Model Risk of Bias Assessment Tool. Pooled estimates of sensitivity, specificity, and area under the receiver operating 
characteristic curve (AUROC) were calculated to evaluate AI’s predictive performance. Sub-group analyses were 
performed to explore covariates affecting AI predictive model performance.

Results The study included 88 articles possessed with 117 AI models, among which 39, 45, and 33 models predicted 
admission, critical care, and mortality, respectively. The reported statistics for sensitivity, specificity, and AUROC 
represent pooled summary measures derived from the component studies included in this meta-analysis. AI’s 
summary sensitivity, specificity, and AUROC for predicting admission were 0.81 (95% Confidence Interval [CI] 0.74–
0.86), 0.87 (95% CI 0.81–0.91), and 0.87 (95% CI 0.84–0.93), respectively. For critical care, the values were 0.86 (95% CI 
0.79–0.91), 0.89 (95% CI 0.83–0.93), and 0.93 (95% CI 0.89–0.95), respectively, and for mortality, they were 0.85 (95% CI 
0.80–0.89), 0.94 (95% CI 0.90–0.96), and 0.93 (95% CI 0.89–0.96), respectively. Emergent sample characteristics and AI 
techniques showed evidence of significant covariates influencing the heterogeneity of AI predictive models for ED 
disposition.

Conclusions The meta-analysis indicates promising performance of AI in predicting ED disposition, with certain 
potential for improvement, especially in sensitivity. Future research could explore advanced AI techniques such as 
ensemble learning and cross-validation with hyper-parameter tuning to enhance predictive model efficacy.
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Background
The emergency department (ED) of most hospital facili-
ties serve as the frontline of medical care, its importance 
remains undeniable. Despite its crucial role, predict-
ing the demand for emergency services is challenging, 
as it is both random and unpredictable. Compounded 
by finite medical staffing and resources, sudden influxes 
of patients can overwhelm the ED, making it difficult to 
meet medical needs promptly. This scenario often leads 
to ED crowding, where the demand for emergency ser-
vices exceeds the ED’s capacity to provide timely care 
[1]. ED over-crowding has a significant negative impact 
on overall healthcare quality, such as a negative patient 
experience [2], reduced care quality [3], and unpleasant 
staff experiences [4]. Despite the adoption of various ED 
crowding intervention techniques, including technology-
based, physical-based, or flow modification methods [5], 
ED crowding remains a considerable challenge for most 
EDs worldwide.

The use of artificial intelligence (AI) has been applied 
across various fields. Advancements promoted by AI 
have been especially felt in healthcare, for predictive 
purposes, to yield promising results. One such applica-
tion is the utilization of machine learning in predicting 
ED dispositions [6–10], which has shown significant 
achievements. The logical next step is to systematically 
and objectively consolidate those study findings in order 
to provide reference for both medical practice and aca-
demia alike. However, existing reviews on the applica-
tion of machine learning in predicting ED dispositions 
maintain certain shortcomings. For instance, most stud-
ies only analyze the performance of prediction models 
through systematic review, lacking more objective quan-
titative analysis through meta-analysis to consolidate the 
stated performance of those models. Additionally, there 
is a lack of comprehensive analysis regarding different ED 
dispositions (e.g., admission, critical care, and mortality). 
Dispositions in this study are limited to the outcomes of 
patients’ visits to the ED, specifically focusing on hospi-
tal admission, critical care, and mortality. Diagnoses or 
presenting conditions (e.g., sepsis) are not included in the 
scope of this analysis.

Therefore, this study aims to systematically evaluate 
the diagnostic performance of AI models in predicting 
key ED dispositions—hospital admission, critical care, 
and mortality—through a comprehensive meta-analysis. 

Specifically, the study seeks to: (1) Quantify the overall 
diagnostic accuracy of AI models in predicting ED dis-
positions, enabling a clearer understanding of their gen-
eral capabilities, (2) Identify and analyze covariates (e.g., 
data characteristics, model types, and study settings) that 
contribute to heterogeneity in AI performance across 
studies, and (3) Provide actionable insights and practical 
recommendations for stakeholders—including clinicians, 
researchers, and administrators—on how AI applica-
tions can be better utilized to improve ED workflows 
and decision-making processes. The research questions 
of this study include: (1) What is the performance of AI 
applications in predicting admission, critical care, and 
mortality?; and, (2) What covariates can account for the 
heterogeneity between studies? Given the varied applica-
tion settings of each predictive model, this meta-analysis 
is intended to present an overall view of AI applications 
rather than offering tailored recommendations for indi-
vidual clinical situations. By synthesizing results from 
diverse contexts, this meta-analysis aims to highlight 
general trends, identify strengths and limitations, and 
outline key areas for future research. While this study 
offers insights into the overall status of AI applications in 
predicting ED dispositions, specific applications in par-
ticular settings would still require further development to 
meet unique contextual needs.

The primary contributions of this study are as follows: 
(1) Providing an objective, quantitative evaluation of AI 
performance in predicting ED dispositions, helping read-
ers understand the general capabilities, advantages, and 
limitations of current AI applications in this context. (2) 
Identifying covariates from different data and technical 
perspectives that may influence AI performance to offer 
strategies to enhance the performance of AI predictive 
models. (3) Compiling and synthesizing existing knowl-
edge on AI predictions in ED dispositions, creating a 
practical resource to guide clinicians, administrators, 
and researchers considering AI adoption to improve ED 
workflows.

Related works
To provide a comprehensive evaluation of the applica-
tion of AI in predicting ED dispositions, this study adopts 
both a macro and a micro perspective. The macro per-
spective focuses on synthesizing findings from existing 
review studies, which offer a high-level understanding 

Trial registration This systematic review was not registered with PROSPERO or any other similar registry because the 
review was completed prior to the opportunity for registration, and PROSPERO currently does not accept registrations 
for reviews that are already completed. We are committed to transparency and have adhered to best practices in 
systematic review methodology throughout this study.
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of trends, methodologies, and limitations in the field. 
Complementing this, the micro perspective examines 
original studies to provide a granular view of AI model 
performance, including key metrics such as sensitivity, 
specificity, and area under the receiver operating charac-
terisitc curve. By integrating both perspectives, this study 
aims to bridge the gap between broad trends and specific 
evidence, offering a holistic understanding of AI’s role in 
predicting ED dispositions.

Macro perspective - Review studies
Previous literature has systematically reviewed and/or 
meta-analyzed the dispositions of ED patients, thereby 
contributing to a better understanding of the topic. 
As such, these studies also indicate areas for further 
research and improvement. For example, Shung et al. 
[11] conducted a systematic review analyzing machine 
learning’s use in predicting outcomes of acute gastro-
intestinal-bleeding patients, finding an area under the 
curve of approximately 0.84 for mortality, interventions, 
or re-bleeding prediction. However, the study lacked 
meta-analysis, limiting comprehensive evaluation, espe-
cially regarding ED disposition. Guo et al. [12] reviewed 
machine-learning applications in predicting heart fail-
ure diagnoses, readmissions, and mortality, affirming its 
effectiveness. Yet, the review summarized results without 
comprehensive statistical analyses, particularly regarding 
heart failure patients.

Kareemi et al. [13] reviewed machine-learning’s diag-
nostic and prognostic applications in ED patients, show-
ing superior performance but lacking meta-analyses for 
a more objective assessment. Naemi et al. [14] reviewed 
studies predicting in-hospital mortality among ED 
patients using vital signs and noting reporting short-
comings. Despite proposing future directions, it lacked 
meta-analysis to objectively quantify predictive capabili-
ties. Buttia et al. [15] focused on machine-learning pre-
dictions of COVID-19 outcomes, highlighting limitations 
in model generalizability. But, as noted, it didn’t deeply 
assess machine-learning performance.

Chen et al. [16] reviewed studies predicting ICU 
transfers among ED patients, demonstrating promis-
ing performance but lacking both a broader perspective 
and meta-analytic techniques. Issaiy et al. [17] reviewed 
machine-learning predictions for acute appendicitis, 
emphasizing high accuracy but lacking meta-analysis 
for comprehensive assessment. Larburu et al. [18] sys-
tematically reviewed studies predicting ED patient hos-
pitalizations, noting logistic regression’s common usage 
but lacking meta-analytical synthesis. Olender et al. [19] 
reviewed studies predicting mortality among older adults 
using machine learning, conducting meta-analyses to 
quantify predictive abilities. While providing valuable 
insights into mortality prediction, the review’s focus on 

mortality and lack of specificity regarding in-hospital 
mortality limits its comprehensive assessment capabil-
ity. Zhang et al. [20] systematically reviewed and meta-
analyzed studies predicting sepsis patients’ mortality 
using machine learning, demonstrating superior predic-
tive performance compared to existing scoring systems. 
Despite its comprehensive analysis, the review’s limita-
tion lies in its focus solely on the combination of sepsis 
and mortality prediction.

Based on the existing review literature, there are nota-
ble areas for improvement in synthesizing studies that 
apply machine learning to predict ED dispositions. To 
begin with, there is a lack of comprehensive review stud-
ies on ED dispositions. Among the ten reviewed studies, 
only a few focused on specific aspects such as admis-
sion, mortality, or critical care, rather than providing a 
holistic view. Secondly, the meta-analytical approach is 
under-utilized, with only a minority of the reviewed stud-
ies employing them. Meta-analysis has the potential to 
provide a more objective evaluation of machine-learning 
predictive models, benefiting both practitioners and aca-
demics alike. Detailed information on existing reviews is 
shown in Table 1.

Micro perspective - Original studies
From a micro perspective, in studies predicting admis-
sion disposition, most utilized private datasets, while 
only a few studies [21–24] developed prediction models 
using public datasets, such as the National Hospital and 
Ambulatory Medical Care Survey (NHAMCS) ED data 
and the Medical Information Mart for Intensive Care IV 
(MIMIC-IV) ED database. Most studies relied on struc-
tured features, with some [25–29] combining structured 
and unstructured features (e.g., free text), while oth-
ers [30–32] used only unstructured features. Regarding 
model validation, the majority employed internal vali-
dation, with only a small number of studies [33] using 
external validation. Studies that applied cross-validation 
(e.g., K-fold cross-validation) outnumbered those that 
did not. Additionally, studies using traditional machine 
learning methods for ED disposition prediction slightly 
outnumbered those employing deep learning techniques 
[21–24, 26, 30–33]. A large portion of studies [21, 28, 29, 
34–48] adopted ensemble methods for building predic-
tive models.

In studies predicting critical care disposition, research 
utilizing public datasets [9, 21, 23, 24] remained limited, 
with NHAMCS and MIMIC-IV being the most com-
monly used public datasets. These studies predominantly 
relied on structured features, with only a few [49–57] 
combining structured and unstructured features, or 
solely using unstructured features [58]. Similarly, external 
validation was infrequently employed [51, 52, 59], with 
most studies relying on internal validation. The number 
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of studies applying cross-validation was greater than the 
number of studies that did not. Most predictive models 
were built using traditional machine learning methods, 
while the use of ensemble methods in this context was 
less common [54, 57, 60].

For studies predicting mortality, research utilizing 
public datasets [6, 61] was significantly less prevalent 
compared to those using private datasets. These studies 
primarily relied on structured features, with fewer stud-
ies incorporating unstructured features, including free 
text and imaging data [52, 58, 62, 63]. Model construc-
tion predominantly relied on internal validation, with 

fewer studies adopting external validation [52]. Studies 
employing cross-validation still outnumbered those that 
did not. Traditional machine learning approaches were 
more commonly used than deep learning methods [52, 
58, 61, 62, 64–67]. However, for mortality prediction, 
studies utilizing ensemble methods outnumbered those 
that did not.

From the above analysis, it is evident that studies pre-
dicting admission, critical care, and mortality disposi-
tions differ significantly in terms of sample sources, 
feature structuredness, and algorithm choices, leading 
to varied performance outcomes. Therefore, conducting 

Table 1 Emergency department disposition-related review studies
Source ED disposition Database Analytic 

strategy
Articles 
included

Specific disease/condition Major findings

Shung 
et al. 
[11]

Admission and 
mortality

Embase, Medline, 
Cochrane, Central, 
Web of Science, 
WHO COVID-19 
Global Literature 
on Coronavirus 
Disease, and Google 
Scholar

Systematic 
review

14 Gastrointestinal
bleeding

The median AUC for mortality was 
0.84, with AI yielding higher AUCs. 
Machine learning demonstrated 
superior performance compared 
to clinical risk scores for mortality 
in cases of upper gastrointestinal 
bleeding.

Guo et 
al. [12]

Mortality PubmMed Systematic 
review

335 Heart failure Machine learning helps identify heart 
failure patients and assess their risk for 
readmission and mortality accurately.

Kareemi 
et al. 
[13]

Admission and 
mortality

Medline, Embase,
Central, and CINAHL

Systematic 
review

23 No Machine learning might surpass 
standard care in predicting outcomes 
for emergency department patients 
in diverse clinical scenarios.

Naemi 
et al. 
[14]

Mortality PubMed, Scopus, 
and Embase

Systematic 
review

15 No Eight recommendations for future 
research to enhance the practical 
implementation of machine learning 
in various domains.

Buttia et 
al. [15]

ICU admission, 
intubation, 
high-flow 
nasal therapy, 
extracorpo-
real membrane 
oxygenation, 
and mortality

Embase, Medline, 
Cochrane Central, 
Web of Science, 
WHO COVID-19 
Global Literature 
on Coronavirus 
Disease, and Google 
Scholar

Systematic 
review

314 COVID-19 Several clinical prognostic models for 
COVID-19, described in the literature, 
suffer from limited generalizability 
and applicability due to unresolved 
statistical and methodological 
concerns.

Chen et 
al. [16]

ICU admission PubMed, Embase, 
Cochrane Library, 
and
Web of Science

Systematic 
review

10 No Machine learning excels in identifying 
and predicting critically ill patients in 
emergency department triage.

Issaiy et 
al. [17]

ICU admission PubMed, Embase, 
Scopus, and Web of 
Science

Systematic 
review

29 Acute appendicitis The artificial neural network exhibited 
high performance across the majority 
of cases.

Larburu 
et al. 
[18]

Admission Scopus, PubMed, 
and Google Scholar

Systematic 
review

14 No Artificial intelligence models improve 
emergency department care and 
ease healthcare system burdens.

Olender 
et al. 
[19]

Mortality PubMed, Embase, 
Web of Science, Sco-
pus, and Proquest

System-
atic review and 
meta-analysis

37 Older adults
(+ 65)

Machine learning models demon-
strate strong discriminatory power in 
predicting mortality.

Zhang 
et al. 
[20]

Mortality PubMed, Embase, 
Cochrane Library, 
and Web of Science

System-
atic review and 
meta-analysis

50 Sepsis Machine learning methods exhibit 
notably high accuracy in predicting 
mortality risk among sepsis patients.

Note: AI = Artificial Intelligence and AUC = Area Under Curve
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a meta-analysis to summarize the overall performance 
of these predictive models is essential. Furthermore, the 
differences in sample sources and methodologies may 
contribute to between-study heterogeneity, making it 
equally important to identify potential factors causing 
this heterogeneity.

Methods
This study adheres to the reporting guidelines out-
lined in the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses [68, 69] (see Additional file 
1 and Additional file 2). Additionally, the research pro-
tocol for this study has the approval of E-Da Hospital 
(EMRP-109-158).

Search strategy and selection process
This study utilized a combination of keywords to search 
across seven electronic databases, including Scopus, 
SpringerLink, ScienceDirect, PubMed, Wiley, Sage, and 
Google Scholar, until December 31, 2023. The primary 
focus was on three types of ED dispositions: Admission, 
critical care, or mortality. ‘Admission’ refers to when 
patients seek treatment at the ED and then transfer to a 
general ward: ‘critical care’ involves patients with criti-
cal conditions requiring ICU transfer with or without the 
use of intubation or mechanical ventilation; and, ‘mortal-
ity’ refers to patients who expire before leaving the ED. 
Due to potentially diverse keywords for expressing these 
three ED dispositions, the study employed the keyword 
combination ‘emergency department’ AND (‘machine 
learning’ OR ‘deep learning’ OR ‘artificial intelligence’), 
followed by manual filtering by the researchers.

The inclusion criteria consisted of (1) studies focus-
ing on ED dispositions, (2) studies reported in English, 
and (3) studies utilizing machine learning or deep learn-
ing methods. Exclusion criteria included (1) studies not 
employing machine learning or deep learning, (2) stud-
ies lacking sufficient information on outcome measures, 
and (3) studies not related to the prediction of ED dispo-
sitions. Following these criteria, 12,214 potential articles 
were identified. After excluding 156 duplicate records 
and the screening of titles and abstracts, 241 full-text 
articles remained. These were independently reviewed by 
two researchers, resulting in the exclusion of 153 articles 
not meeting the inclusion criteria. Ultimately, 88 arti-
cles [6–10, 21–67, 70–105]were selected for subsequent 
meta-analysis. The literature screening process is illus-
trated in Fig.  1. The studies included in this review are 
listed in Additional file 3 and Additional file 4.

Data extraction
For the included articles, this study extracted the fol-
lowing information: author(s), publication year, sample 
size, type of ED disposition (admission, critical care, or 

mortality), data source (private or public dataset), data 
structure for features (structured, unstructured, or com-
bined), type of unstructured feature (free text or image), 
age group of samples (adult, mixed, youth, elder, or 
unclear), type of AI techniques adopted (machine learn-
ing or deep learning), whether cross-validation was used, 
and whether ensemble learning was adopted. Addition-
ally, this study captured the numbers of true/false posi-
tives and true/false negatives. If not directly provided, 
this study performed conversions based on existing data 
located in the articles. As the same article may develop 
multiple ED disposition models simultaneously, this 
study treated them as distinct ED disposition models for 
purposes of inclusion.

Methodological analysis
This study assessed the risk of bias and applicability of 
the evidence based on the Prediction model risk of bias 
assessment tool (PROBAST) [106, 107]. It primarily 
focuses on four domains: participants, predictors, out-
comes, and analysis.

Statistical analysis
This study followed recommendations from prior diag-
nostic test accuracy literature [108] to calculate the fol-
lowing measures for test accuracy: sensitivity, specificity, 
area under the receiver operating characteristic curve 
(AUROC), diagnostic odds ratio (DOR), positive likeli-
hood ratio (+ LR), and negative likelihood ratio (-LR). 
Additionally, forest plots were utilized to depict the vari-
ability among the included literature, along with the hier-
archical summary receiver operating characteristic curve 
(HSROC) with 95% confidence intervals (CI) and 95% 
prediction intervals. Further, to identify potential factors 
influencing heterogeneity, meta-regression analysis was 
conducted, incorporating variables such as type of ED 
disposition, data source, type of feature, type of unstruc-
tured feature, type of sample, type of AI techniques 
employed, whether cross-validation was undertaken, 
and whether ensemble learning was adopted. All analy-
ses were conducted using R Statistical Software v4.3.2 
[109] with the lime4 v1.1-35.1 [110] and the mada 0.5.11 
[111] package. The MetaDTA was utilized to create the 
HSROC [112, 113].

Results
General study characteristics
As illustrated in Table 2, among the 88 included articles, 
there were a total of 117 models present (see Supplemen-
tary file C and D), with 39, 45, and 33 models predict-
ing admission, critical care, and mortality, respectively. 
The majority of models sourced their data from private 
sources (88.89%). Features used to construct predic-
tive models for ED dispositions were predominantly 
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structured data (78.63%), while among models employing 
unstructured features, approximately 68% and 32% uti-
lized free text and image data, respectively. Notably, free 
text data were processed using natural language process-
ing (NLP) techniques to extract meaningful features for 
model development. Most models (94.02%) only adopted 
internal validation (the same dataset) instead of external 
validation (a completely independent dataset) to develop 
predictive models. Most models were based on samples 
of adult (70.94%), and the majority employed machine 
learning techniques (71.79%) rather than deep-learning 
techniques. Approximately 63% of models utilized cross 

validation during the training process, while about 38% 
employed ensemble learning.

This study further categorizes machine learning and 
deep learning approaches. From Table  3, it is evident 
that Random forest (RF) (19.66%) and eXtreme gradi-
ent boosting (XGB) (18.80%) are the most commonly 
used algorithms, followed by Gradient boosting machine 
(GBM) (11.97%) and LightGBM (5.13%). In the realm of 
deep learning, the Deep neural network (DNN) (18.80%) 
has a higher usage rate than the Convolutional neural 
network (CNN) (6.84%) and Recurrent neural network 
(RNN) (2.56%).

Fig. 1 Article selection process
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Quality assessment
In terms of risk of bias, among the 87 included articles, 
approximately 70.11% were classified as having a high 
risk of bias regarding the predictors domain. For the 
other three domains—participants, outcomes, and analy-
sis—98.85%, 100%, and 97.70% of articles, respectively, 
were assessed as having a low risk of bias. Overall, 96.55% 
of articles were assessed as having a low risk of bias, while 
3.45% were classified as high risk.

Regarding the risk of applicability, nearly all arti-
cles were assessed as having a low risk across the three 
domains. Specifically, all articles demonstrated low 
risk concerning participant applicability, while 98.85% 
showed low risk for predictors and outcomes. Overall, 
100% of the articles were assessed as having a low risk 
of applicability. This assessment of risk of bias and appli-
cability based on the PROBAST tool is summarized in 
Fig. 2.

Diagnostic accuracy
Among the three major types of ED disposition predic-
tion models, those forecasting mortality achieved the 
highest area under the receiver operating characteristic 
curve (AUROC), followed by models predicting criti-
cal care, with admission prediction models exhibiting 
the lowest performance (see Table  4). The reported sta-
tistics for sensitivity, specificity, and AUROC represent 
pooled summary measures derived from the component 
studies included in this meta-analysis. The pooled sum-
mary AUROC for predicting admission, critical care, 
and mortality were 0.866 (95% CI 0.836–0.929), 0.928 
(95% CI 0.893–0.951), and 0.932 (95% CI 0.894–0.956), 
respectively. In terms of sensitivity, admission predic-
tion models showed the lowest sensitivity at 0.81 (95% 
CI 0.74–0.86), followed by critical care models at 0.86 
(95% CI 0.79–0.91), and mortality models at 0.85 (95% 
CI 0.80–0.89). Regarding specificity, admission models 
exhibited the lowest specificity at 0.87 (95% CI 0.81–
0.91), followed by critical care models at 0.89 (95% CI 
0.84–0.93), and mortality models at 0.94 (95% CI 0.90–
0.96). These statistics are primarily based on models uti-
lizing internal validation, as only 5.98% of the included 
models performed external validation. In terms of sensi-
tivity, critical care prediction models performed the best, 
closely followed by mortality prediction models, while 
admission prediction models showed the lowest sensi-
tivity. Regarding specificity, mortality prediction models 
demonstrated the highest specificity, followed by critical 

Table 2 Characteristics of included studies
Characteristic Value Frequency %
Disposition Admission 39 33.33

Critical care 45 38.46
Mortality 33 28.21

Data source Private 104 88.89
Public 13 11.11

Data structure for feature Structured 92 78.63
Unstructured 21 17.95
Combined 4 3.42

Type of unstructured feature Free text 17 68.00
Image 8 32.00

Type of validation External 7 5.98%
Internal 110 94.02%

Age group of sample Adult 83 70.94
Mixed 13 11.11
Youth 10 8.55
Elder 6 5.13
Unclear 5 4.27

Type of artificial intelligence 
techniques adopted

Deep learning 33 28.21
Machine 
learning

84 71.79

Cross validation No 43 36.75%
Yes 74 63.25%

Ensemble No 45 38.46
Yes 72 61.54

Table 3 Type of artificial intelligence techniques adopted
Technique Algorithm Frequency %
Machine learning Random forest 23 19.66

eXtreme Gradient Boosting 22 18.80
Gradient boosting machine 14 11.97
LightGBM 6 5.13
Logistic regression 4 3.42
Support vector machine 4 3.42
Stacking (or other ensembles) 3 2.56
CatBoost 2 1.71
Decision tree 2 1.71
Neural network 1 0.85
INC2.5 1 0.85
LASSO 1 0.85
AutoScore 1 0.85

Deep learning Deep neural network 22 18.80
Convolutional neural network 11 6.84
Recurrent neural network 3 2.56

Table 4 Performance of predicting ED dispositions by artificial 
intelligence
Metric Admission Critical care Mortality
AUROC 0.866 

(0.836–0.929)
0.928 
(0.893–0.951)

0.932 
(0.894–0.956)

Sensitivity 0.81 (0.74–0.86) 0.86 (0.79–0.91) 0.85 (0.80–0.89)
Specificity 0.87 (0.81–0.91) 0.89 (0.84–0.93) 0.94 (0.90–0.96)
DOR 17.3 (12.40–23.50) 44.5 

(24.70–74.20)
74.6 
(37.70–133.00)

+LR 4.76 (3.73–6.04) 7.73 (5.06–11.50) 12.8 (7.77–20.10)
-LR 0.277 (0.23–0.33) 0.18 (0.12–0.25) 0.177 (0.13–0.23)
Note: AUROC = Area Under Receiver Operating Characteristic curve, 
CI = Confidence Interval, DOR = Diagnostic Odds Ratio, ED = Emergency 
Department, +LR = Positive Likelihood Ratio, and –LR = Negative Likelihood 
Ratio
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care prediction models, with admission prediction mod-
els exhibiting the lowest specificity.

Analysis of the DOR revealed that models predicting 
mortality exhibited the highest discriminatory perfor-
mance [114], while models predicting admission had the 
lowest DOR. Considering that the + LR, models predict-
ing mortality were better at identifying true mortality 
cases due to their highest + LR, whereas models predict-
ing critical care had a lower -LR, indicating their better 
ability to identify non-critical care patients [115]. Forest 
plots of sensitivity and specificity for models predicting 
admission, critical care, and mortality are illustrated in 
Figs. 3, 4 and 5.

Plausible covariates to explain between-study 
heterogeneity
Overall, machine learning models for predicting ED dis-
position demonstrate a sensitivity of approximately 0.84 
(95% CI 0.80–0.87) and a specificity of around 0.90 (95% 
CI 0.87–0.92) (see Table 5), indicating their higher ability 
to correctly identify negative cases. When differentiating 

ED disposition into the categories of admission, critical 
care, and mortality, using admission as the reference cat-
egory for comparison (as depicted in Table  5), the sen-
sitivity of admission prediction models (0.81, 95% CI 
0.74–0.86) is slightly lower than that of critical care and 
mortality prediction models (0.86, 95% CI 0.79–0.91 and 
0.85, 95% CI 0.80–0.89, respectively), although these dif-
ferences are not statistically significant. Similarly, the 
specificity of admission prediction models (0.87, 95% CI 
0.81–0.91) is also slightly lower than that of critical care 
and mortality prediction models (0.89, 95% CI 0.84–0.93 
and 0.94, 95% CI 0.90–0.96, respectively), with a statis-
tically significant difference observed between admis-
sion prediction models and mortality prediction models’ 
specificity (0.87 vs. 0.94, p = 0.027).

Plausible covariates for admission predictive models
This study compares the predictive abilities of differ-
ent ED dispositions (admission, critical care, and mor-
tality) to assess whether or not they are influenced by 

Fig. 2 Quality assessment by PROBAST
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variables such as data characteristics, sample properties, 
or machine-learning methods.

Firstly, regarding the prediction of admission models, 
Table 6 shows that models using public datasets exhibit 
higher sensitivity (0.94) and specificity (0.90) when com-
pared to those using private datasets (sensitivity = 0.80, 
specificity = 0.86), although the differences are not sta-
tistically significant. In terms of data structuring, both 
sensitivity (0.84) and specificity (0.88) of structured data 
models surpass those of unstructured data models (sensi-
tivity = 0.72, specificity = 0.80) and those models combin-
ing unstructured and structured data (sensitivity = 0.74, 
specificity = 0.82). However, the differences among the 
three types of data are not statistically significant. Nota-
bly, among unstructured data, while some studies uti-
lize image and free-text data, only eight models use free 
text as a feature for predicting admission, with no mod-
els using image data, thus this variable was not included 
for purposes of analysis. Among the eight models using 
free text data, the pooled sensitivity was 0.73 (95% CI 

0.65–0.80), and the pooled specificity was 0.81 (95% CI 
0.73–0.88), indicating moderate diagnostic accuracy.

Regarding sample properties, models using mixed 
samples (all age groups) demonstrate lower sensitivity 
compared to models using adult, youth, and elder sam-
ples, yet the specificity of models using mixed samples is 
higher than those using the other three types of samples. 
Sensitivity among the four different samples does not 
reach statistical significance, but the specificity of models 
using mixed samples (0.92 vs. 0.75, p = 0.027) is signifi-
cantly higher than that of models using elderly samples.

In terms of machine-learning methods, models utiliz-
ing deep learning exhibit higher sensitivity (0.86) when 
compared to those generated using traditional machine-
learning methods (sensitivity = 0.80), but the difference 
is not statistically significant (p = 0.541). The specificity 
of models built using traditional machine learning (0.87) 
is slightly higher than that of models generated using 
deep learning (0.86), also not statistically significant 
(p = 0.868). To further compare the performance of 

Fig. 3 Sensitivity and specificity of models predicting admission (n = 39)
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different machine-learning algorithms, models utilizing 
CNN show both higher sensitivity and specificity than 
those using RF, XGB, DNN, and RNN. Among these, the 
differences in sensitivity compared with XGB (p = 0.022) 
and DNN (p = 0.002) are statistically significant. Models 
built using ensemble learning demonstrate lower sen-
sitivity (0.78) and specificity (0.86) when compared to 
models not using ensemble learning (sensitivity = 0.86, 
specificity = 0.88), but the differences are not statistically 
significant (p = 0.301 and 0.713). Additionally, models not 
using cross-validation exhibit a lower level of sensitivity 
(0.74) and a higher level of specificity (0.88) when com-
pared to models using cross-validation (sensitivity = 0.84, 
specificity = 0.86), yet both sensitivity and specificity do 
not reach statistical significance (p = 0.170 and 0.541).

Plausible covariates for critical care predictive models
In predicting critical care models, the sensitivity (0.87) 
and specificity (0.90) of models using private datasets are 
higher than those using public datasets (sensitivity = 0.76 

and specificity = 0.73), but the differences do not reach 
statistical significance (p = 0.316 and 0.103). As there is 
only one model in the critical care prediction category 
that solely uses unstructured data, comparisons are made 
only between models using structured and combined 
data types. From Table  7, it is evident that the sensitiv-
ity (0.86) and specificity (0.90) of models using struc-
tured data are higher than or equal to those of models 
using combined data (sensitivity = 0.86, specificity = 0.87), 
but none of the differences are statistically significant 
(p = 0.865 and 0.626). In these prediction models, some 
models combine image and free-text data. This study fur-
ther compares the impact of these two formats on pre-
diction models, revealing that models combining image 
have higher sensitivity (0.87) compared to those combin-
ing free text (0.83), while models combining image have 
lower sensitivity (0.86) as compared to those combining 
free text (0.87), but neither difference reaches statistical 
significance (p = 0.530 and 0.861).

Fig. 4 Sensitivity and specificity of models predicting critical care (n = 45)
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Regarding sample properties, since there is only one 
data point for unclear and the elderly in the models 
predicting critical care, they were not included in the 
analysis. Only adult, youth, and mixed samples were 
compared. From Table 7, it is observed that the sensitiv-
ity (0.90) of models using mixed samples is higher than 
those using adult (0.86) and youth (0.85), but the differ-
ences are not statistically significant (p = 0.664 and 0.762). 

Furthermore, the specificity (0.84) of models using 
mixed samples is lower than that of models using adult 
(0.90) but higher than that of models using youth (0.72), 
yet none of the differences are statistically significant 
(p = 0.616 and 0.204).

Regarding machine-learning methods, the sensitiv-
ity (0.88) and specificity (0.91) of models using tradi-
tional machine learning are higher than those using deep 

Table 5 Summary estimates for sensitivity and specificity
Covariate Metric n Estimate 95% C.I. p value
Overall Sens 117 0.84 0.80 0.87
Overall Specs 117 0.90 0.87 0.92
Admission Sens 39 0.81 0.74 0.86 [Reference]
Admission Specs 39 0.87 0.81 0.91 [Reference]
Critical care Sens 45 0.86 0.79 0.91 0.289
Critical care Specs 45 0.89 0.84 0.93 0.503
Mortality Sens 33 0.85 0.80 0.89 0.193
Mortality Specs 33 0.94 0.90 0.96 0.027
Note: C.I. = Confidence Interval, Sens = Sensitivity, and Specs = Specificity

Fig. 5 Sensitivity and specificity of models predicting mortality (n = 33)
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learning (sensitivity = 0.78 and specificity = 0.83), but the 
differences are not statistically significant (p = 0.205 and 
0.171). When comparing specific machine-learning algo-
rithms, CNN algorithm achieves both a sensitivity and 
specificity of 0.84. Compared to RF models, which have 
a higher sensitivity (0.91) and specificity (0.96), CNN 
models perform slightly lower on both metrics, though 
these differences are not statistically significant. Similarly, 
CNN models outperform LightGBM and LR in sensitiv-
ity (LightGBM: 0.69, LR: 0.78) but are on par with LR in 
specificity (0.84) and below LightGBM (0.98), without 

statistically significant differences. When compared to 
DNN, CNN models achieve higher sensitivity (DNN: 
0.75) but perform similarly in specificity (DNN: 0.83), 
with no statistically significant differences. Overall, CNN 
models show a balanced performance in sensitivity and 
specificity compared to other algorithms. Concerning the 
use of ensemble learning, the sensitivity (0.91) and speci-
ficity (0.91) of models using ensemble learning are higher 
than those not using it (sensitivity = 0.69 and specific-
ity = 0.81), but only sensitivity reaches statistical signifi-
cance (p = 0.032). Lastly, the sensitivity (0.86) of models 

Table 6 Summary estimates for sensitivity and specificity of admission studies
Characteristic Covariate Metric n Estimate 95% C.I. p value
Data Public dataset Sens 6 0.94 0.57 0.99 0.284

Public dataset Specs 6 0.90 0.70 0.97 0.581
Private dataset Sens 33 0.79 0.73 0.84 [Reference]
Private dataset Specs 33 0.86 0.79 0.91 [Reference]
Unstructured Sens 3 0.72 0.70 0.74 0.387
Unstructured Specs 3 0.80 0.74 0.86 0.521
Combined Sens 5 0.74 0.61 0.84 0.362
Combined Specs 5 0.82 0.68 0.91 0.510
Structured Sens 31 0.83 0.75 0.89 [Reference]
Structured Specs 31 0.88 0.81 0.93 [Reference]

Sample Adult Sens 21 0.81 0.72 0.87 0.308
Adult Specs 21 0.87 0.76 0.93 0.448
Youth Sens 6 0.82 0.69 0.90 0.218
Youth Specs 6 0.80 0.67 0.88 0.064
Elder Sens 3 0.76 0.74 0.79 0.541
Elder Specs 3 0.75 0.70 0.79 0.027
Mixed Sens 5 0.70 0.55 0.82 [Reference]
Mixed Specs 5 0.92 0.84 0.96 [Reference]

Artificial intelligence technique Machine learning Sens 28 0.80 0.72 0.86 0.535
Machine learning Specs 28 0.87 0.80 0.92 0.770
Deep learning Sens 11 0.85 0.71 0.93 [Reference]
Deep learning Specs 11 0.85 0.73 0.92 [Reference]
Random forest Sens 10 0.82 0.61 0.93 0.147
Random forest Specs 10 0.92 0.77 0.98 0.720
eXtreme Gradient Boosting Sens 8 0.77 0.69 0.84 0.022
eXtreme Gradient Boosting Specs 8 0.86 0.77 0.91 0.788
Deep neural network Sens 7 0.70 0.65 0.75 0.002
Deep neural network Specs 7 0.78 0.74 0.82 0.360
Recurrent neural network Sens 2 0.97 0.31 1.00 0.604
Recurrent neural network Specs 2 0.93 0.58 0.99 0.899
Convolutional neural network Sens 2 0.99 0.15 1.00 [Reference]
Convolutional neural network Specs 2 0.99 0.02 1.00 [Reference]
Ensemble Sens 26 0.78 0.71 0.84 0.301
Ensemble Specs 26 0.86 0.78 0.91 0.713
No-ensemble Sens 13 0.86 0.73 0.93 [Reference]
No-ensemble Specs 13 0.88 0.76 0.95 [Reference]
Cross validation Sens 26 0.84 0.76 0.90 0.170
Cross validation Specs 26 0.86 0.76 0.92 0.541
No cross validation Sens 13 0.74 0.65 0.82 [Reference]
No cross validation Specs 13 0.88 0.82 0.93 [Reference]

Note: C.I. = Confidence Interval, Sens = Sensitivity, and Specs = Specificity
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using cross-validation is slightly lower than those not 
using it (0.87), and the specificity (0.87) of models using 
cross-validation is also lower compared to models not 
using it (0.92). Neither difference reaches statistical sig-
nificance (p = 0.952 and 0.288, respectively).

Plausible covariates for mortality predictive models
In models predicting mortality, both sensitivity (0.90) 
and specificity (0.95) are higher for models using 

public datasets than those using private datasets (sen-
sitivity = 0.85, specificity = 0.94), but none of the differ-
ences are statistically significant (see Table 8). Regarding 
data structuring, since no models solely use unstruc-
tured data, comparisons were made only between models 
using structured and combined data. From Table 8, it is 
observed that both sensitivity (0.86) and specificity (0.95) 
of models using structured data are higher than those 
using combined data (sensitivity = 0.82, specificity = 0.85), 

Table 7 Summary estimates for sensitivity and specificity of critical care studies
Characteristic Covariate Metric n Estimate 95% C.I. p value
Data Public dataset Sens 5 0.76 0.64 0.85 0.316

Public dataset Specs 5 0.73 0.62 0.82 0.103
Private dataset Sens 40 0.87 0.79 0.92 [Reference]
Private dataset Specs 40 0.90 0.85 0.94 [Reference]
Combined Sens 12 0.86 0.77 0.92 0.865
Combined Specs 12 0.87 0.80 0.92 0.626
Structured Sens 32 0.86 0.77 0.92 [Reference]
Structured Specs 32 0.90 0.83 0.95 [Reference]
Image Sens 5 0.87 0.76 0.94 0.530
Image Specs 5 0.86 0.80 0.90 0.861
Free text Sens 8 0.83 0.67 0.92 [Reference]
Free text Specs 8 0.87 0.74 0.94 [Reference]

Sample Adult Sens 38 0.86 0.78 0.91 0.664
Adult Specs 38 0.90 0.83 0.94 0.616
Youth Sens 2 0.85 0.73 0.92 0.762
Youth Specs 2 0.72 0.51 0.86 0.204
Mixed Sens 3 0.90 0.74 0.96 [Reference]
Mixed Specs 3 0.84 0.75 0.90 [Reference]

Artificial intelligence technique Machine learning Sens 31 0.88 0.80 0.93 0.205
Machine learning Specs 31 0.91 0.84 0.95 0.171
Deep learning Sens 14 0.78 0.69 0.85 [Reference]
Deep learning Specs 14 0.83 0.78 0.87 [Reference]
Random forest Sens 9 0.91 0.77 0.97 0.465
Random forest Specs 9 0.96 0.83 0.99 0.297
eXtreme gradient boosting Sens 11 0.95 0.85 0.99 0.302
eXtreme gradient boosting Specs 11 0.84 0.71 0.92 0.965
LightGBM Sens 3 0.69 0.29 0.92 0.439
LightGBM Specs 3 0.98 0.59 1.00 0.259
Logistic regression Sens 2 0.78 0.71 0.84 0.673
Logistic regression Specs 2 0.84 0.80 0.87 0.922
Deep neural network Sens 10 0.75 0.64 0.83 0.442
Deep neural network Specs 10 0.83 0.77 0.88 0.932
Convolutional neural network Sens 3 0.84 0.63 0.94 [Reference]
Convolutional neural network Specs 3 0.84 0.74 0.90 [Reference]
Ensemble Sens 25 0.91 0.82 0.95 0.032
Ensemble Specs 25 0.91 0.82 0.96 0.339
No ensemble Sens 20 0.76 0.69 0.82 [Reference]
No ensemble Specs 20 0.86 0.81 0.90 [Reference]
Cross validation Sens 27 0.86 0.76 0.92 0.952
Cross validation Specs 27 0.87 0.79 0.92 0.288
No cross validation Sens 18 0.87 0.75 0.93 [Reference]
No cross validation Specs 18 0.92 0.83 0.96 [Reference]

Note: C.I. = Confidence Interval, Sens = Sensitivity, and Specs = Specificity
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but none of the differences are statistically significant 
(p = 0.591, 0.189). Although some models using combined 
data incorporate image, only one model utilizes free text, 
achieving a sensitivity of 0.92 (95% CI: 0.89–0.94) and a 
specificity of 0.81 (95% CI: 0.80–0.81). Therefore, a com-
parison between these two types of unstructured data 
was not conducted.

Regarding sample properties, as there are no models 
classified as ‘unclear,’ comparisons were made among 
models with samples classified as mixed, adult, youth, 
and elder. The results show that sensitivity (0.84) of 

models using mixed samples is lower than those using 
the other three types of samples (0.85 for adult, 0.99 for 
youth, and 0.88 for elder), but none of the differences 
are statistically significant. However, specificity (0.96) of 
models using mixed samples is higher than those using 
the other three types of samples (0.94 for adult, 0.89 for 
youth, and 0.90 for elder), yet none of the differences are 
statistically significant.

Regarding machine-learning methods, both sensitiv-
ity (0.86) and specificity (0.95) of models using machine 
learning are higher than those using deep learning 

Table 8 Summary estimates for sensitivity and specificity of mortality studies
Characteristic Covariate Metric n Estimate 95% C.I. p value
Data Public dataset Sens 2 0.90 0.64 0.98 0.446

Public dataset Specs 2 0.95 0.70 0.99 0.799
Private dataset Sens 31 0.85 0.80 0.88 [Reference]
Private dataset Specs 31 0.94 0.90 0.96 [Reference]
Combined Sens 4 0.82 0.66 0.91 0.591
Combined Specs 4 0.85 0.74 0.92 0.189
Structured Sens 29 0.86 0.80 0.90 [Reference]
Structured Specs 29 0.95 0.91 0.97 [Reference]

Sample Adults Sens 24 0.85 0.79 0.89 0.853
Adults Specs 24 0.94 0.89 0.97 0.759
Youths Sens 2 0.99 0.00 1.00 0.663
Youths Specs 2 0.89 0.83 0.92 0.458
Elders Sens 2 0.88 0.77 0.94 0.689
Elders Specs 2 0.90 0.77 0.96 0.540
Mixed Sens 5 0.84 0.67 0.93 [Reference]
Mixed Specs 5 0.96 0.82 0.99 [Reference]

Artificial intelligence technique Machine learning Sens 25 0.86 0.80 0.90 0.709
Machine learning Specs 25 0.95 0.90 0.97 0.442
Deep learning Sens 8 0.83 0.74 0.90 [Reference]
Deep learning Specs 8 0.91 0.84 0.96 [Reference]
Random forest Sens 4 0.91 0.56 0.99 0.516
Random forest Specs 4 1.00 0.04 1.00 0.476
eXtreme Gradient boosting Sens 3 0.73 0.61 0.82 0.562
eXtreme Gradient boosting Specs 3 0.95 0.77 0.99 0.839
LightGBM Sens 3 0.91 0.78 0.96 0.205
LightGBM Specs 3 0.92 0.75 0.98 0.748
Logistic regression Sens 2 0.80 0.73 0.86 0.938
Logistic regression Specs 2 0.95 0.68 0.99 0.866
Deep neural network Sens 5 0.86 0.76 0.92 0.418
Deep neural network Specs 5 0.89 0.83 0.93 0.436
Convolutional neural network Sens 3 0.79 0.63 0.89 [Reference]
Convolutional neural network Specs 3 0.94 0.74 0.99 [Reference]
Ensemble Sens 21 0.88 0.82 0.92 0.095
Ensemble Specs 21 0.95 0.89 0.98 0.620
No ensemble Sens 12 0.79 0.71 0.86 [Reference]
No ensemble Specs 12 0.93 0.87 0.96 [Reference]
Cross validation Sens 21 0.85 0.78 0.90 0.926
Cross validation Specs 21 0.96 0.92 0.98 0.032
No cross validation Sens 12 0.85 0.78 0.90 [Reference]
No cross validation Specs 12 0.87 0.81 0.91 [Reference]

Note: C.I. = Confidence Interval, Sens = Sensitivity, and Specs = Specificity
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(sensitivity = 0.83, specificity = 0.91), but neither differ-
ence reaches statistical significance (p = 0.709 and 0.442). 
To further compare the performance of different algo-
rithms, models using the RF and LR algorithms have both 
higher sensitivity and specificity than those using CNN, 
though these differences are not statistically significant. 
Models employing LightGBM and DNN have higher 
sensitivity but lower specificity compared to CNN, with 
none of these differences reaching statistical significance. 
Additionally, models using XGB exhibit lower sensitiv-
ity than CNN, but their specificity is higher, also without 
statistical significance. Models using ensemble methods 
have higher sensitivity (0.88) and specificity (0.95) than 
those not using ensemble methods (sensitivity = 0.79 and 
specificity = 0.93), but none of the differences reach sta-
tistical significance (p = 0.095 and 0.620).

Regarding the use of cross-validation in prediction 
models, sensitivity is the same for models with and with-
out cross-validation (0.85). However, models using cross-
validation have significantly higher specificity compared 
to those not using it (0.96 vs. 0.87, p = 0.032). The sum-
mary sensitivity and specificity performance of mortality 
prediction models are presented in Table 8.

Summarization of plausible covariates for three predictive 
models
Summarizing the performance of the three disposi-
tion prediction models (see Table 9), First off, regarding 
data sources, models utilizing public data sources per-
form better in predicting admission and mortality when 
compared to those using private data sources, but the 
opposite trend is observed for predicting critical care. 
Secondly, concerning data structuring, models using 
structured data outperform those using both structured 
and unstructured data in predicting admission, critical 

care, and mortality. In admission-prediction models, 
those solely using unstructured data exhibit the poorest 
performance. As for sample properties, no distinct pat-
tern emerges favoring any particular sample combination 
among the four different types.

In terms of machine learning methods, except for 
admission-prediction models where sensitivity is better 
with deep learning, both sensitivity and specificity in the 
other two prediction models favor machine learning. To 
further compare the performance of different machine-
learning algorithms, CNN demonstrates superior sensi-
tivity and specificity for admission prediction compared 
to other algorithms. For critical care prediction, XGB 
shows the highest sensitivity, while LightGBM excels in 
specificity. For mortality prediction, RF and LightGBM 
yield the best sensitivity, with RF also showing the high-
est specificity. However, when employing ensemble 
learning, the sensitivity and specificity of admission-pre-
diction models are both lower as compared to models not 
using ensemble learning. For critical care and mortality-
prediction models, the sensitivity and specificity of mod-
els without ensemble learning are higher than those with 
ensemble learning. Additionally, the use of cross-valida-
tion does not consistently guarantee better model per-
formance; while admission-prediction models without 
cross-validation exhibit higher sensitivity and specificity, 
the sensitivity and specificity of critical care- or mortal-
ity-prediction models vary.

Finally, this study employed HSROC to evaluate model 
performance, with the HSROC curves for admission, 
critical care, and mortality depicted in Figs.  6 and 7, 
and 8, respectively. It is evident from these figures that 
the mortality-prediction model exhibits higher preci-
sion compared to the admission and critical care pre-
diction models. This is indicated by the smaller 95% 

Table 9 Summarization of the performance of predictive models for three emergency department dispositions
Disposition Metric Characteristic

Data Sample Artificial-intelligence technique

Source Feature Type Group Approach Top algorithm Ensemble Cross validation
Admission Sens Public > Private S > B > U A = Y > E > M DL > ML CNN No ensemble > Ensemble No CV > CV

Spec Public > Private S > B > U M > A > Y > E ML > DL CNN No ensemble > Ensemble No CV > CV
Critical care Sens Private > Public S > B M > A > Y ML > DL XGB Ensemble > No ensemble CV > No CV

Spec Private > Public S > B A > M > Y ML > DL LightGBM Ensemble > No ensemble No CV > CV
Mortality Sens Public > Private S > B Y > E > A > M ML > DL RF/LightGBM Ensemble > No ensemble CV = No CV

Spec Public > Private S > B A > M > Y > E ML > DL RF Ensemble > No ensemble CV > No CV
Notes:

1. Metric: Sens = Sensitivity and Spec = Specificity

2. Source: Public = public data source and Private = private data source

3. Type of feature: S = structured data, B = structured and unstructured data, and U = unstructured data

4. Sample: A = adults, Y = youths, E = elders, and M = mixed samples

5. Approach: ML = machine learning and DL = deep learning

6. CNN = Convolutional neural network, XGB = eXtreme gradient boosting, and RF = Random forest

7. Cross-validation: CV = cross-validation
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prediction-interval region and 95% confidence region for 
the mortality-prediction model, as observed in Figs. 6, 7 
and 8.

Discussion
Based on the meta-analysis of 117 models extracted from 
87 articles included in this study, the overall sensitiv-
ity and specificity for predicting ED disposition patterns 
were determined to be 0.84 and 0.90, respectively. These 
results indicate that the utilization of machine learning in 
predicting the discharge disposition of ED patients shows 
acceptable predictive capabilities. This capability allows 
for the early acquisition of patient disposition informa-
tion, which can greatly aid in the effective allocation of 

medical personnel and resources within modern health-
care institutions.

Type of ED dispositions predicted
Upon further examination, among the 117 predictive 
models, 39 are focused on admission, 45 on critical care, 
and 33 on mortality. The meta-analysis reveals that mor-
tality-prediction models exhibit the highest AUROC, 
followed by critical-care prediction models, with admis-
sion prediction models demonstrating the lowest per-
formance. Sensitivity analysis indicates that critical 
care-prediction models have the highest sensitivity, fol-
lowed by mortality-prediction models, while admission-
prediction models have the lowest. Similarly, regarding 

Fig. 6 Summary receiver operating-characteristic curve for models predicting admission
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specificity, mortality-prediction models show the high-
est, followed by critical care-prediction models, with 
admission-prediction models again displaying the lowest 
specificity.

Notably, when admission prediction serves as the ref-
erence category, sensitivity and specificity among these 
three types of prediction models generally do not exhibit 
statistically significant differences, except for the specific-
ity of mortality-prediction models, which is significantly 
higher than that of admission-prediction models. Addi-
tionally, the specificity of these prediction models tends 
to outweigh sensitivity, suggesting a stronger ability to 
correctly identify true negatives but potentially missing 
some true positives. Future research may necessitate an 

iterative refinement process to enhance the sensitivity of 
ED disposition models.

Clarification of research purpose and scope
While this meta-analysis provides a quantitative overview 
of AI performance in predicting ED patient dispositions, 
it is important to recognize the heterogeneity among the 
predictive models included. These models vary in terms 
of the disposition types predicted, data used, machine 
learning methods, and patient conditions, which limits 
the generalizability of our meta-analysis results to spe-
cific clinical situations. The primary goal of this meta-
analysis is to offer insights into general trends, strengths, 
and challenges in AI applications for ED disposition 

Fig. 7 Summary receiver operating-characteristic curve for models predicting critical care
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prediction, rather than to provide tailored recommen-
dations for individual contexts. Additional research and 
development tailored to the unique demands of each 
clinical setting may therefore be necessary.

Public or private data source
In terms of the data utilized, the majority of the data are 
proprietary rather than publicly available. However, the 
analysis results show that when publicly available data 
are used for predicting admission and mortality, both 
sensitivity and specificity are higher compared to predic-
tive models using private data. Conversely, when pub-
licly available data are used for predicting critical care, 
sensitivity and specificity are lower than those of private 

datasets. The meta-analysis results of this study indicate 
an improvement in the predictive ability of publicly avail-
able data for predicting admission and mortality. In the 
realm of machine learning for skin image recognition, 
Tschandl et al. [116] argue for the importance of mak-
ing skin image data publicly available, suggesting that by 
doing so would enhance skin image recognition perfor-
mance. Since the number of evidences included in this 
study from public datasets is limited (n = 13), whether 
this argument applies to non-image-based data necessi-
tates further research for validation.

Fig. 8 Summary receiver operating-characteristic curve for models predicting mortality
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Data structure of features
Based on the findings of this study, predictive models 
utilizing solely structured data consistently demonstrate 
higher sensitivity and specificity across all prediction 
categories: admission, critical care, and mortality. Nota-
bly, the lowest sensitivity and specificity are observed in 
models predicting admission solely based on structured 
features. This observation may stem from the neces-
sity of feature extraction in handling unstructured data, 
wherein differences in extraction methods could impact 
prediction performance variability, ultimately leading to 
less effective performance than models using structured 
features alone.

Although the integration of both structured and 
unstructured features theoretically offers better informa-
tive data for purposes of model development, this asser-
tion remains unconfirmed by the current meta-analysis. 
Specifically regarding unstructured data, while the use of 
image data for critical care prediction yields higher sensi-
tivity compared to free text, the opposite is observed for 
specificity. However, neither type of unstructured data 
significantly influences the predictive outcomes of ED 
disposition.

Sample type
Regarding sample selection, models utilizing adult sam-
ples consistently demonstrate higher sensitivity and 
specificity across all three ED dispositions—admission, 
critical care, and mortality— when compared to models 
using other sample types. Models employing mixed sam-
ples exhibit superior sensitivity and specificity in predict-
ing admission and critical-care dispositions compared to 
other sample types. Furthermore, models utilizing youth 
samples demonstrate higher specificity in predicting 
mortality compared to other samples. However, there is 
no discernible pattern in the performance of prediction 
models based on sample utilization, suggesting that the 
choice of sample may not substantially impact prediction 
model performance.

Machine learning vs. deep learning
Among the included models, machine learning remains 
predominant. Generally, in predicting the three ED dis-
positions, models built using machine-learning methods 
demonstrate higher sensitivity and specificity compared 
to those employing deep learning methods, except for 
admission-prediction models, where sensitivity is higher 
in deep learning-based models. This study infers that 
since the included research data primarily consist of 
structured data rather than images, the complexity may 
be lower, thus making machine-learning methods ade-
quate for handling the task. Conversely, deep-learning 
methods may not effectively leverage their image pro-
cessing capabilities in this context. Further analysis of 

different machine learning algorithms reveals that Con-
volutional neural networks perform best for predicting 
ED dispositions related to admission. For critical care 
disposition predictions, eXtreme Gradient Boosting and 
LightGBM models show superior performance, while 
for mortality predictions, Random forest and LightGBM 
models demonstrate the highest performance.

Ensemble-learning technique
Using ensemble learning is generally believed to improve 
the predictive capability of models [117]. However, 
according to the results of this study, the situation is not 
entirely straightforward. For the prediction of admission, 
models not utilizing ensemble learning performed better, 
while for predicting critical care and mortality, models 
employing ensemble learning outperformed in both sen-
sitivity and specificity. The discrepancy in performance 
may be attributed to the fact that the ensemble learn-
ing techniques employed in the study were not identical. 
This suggests that the selection of appropriate methods 
and parameter configurations is crucial when utilizing 
ensemble learning.

Cross-validation technique
Regarding the use of cross-validation, the results of this 
study show a mixed picture. For predicting admission, 
models without cross-validation demonstrated superior 
sensitivity and specificity compared to those with cross-
validation. However, for predicting critical care and mor-
tality, models utilizing cross-validation exhibited higher 
sensitivity and specificity than those without. There was 
no clear pattern indicating that adopting cross-validation 
consistently enhanced model performance across all pre-
diction categories. An inference drawn from this study is 
that among the 51 models employing cross-validation, 26 
did not undergo hyper-parameter tuning to find the opti-
mal settings, potentially leading to sub-optimal perfor-
mance improvements. Finally, our review highlights that 
most models predominantly relied on internal validation 
rather than external validation, raising concerns about 
potential overfitting.

Risk of bias assessment
Our study used PROBAST to assess the risk of bias 
across four domains: participants, predictors, outcomes, 
and analysis. Overall, the results show that most studies 
have a low risk of bias, indicating that these studies are 
well-designed with adequate sample sizes and appropri-
ate handling of missing data. This finding differs from 
previous PROBAST-based assessments [118, 119], which 
often identified a high risk of bias in most prediction 
models. This discrepancy may be due to the fact that 
PROBAST was not specifically designed for AI applica-
tions, and some signaling questions may not fully apply 
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in this context. This limitation could be addressed once 
the PROBAST + AI tool is officially released.

Future research directions
The analysis results of this study suggest that the speci-
ficity of the included models for predicting admission, 
critical care, and mortality is higher than their sensitivity. 
This implies that the models excel in correctly identifying 
non-cases of ED disposition, but may struggle to identify 
all relevant cases. While the sensitivity of these predic-
tion models exceeds 80%, there is room for improvement 
in their predictive capabilities. Recommendations for 
enhancement could be explored in the following areas.

Define standard features for predicting ED disposition at 
various stages
Throughout the ED visitation process, a wide array of 
data is generated, encompassing physiological signs, 
injury records, diagnoses, laboratory findings, radio-
graphic images, and far more. In the models analyzed in 
this meta-analysis, the utilization of data varies consider-
ably across stages, making it challenging to identify over-
arching patterns for comparison. Future research could 
explore constructing predictive models in stages based on 
the data generated during patients’ ED visits and evalu-
ate the performance of these models at each stage. Addi-
tionally, recommendations for features and timeframes 
applicable to each stage of ED visits could be proposed 
to facilitate further model development. Early prediction 
of patient disposition in the ED holds significant poten-
tial for optimizing emergency medical resource manage-
ment, service capabilities, and overall allocations.

Build a public dataset for predicting ED disposition
Once suggested features are identified, relevant data can 
be collected based on these features to construct predic-
tive models. Another logical step is to establish a pub-
lic dataset by leveraging collaborative efforts from EDs 
worldwide. This shared dataset aims to support hospitals 
in developing their own models for predicting ED patient 
disposition. Furthermore, with access to these shared 
datasets, different models become comparative, poten-
tially enhancing predictive performance. The results of 
this meta-analysis also suggest that models using public 
datasets outperform those using private datasets in pre-
dicting admission and mortality.

Structure the nature of features for predicting ED disposition
In theory, unstructured data may contain more cru-
cial information, suggesting that utilizing unstructured 
data could lead to better predictive model performance. 
However, the analysis results of this study do not sup-
port this argument. Instead, models built using struc-
tured data outperformed those using both structured and 

unstructured data in predicting admission, critical care, 
and mortality. Models solely based on unstructured data 
performed the least satisfactorily in predicting admission. 
One possible explanation for this finding may be that 
the unstructured data were completed using templates, 
resulting in uniform content and reducing the signifi-
cance of the information contained within. It is suggested 
that future research prioritize structured data as they 
contain primary features, with the simultaneous use of 
structured and unstructured data as additional features.

Sample dataset for predicting ED disposition
Due to the possibility of incomplete physiological matu-
rity in younger emergency department patients, such 
as with infants, their response to illness may differ sig-
nificantly from that of adults, particularly the elderly. 
Therefore, it is suggested that future studies consider 
distinguishing between age groups when constructing 
predictive models for emergency department patient dis-
position. This approach would better cater to the clinical 
needs of emergency departments. In the studies included 
in this meta-analysis, certain models were specifically tai-
lored for the elderly [25, 33, 45, 47, 48, 65] or for adoles-
cents/infants [44, 82].

Utilize tailored artificial intelligence techniques for predicting 
ED disposition
Based on the results of this meta-analysis, it appears that 
the predictive performance of deep- learning models is 
generally lower than that of machine-learning models, 
contrary to the common belief among the general pub-
lic that deep learning outperforms. Subsequent research 
should further investigate possible reasons for this dis-
crepancy and subsequently enhance the predictive capa-
bilities of models built using deep-learning methods. 
Additionally, ensemble learning in this meta-analysis 
demonstrated superior performance in predicting criti-
cal care and mortality compared to models that did not 
utilize ensemble learning. Future research may consider 
employing different types of ensemble learning to iden-
tify more effective model architectures. Moreover, while 
cross-validation theoretically aids in improving model 
predictive ability, it is recommended that future studies 
utilize hyper-parameter tuning alongside cross-validation 
to enhance model performance. Lastly, future studies are 
strongly encouraged to adopt external validation to mini-
mize the risk of overfitting.

Limitations
This review has several limitations that warrant acknowl-
edgment. Firstly, caution is needed when interpreting the 
pooled sensitivity and specificity of this study due to the 
presence of between-studies heterogeneity. Secondly, 71 
articles were excluded due to insufficient quantitative 



Page 21 of 25Kuo and Chang BMC Medical Informatics and Decision Making          (2025) 25:187 

information. It is recommended that future research 
on ED disposition using machine learning provide suf-
ficient metric information to enhance profile study 
characteristics.

Conclusions
The main aim of this study is to meta-analyze the per-
formance of artificial intelligence techniques used in 
predicting ED dispositions. Due to the lack of objective 
assessments in existing review literature on this topic, 
a comprehensive understanding of how artificial intel-
ligence performs in predicting ED disposition is limited. 
This limitation may hinder the effective utilization of this 
technology, which could be crucial for optimizing emer-
gency medical resources and for addressing vital issues 
such as ED overcrowding.

The primary findings of this study indicate that 
machine-learning techniques applied to predict differ-
ent ED dispositions, including admission, critical care, or 
mortality, achieve AUROC scores ranging from 0.87 to 
0.93. Models predicting mortality perform the best, with 
sensitivity and specificity ranging from 0.81 to 0.94. How-
ever, the specificity for each of the three ED dispositions 
is higher than sensitivity, suggesting room for improve-
ment in predicting positive cases of ED disposition. Fea-
sible approaches to address this matter include:

1) To establish standardized feature sets for predicting 
ED dispositions;

2) To create shared datasets for training predictive 
models, accessible to both emergency medical 
practitioners and researchers;

3) To integrate structured and unstructured datasets; 
and,

4) To leverage machine-learning techniques such as 
cross-validation with hyper-parameter tuning and 
ensemble learning to enhance performance.
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