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Abstract
Objective  To compare the performance of predictive models for cardiovascular event (CVE) in patients undergoing 
peritoneal dialysis (PD) based on machine learning algorithm and Cox proportional hazard regression.

Methods  This study included patients underwent PD catheterization in our center from January 1, 2010, to July 
31, 2022. The patients were randomly divided into training and validation sets in a 7:3 ratio. Cox regression, extreme 
gradient boosting (XGBoost), and random survival forest (RSF) models were developed using the training set and 
validated using the validation set. The time-dependent area under the curve (AUC) and concordance index (C-index) 
were used to evaluate the discriminative ability of predictive models.

Results  A total of 318 patients were enrolled in this study. 110 (34.6%) patients developed CVE during the median 
follow-up of 31(16,56) months. The RSF model had better predictive performance, with a C-index of 0.725 and 1-, 
3-, and 5-year time-dependent AUC of 0.812, 0.836, and 0.706 in the validation set, respectively. The top 5 important 
variables identified were platelet count, age, 4 hD/Pcr, left atrium diameter, and left ventricular diameter. Patients were 
classified into high-risk and low-risk groups based on the cut-off risk score calculated using the maximally selected 
rank statistics in the validation set. The log-rank test showed a significant difference in cumulative CVE-free survival 
probability between the two groups.

Conclusion  The RSF model may be a useful method for evaluating CVE risk in PD patients.
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Introduction
Cardiovascular event (CVE) remains a leading cause 
of morbidity and mortality among patients undergoing 
peritoneal dialysis (PD) [1]. The burden of cardiovascular 
disease (CVD) in this population is significantly higher 
than in the general population, largely due to the pres-
ence of multiple risk factors, including inflammation, oxi-
dative stress, abnormal calcium-phosphorus metabolism, 
overhydration, and high glucose load [2, 3]. Thus, early 
identification and management of high-risk patients are 
critical to improving outcomes.

Despite advances in dialysis techniques, accurately pre-
dicting the occurrence of CVE in patients undergoing PD 
remains challenging. Traditional risk assessment tools, 
such as the Framingham Risk Score [4], are not fully 
applicable to patients undergoing PD due to their differ-
ences in risk factors and pathophysiological characteris-
tics. Therefore, there is an urgent need for more accurate 
and reliable predictive models tailored to this high-risk 
population.

The Cox proportional hazards regression model is a 
classic statistical method used to establish the relation-
ship between survival time and specific risk factors [5]. 
However, it assumes proportional hazards and linear 
relationships between predictors and outcomes, which 
may not always be valid in complex clinical settings. In 
recent years, machine learning (ML) algorithms have 
emerged as powerful tools for risk prediction in vari-
ous medical fields [6, 7]. These algorithms are especially 
effective in analyzing complex datasets, as they can han-
dle non-linear relationships and interactions among mul-
tiple predictors, making them ideal for survival analysis 
in clinical settings. Among these, random survival forest 
(RSF) has shown promise in survival analysis by extend-
ing the random forest algorithm to handle censored data. 
Prediction models based on this algorithm can effec-
tively identify prognostic risk factors and screen patients 
with poor prognosis [8]. Extreme gradient boosting 
(XGBoost), a widely used boosting algorithm, has dem-
onstrated excellent performance in various predictive 
tasks, including survival analysis [9, 10]. By constructing 
an ensemble of decision trees, XGBoost improves model 
accuracy and reduces overfitting, making it a powerful 
tool for handling complex datasets.

In this study, we aimed to develop and validate predic-
tive models for CVE in patients undergoing PD using 
both traditional Cox proportional hazard regression and 
ML algorithms. By comparing the performance of dif-
ferent models, including the Cox proportional hazard 
regression model, RSF model, and XGBoost model, our 
ultimate goal was to identify the best predictive model for 
enabling earlier and more accurate screening of patients 
at high risk of CVE. Given the superior survival data-pro-
cessing capabilities of RSF, we hypothesize that the RSF 

model may be a useful method for evaluating CVE risk in 
PD patients. By using the RSF model to assess CVE risk, 
clinicians may be able to better stratify patients based on 
their risk levels, facilitating the development of personal-
ized medical strategies and improving patient outcomes.

Materials and methods
Study population
This single-center retrospective cohort study included 
422 patients who underwent PD catheterization and con-
tinuous ambulatory peritoneal dialysis or daytime ambu-
latory peritoneal dialysis at the Second Affiliated Hospital 
of Anhui Medical University from January 1, 2010, to July 
31, 2022. Exclusion criteria included patients younger 
than 18  years old, transferred from long-term hemo-
dialysis, with less than 3  months of PD therapy, lacking 
necessary data, recently experienced severe infections, 
used glucocorticoids or immunosuppressants within 
6  months, and a history of hematological diseases or 
malignant tumors. Based on these criteria, 318 patients 
were included in our subsequent analyses. The subjects 
were randomly divided into a training set (70%, n = 228) 
to develop the model and a validation set (30%, n = 90) to 
validate the performance of the model. Model develop-
ment and validation followed the Transparent Reporting 
of a multivariable prediction model for Individual Prog-
nosis Or Diagnosis (TRIPOD) Statement [11]. This study 
received approval from the Ethics Committee of the Sec-
ond Affiliated Hospital of Anhui Medical University and 
adhered to the Declaration of Helsinki.

Data collection
The baseline data defined at PD start were obtained 
from the electronic medical record system of our hos-
pital. In total, 39 patient characteristics were collected 
as candidate covariates. The patient demographic data 
were as follows: age, sex, body mass index (BMI), causes 
of end-stage kidney disease (ESKD), and history of dia-
betes mellitus or CVD. The laboratory data were as fol-
lows: hemoglobin, white blood cell count, platelet count, 
C-reactive protein (CRP), high-sensitivity C-reactive 
protein (hs-CRP), serum creatinine, serum urea nitro-
gen, serum uric acid, serum corrected calcium, serum 
phosphorus, serum albumin, alkaline phosphatase, total 
cholesterol, triglycerides, fasting blood glucose, ferri-
tin, transferrin saturation, and fibrinogen. The param-
eters measured in echocardiography were as follows: 
left ventricular (LV) end-diastolic diameter (LVEDd), 
left atrium (LA) diameter, right ventricular (RV) diam-
eter, interventricular septum thickness (IVST), left ven-
tricular posterior wall thickness (LVPWT), LV ejection 
fraction (EF), and pulmonary arterial pressure (PAP). 
The left ventricular mass (LVM) was calculated by the 
Devereux formula: LVM = 1.04 × [(IVST + LVPWT + LVE
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Dd)3–LVEDd3]–13.6. The LVM index (LVMI) was calcu-
lated as LVM divided by the body surface area. Left ven-
tricular hypertrophy (LVH) was defined as LVMI > 125 g/
m2 in males and > 120 g/m2 in females [12]. Cardiac valve 
calcification (CVC) was defined as bright echoes > 1 mm 
on one or more cusps of the aortic valve, mitral valve, 
or mitral annulus. In addition, data were collected on 
24-hour ultrafiltration volume, 24-hour urine volume, 
estimated glomerular filtration rate (eGFR), total weekly 
Kt/V (tKt/V), total weekly creatinine clearances (tCCr) 
and the dialysate/plasma creatinine ratio at 4  h (4  hD/
Pcr) measured using the peritoneal equilibration test 
after 1  month of PD treatment. Variables with more 
than 20% missing data (CRP, hs-CRP, PAP, eGFR, tKt/V, 
and tCCr) and the variable exhibiting multicollinear-
ity (variance inflation factor > 10), ESKD, were removed. 
Finally, the study analyzed 32 variables. Nineteen vari-
ables (serum urea nitrogen, alkaline phosphatase, total 
cholesterol, triglycerides, fasting blood glucose, ferri-
tin, transferrin saturation, fibrinogen, 4 hD/Pcr, 24-hour 
ultrafiltration volume, 24-hour urine volume, LV, LA, 
RV, IVST, LVPWT, LVEF, LVH, and CVC) had miss-
ing data, which were handled using multiple imputation 
by chained equations. Specifically, the predictive mean 
matching method was applied for imputation, with five 
imputations performed. No outlier values were removed 
for the descriptive data.

Outcome definition and follow-up
The primary outcome of this study was the incidence of 
CVE. CVE was defined according to the International 
Classification of Diseases, 10th Revision (ICD-10) codes 
for New York Heart Association class III–IV congestive 
heart failure requiring hospitalization, unstable angina, 
acute myocardial infarction, stroke, or cardiac arrest. 
The time to the first occurrence of CVE was recorded in 
months. The endpoint of follow-up was defined as the 
first occurrence of CVE, death, discontinued PD treat-
ment, loss to follow-up, or censoring on July 31, 2023, 
whichever came first.

Statistical analysis
Continuous variables were presented as mean ± standard 
deviation or median (interquartile range), while categori-
cal variables were presented as frequency (percentage). 
Data normality was tested using the Shapiro-Wilk test. 
The table for patient characteristics was generated using 
the ‘tableone’ package.

Cox proportional hazard regression is a simple and 
effective tool for identifying risk factors associated with 
the incidence and prognosis of diseases. As a semipara-
metric method, it does not assume any specific distribu-
tion for survival times, but it requires that the impact of 
different variables on the survival rate remains constant 

and that the effects of these variables are additive [13]. 
The Least Absolute Shrinkage and Selection Operator 
(LASSO) regression assumes an approximately linear 
relationship between predictor variables and the out-
come. By adding an L1 penalty to the regression, it effec-
tively selects variables, prevents overfitting, and mitigates 
the impact of multicollinearity. This method is more 
accurate than stepwise regression [14], especially when 
the sample size is not large [15]. We used LASSO regres-
sion analysis to identify potential risk factors among 
candidate variables. To determine the most predictive 
variables, we utilized 10-fold cross-validation, select-
ing those with the minimum cross-validated error. Sub-
sequently, stepwise multivariate Cox regression analysis 
was conducted to identify the independent risk factors 
for CVE in patients undergoing PD. The proportional 
hazards assumption of the Cox model was tested using 
Schoenfeld residuals. Based on the minimum value of the 
Akaike Information Criterion (AIC), we built the final 
model and constructed a nomogram.

Two different ML algorithms were considered: 
XGBoost and RSF. XGBoost is a gradient boosting algo-
rithm widely used for classification and regression tasks. 
Its excellent performance and scalability make it a pow-
erful tool for survival prognosis analysis [16]. XGBoost 
models are built by gradually constructing multiple deci-
sion trees and then combining them to obtain more accu-
rate predictions. We implemented XGBoost using the 
‘xgboost’ package.

RSF is an adaptation of the random forest method, 
used for analyzing survival data through ensemble learn-
ing of decision trees [17]. In RSF, multiple decision trees 
are built using bootstrap samples. For each node, a sub-
set of features is randomly selected, and the node is split 
based on a survival criterion that includes survival time 
and censoring status [18]. The final prediction is made 
by aggregating the results from all trees. RSF is particu-
larly useful when dealing with a large number of predic-
tors and complex relationships between the response 
and predictors [17]. Compared to the Cox proportional 
hazard model, the advantage of the RSF model is that it 
is not constrained by assumptions of proportional haz-
ards and log-linearity. As an ensemble learning method, 
RSF aggregates the predictions of multiple decision trees, 
reducing the risk of overfitting and enhancing the reli-
ability of predictions. Additionally, RSF provides a mea-
sure of variable importance, which helps in improving 
the explainability of the model and identifying the most 
influential predictors. The RSF model was implemented 
using the ‘randomForestSRC’ package.

All 32 variables were used to develop the XGBoost and 
RSF models in the training set. The hyperparameters 
of the models were optimized using grid search com-
bined with 10-fold cross validation. For the RSF model, 
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we performed hyperparameter tuning using the concor-
dance index (C-index) as the evaluation criterion. The 
C-index for each fold in the cross-validation was calcu-
lated and averaged to assess the performance of each 
hyperparameter set. For the XGBoost model, we used 
Cox-Negative Log-Likelihood as the tuning criterion, 
which is a standard measure of model fit in survival 
analysis. The goal was to minimize this value during the 
cross-validation process. For the XGBoost model, the 
optimal hyperparameters are: eta = 0.01, max_depth = 3, 
min_child_weight = 5, subsample = 0.3, colsample_
bytree = 0.3, gamma = 5, and alpha = 1. For the RSF model, 
the optimal hyperparameters are: mtry = 1, nodesize = 30, 
ntree = 100, alpha = 0.1, and minprop = 0.1 (Additional 
file 1. Table S1). The discriminative ability of the predic-
tive models was evaluated using the time-dependent area 
under the curve (AUC) and C-index, under the assump-
tion that the censoring mechanism was independent 
of survival time. The calibration capability was assessed 
using calibration curves. The best predictive models in 
this study were selected based on their C-index and AUC 
at 1, 3, and 5 years to ensure optimal discrimination and 
predictive performance.

To better understand how the RSF model generates 
predictions, we utilized SHapley Additive exPlanations 
(SHAP) values. SHAP values, grounded in game theory, 
quantify the contribution of each feature to the model’s 
prediction [6]. The maximally selected rank statistics 
method was employed to determine an optimal cut-off 
point corresponding to the strongest association with 
incident CVE. Kaplan-Meier analysis curves and the 
log-rank test were utilized to assess the distribution of 
incident CVE, assuming that the hazard ratio between 
groups remains constant over time. A web-based risk cal-
culator was developed using the ‘shiny’ package. A non-
probability consecutive sampling method was used in 
this study. The sample size was determined based on the 
availability of eligible patients. Data processing was car-
ried out using R software (version 4.3.1, R Foundation for 
Statistical Computing, Vienna, Austria). P < 0.05 was con-
sidered statistically significant.

Results
Patient characteristics
A total of 318 patients undergoing PD were enrolled in 
this study (Fig. 1). Missing data were displayed in Addi-
tional file 2. Table S2. 110 (34.6%) patients developed 

Fig. 1  The flowchart of the present study. PD: peritoneal dialysis
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CVE during the median follow-up of 31(16,56) months. 
At 1-, 3-, and 5-years, the cumulative incidence of CVE 
was 9.4%, 21.7%, and 29.9%, respectively. Compared to 
patients without CVE, those who developed CVE were 
older and had significantly higher platelet count and 
shorter follow-up time. Additionally, they exhibited 
lower levels of serum urea nitrogen and serum albumin 
(Table  1). During the modeling process, the study pop-
ulation was divided into two cohorts, the training set 
(n = 228) and the validation set (n = 90). There was no 
statistical difference in any variables between the train-
ing set and the validation set, indicating that the split was 
balanced (Additional file 3. Table S3).

LASSO-Cox regression analysis and nomogram
For LASSO regression, we used 10-fold cross-validation 
and selected the parameter λ based on the one standard 

error of the minimum criteria. The optimal tuning 
parameter λ was 0.0395. At this optimal λ value, 11 vari-
ables with non-zero coefficients were selected for mul-
tivariate Cox regression analysis, including age, BMI, 
diabetes mellitus, fibrinogen, platelet count, serum cre-
atinine, triglyceride, fasting blood glucose, LV diameter, 
IVST, and 4hD/Pcr (Additional file 4. Figure S1). By using 
the stepwise regression method and based on the mini-
mum value of the AIC, the final Cox model included age, 
BMI, platelet count, triglyceride, fasting blood glucose, 
LV diameter, and 4hD/Pcr (Additional file 5. Table S4). 
The C-index of the Cox model in the training set and vali-
dation set was 0.688 and 0.685, respectively (Table 2). In 
the nomogram constructed using these variables (Fig. 2), 
each variable corresponds to a specific point by drawing 
a straight line upward to the points axis. After summing 
the points for all variables, locate the total points on the 

Table 1  Characteristics of the study populations
Variables Total (n = 318) No CVE group (n = 208) CVE group (n = 110) P Value
Male n (%) 152 (47.8) 98 (47.1) 54 (49.1) 0.83
Age (years) 52.00 (41.25, 61.00) 50.00 (39.00, 60.00) 56.00 (47.00, 63.00)  < 0.01
Body mass index (kg/m2) 21.74 (19.73, 23.95) 21.76 (19.70, 23.88) 21.66 (19.80, 24.37) 0.86
Diabetes mellitus n (%) 65 (20.4) 37 (17.8) 28 (25.5) 0.14
Cardiovascular disease n (%) 44 (13.8) 24 (11.5) 20 (18.2) 0.14
Fibrinogen (g/L) 3.58 (2.89, 4.48) 3.42 (2.88, 4.26) 3.71 (2.89, 4.67) 0.06
Hemoglobin (g/L) 76.00 (63.00, 90.00) 75.00 (62.75, 88.00) 77.50 (63.00, 90.75) 0.87
White blood count (109/L) 5.46 (4.48, 7.08) 5.37 (4.40, 6.91) 5.70 (4.67, 7.29) 0.16
Platelet count (109/L) 140.50 (104.00, 180.75) 132.00 (99.75, 179.25) 149.50 (116.25, 182.50) 0.02
Serum creatinine (μmol/L) 810.00 (665.25, 1010.00) 830.00 (692.25, 1041.25) 768.00 (625.50, 982.25) 0.06
Serum urea nitrogen (mmol/L) 29.93 (22.70, 39.48) 31.28 (23.77, 40.60) 26.66 (20.23, 38.28) 0.01
Serum uric acid (μmol/L) 490.00 (413.50, 591.00) 490.50 (424.00, 591.50) 490.00 (405.25, 570.25) 0.50
Serum corrected calcium (mmol/L) 2.08 (1.84, 2.23) 2.08 (1.81, 2.23) 2.09 (1.92, 2.24) 0.33
Serum phosphorus (mmol/L) 1.90 (1.56, 2.31) 1.94 (1.59, 2.33) 1.85 (1.53, 2.27) 0.54
Serum albumin (g/L) 33.22 ± 5.69 33.88 ± 5.54 31.97 ± 5.79  < 0.01
Alkaline phosphatase (U/L) 82.00 (64.00, 106.00) 83.00 (64.00, 105.50) 79.50 (64.00, 106.00) 0.88
Total cholesterol (mmol/L) 3.95 (3.31, 4.76) 3.84 (3.22, 4.67) 4.04 (3.40, 4.95) 0.07
Triglyceride (mmol/L) 1.15 (0.84, 1.59) 1.18 (0.83, 1.60) 1.09 (0.86, 1.55) 0.61
Fasting blood glucose (mmol/L) 4.78 (4.35, 5.38) 4.72 (4.35, 5.28) 4.87 (4.37, 5.49) 0.25
Ferritin (μg/L) 195.00 (81.60, 321.25) 183.50 (75.70, 333.50) 201.50 (86.52, 305.75) 0.87
Transferrin saturation (%) 25.00 (16.55, 34.00) 25.70 (17.00, 35.00) 24.00 (15.25, 31.90) 0.45
Left ventricular end-diastolic diameter (mm) 48.00 (44.00, 52.00) 47.00 (43.00, 51.00) 48.00 (45.00, 53.00) 0.07
Left atrium diameter (mm) 34.00 (30.00, 39.00) 34.00 (30.00, 39.00) 35.00 (30.00, 39.75) 0.51
Right ventricular diameter (mm) 21.00 (19.00, 23.00) 21.00 (19.00, 23.00) 21.00 (19.00, 23.00) 0.99
Interventricular septum thickness (mm) 10.00 (10.00, 12.00) 10.00 (9.00, 12.00) 11.00 (10.00, 12.00) 0.13
Left ventricular posterior wall thickness (mm) 10.00 (9.00, 11.00) 10.00 (9.00, 11.00) 10.00 (9.00, 11.00) 0.44
Left ventricular ejection fraction (%) 62.00 (60.00, 65.00) 62.00 (60.00, 65.00) 61.00 (58.00, 64.75) 0.14
Left ventricular hypertrophy n (%) 178 (56.0) 114 (54.8) 64 (58.2) 0.65
Cardiac valve calcification n (%) 45 (14.2) 26 (12.5) 19 (17.3) 0.32
24-hour ultrafiltration volume (mL) 334.12 ± 439.66 335.15 ± 421.80 332.17 ± 473.59 0.95
24-hour urine volume (mL) 800.00 (500.00, 1300.00) 900.00 (500.00, 1300.00) 800.00 (500.00, 1237.50) 0.27
Dialysate/plasma creatinine ratio at 4 h 0.58 (0.49, 0.69) 0.57 (0.48, 0.68) 0.60 (0.51, 0.69) 0.10
Follow-up time (months) 31.00 (16.25, 56.00) 35.00 (19.00, 59.75) 25.00 (11.00, 48.00)  < 0.01
CVE: cardiovascular event. Continuous variables are presented as mean ± standard deviation (for normally distributed data) or median (interquartile range) (for non-
normally distributed data). Categorical variables are presented as frequency (percentage). Bold font means P < 0.05
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bottom scales. These total points correspond to the 1-, 
3-, and 5-years CVE-free probability. To evaluate the 
performance of the nomogram model, we used the time-
dependent receiver operating characteristic (ROC) curve. 
As shown in Fig. 3A, the AUC values of the nomogram 
model for predicting CVE in patients undergoing PD in 
the training set were 0.656 at 1 year, 0.758 at 3 years, and 
0.720 at 5  years. In the validation set, the AUC values 
were 0.806 at 1 year, 0.761 at 3 years, and 0.610 at 5 years 
(Fig.  3D). We further plotted the calibration curves to 
evaluate the calibration capability of the nomogram 
model in the training and validation sets, and the results 
were shown in Additional file 6. Figure S2.

XGBoost
The C-index of the XGBoost model was 0.771 in the 
training set and 0.703 in the validation set (Table 2). The 
time-dependent ROC curves showed the AUC in the 
training set was 0.766 at 1 year, 0.827 at 3 years, and 0.776 
at 5  years (Fig.  3B), and in the validation set was 0.744 
at 1 year, 0.780 at 3 years, and 0.719 at 5 years (Fig. 3E). 
Additional file 7. Figure S3 depicts the calibration curves 
of the XGBoost model in the training and validation sets.

Random survival forest
The C-index of the RSF prediction model in the train-
ing set and validation set was 0.810 and 0.725, respec-
tively (Table 2). The time-dependent ROC curves of the 
RSF model for predicting CVE in patients undergoing 
PD showed the AUC of 0.804, 0.880, and 0.825 for 1-, 3-, 

Table 2  Predictive performance comparison of different methods in the training and validation sets
Indexes Training set Validation set

Nomogram XGBoost RSF Nomogram XGBoost RSF
C-index 0.688 0.771 0.810 0.685 0.703 0.725
AUC at 1 year 0.656 0.766 0.804 0.806 0.744 0.812
AUC at 3 years 0.758 0.827 0.880 0.761 0.780 0.836
AUC at 5 years 0.720 0.776 0.825 0.610 0.719 0.706
C-index: concordance index; AUC: area under the curve; RSF: random survival forest

Fig. 2  Nomogram for predicting the risk of CVE in patients undergoing PD. The nomogram combines multiple clinical variables to estimate the indi-
vidualized risk of CVE. BMI: body mass index; LV: left ventricular; 4hD/Pcr: dialysate/plasma creatinine ratio at 4h; CVE: cardiovascular event; PD: peritoneal 
dialysis
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and 5-years in the training set (Fig. 3C), and 0.812, 0.836, 
and 0.706 in the validation set (Fig. 3F), indicating a more 
reliable prediction of CVE incidence. Figure  4A shows 
the feature importance ranking of the RSF model using 
SHAP summary plots, indicating that platelet count, age, 
4hD/Pcr, LA diameter, and LV diameter were the top 5 
contributors to the model. Figure 4B shows the relation-
ship between individual input variable and the RSF mod-
el’s predictions. The calibration curves of the RSF model 
in the training and validation sets were depicted in Addi-
tional file 8. Figure S4. Using maximally selected rank sta-
tistics, we calculated a cut-off risk score of 18.41 in the 
validation set (Fig. 5). Patients were classified into high-
risk and low-risk groups based on this cut-off risk score, 
and the Kaplan-Meier curve was plotted (Fig. 6). The log-
rank test showed a significant difference in cumulative 
CVE-free survival probability between the two groups, 
indicating that the RSF model risk score could effectively 
stratify patients undergoing PD by CVE risk. The ‘shiny’ 
package was used to develop a visual and operational 
web-based risk calculator (​h​t​t​p​​s​:​/​​/​y​a​n​​x​z​​s​w​.​​s​h​i​​n​y​a​p​​p​s​​.​
i​o​/​R​S​F​m​o​d​e​l​/) for the RSF prediction model. Users can 

directly obtain risk score by entering the values of vari-
ables into the calculator.

Discussion
In this study, three models for predicting CVE in patients 
undergoing PD were developed and compared, and the 
results showed that the RSF model had better predic-
tive performance, with a C-index of 0.725 and 1-, 3-, and 
5-year time-dependent AUC of 0.812, 0.836, and 0.706 in 
the validation set, respectively. To our knowledge, this is 
the first study using the RSF algorithm to screen patients 
undergoing PD at high CVE risk.

The Cox proportional hazard regression model is a 
widely used statistical method for analyzing survival 
data. Numerous studies have employed Cox regression 
to explore independent risk factors for CVE or mortality 
and have constructed nomograms based on these find-
ings [19, 20]. In this study, we developed a nomogram 
using the predictive factors screened by LASSO-Cox 
regression analysis, including age, BMI, platelet count, 
triglycerides, fasting blood glucose, LV diameter, and 
4hD/Pcr. Previous research has consistently identified 

Fig. 3  Time-dependent receiver operating characteristic curves for predicting cardiovascular event in the training and validation sets. (A) Nomogram 
in the training set; (B) XGBoost model in the training set; (C) Random survival forest model in the training set; (D) Nomogram in the validation set; (E) 
XGBoost model in the validation set; (F) Random survival forest model in the validation set. The area under the curve was calculated at 1, 3, and 5 years to 
evaluate the models’ discriminative performance
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age as a significant risk factor for CVE in patients under-
going PD [21]. However, the relationship between BMI 
and cardiovascular outcomes is complex. While a higher 
BMI predicts CVE and mortality in the general popula-
tion, patients with chronic kidney disease may exhibit an 
“obesity paradox” where a higher BMI is associated with 
improved survival [22]. In our study, stepwise multivari-
ate Cox regression analysis showed that BMI was not an 
independent risk factor for CVE. However, when BMI 
was included in the final model, the AIC was the smallest. 
Therefore, the final model included BMI. Platelet count 
were independently associated with CVE [23, 24], and 
patients undergoing PD with higher platelet count has 
an increased risk of cardiovascular mortality [25]. Mul-
tivariate Cox regression also identified that triglycerides 
and fasting blood glucose were independent risk factors 
for CVE, consistent with previous research findings. A 
prospective epidemiological study involving 22 countries 
showed that the triglyceride-glucose (TyG) index, rep-
resenting insulin resistance and calculated as ln (fasting 
triglycerides [mg/dl] × fasting blood glucose [mg/dl]/2), 
was significantly associated with myocardial infarction, 
stroke, and cardiovascular mortality [26]. In the general 
population [27] and kidney transplant recipients [28], 
the TyG index was also associated with CVE. A larger 
LV diameter was associated with increased left atrial 
systolic force, which was related to LVH and can predict 
CVE incidence [29]. As for the 4hD/Pcr, it is an indicator 

reflecting peritoneal transport characteristics. Patients 
with a high 4hD/Pcr have an increased risk of atheroscle-
rosis [30]. Overall, the predictors used to construct this 
nomogram are common, easily accessible, and potentially 
associated with the incidence of CVE. In addition, the 
nomogram is simple, intuitive, and easy to understand. 
However, it’s important to note that Cox proportional 
hazard regression assumes proportional hazards and a 
linear relationship between the log hazard and predic-
tors, which may not always hold in real-world data.

ML algorithms, a branch of artificial intelligence, have 
advanced rapidly in recent years and effectively comple-
ment traditional statistical methods. Previous studies 
have shown that the XGBoost and RSF models can pre-
dict patient prognosis and the risk of CVE [6, 31, 32]. 
In this study, we constructed prediction models using 
these two ML algorithms, and the results showed that 
the C-index and time-dependent ROC of the RSF model 
were mostly higher than those of the Cox and XGBoost 
models, with only the AUC value at 5 years in the valida-
tion set slightly lower than that of the XGBoost model, 
indicating its superior predictive performance for CVE 
in patients undergoing PD. The top 5 important variables 
in the RSF model were platelet count, age, 4hD/Pcr, LA 
diameter, and LV diameter. The relationship between 
each of the 4 indicators (platelet count, age, 4hD/Pcr, 
and LV diameter) and CVE have been discussed in detail 
above. LA function was associated with a poor prognosis 

Fig. 4  SHAP summary plot for the random survival forest model. (A) The top 15 important features ranked by mean SHAP values, which represent the 
average contribution of each feature to the model’s prediction. (B) Each patient was represented by a dot, with the x-axis position indicating the SHAP 
value for the corresponding feature. 4hD/Pcr: dialysate/plasma creatinine ratio at 4h; LV: left ventricular; LA: left atrium; EF: ejection fraction; DM: diabetes 
mellitus; CVD: cardiovascular disease; IVST: interventricular septum thickness; BMI: body mass index; LVH: left ventricular hypertrophy; LVPWT: left ven-
tricular posterior wall thickness; SHAP: SHapley Additive exPlanations
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in patients with heart failure with preserved or mildly 
reduced ejection fraction, and atrial failure had sig-
nificant predictive value for CVE [33]. Studies have also 
shown that LA enlargement was closely related to atrial 
fibrillation, which is a known risk factor for CVE [34, 35].

Due to the fact that traditional risk assessment tools 
are not fully applicable to patients undergoing PD, devel-
oping a predictive model for this population is both cru-
cial and meaningful. Some studies focusing on patients 
undergoing PD have already used ML algorithms to 
construct predictive models. Xu et al. used three ML 
algorithms, including XGBoost, RF, and adaptive boost-
ing (AdaBoost), to predict the risk of heart failure and 
all-cause mortality in patients undergoing PD. The 
results showed that the ML algorithms were superior to 
the Cox model; however, this study used an RF that was 
not designed for survival analysis, which may have lim-
ited its ability to fully utilize survival time [36]. Yang et 

al. used ML algorithms to predict adverse prognoses in 
patients undergoing PD, and their results showed that 
the categorical boosting (CatBoost) model had the best 
predictive performance [37]. Another study proposed an 
attention-based deep learning model to predict major 
adverse CVE in patients undergoing PD, but the model 
could not calculate and analyze certain medical indica-
tors for risk prediction. Additionally, its scalability and 
generalizability need further improvement [38]. In this 
study, we fully considered the survival time in survival 
data when constructing ML models to enhance the accu-
racy of risk prediction, and ultimately found that the RSF 
model has better predictive accuracy and robustness. We 
also used SHAP values to visualize the overall feature 
importance of the RSF model, improving its interpret-
ability. Moreover, the clinical indicators included in the 
RSF model are easily measurable and collectible, mak-
ing the model practical and accessible for routine use 

Fig. 5  Cut-off risk score calculated using the maximally selected rank statistics in the validation set. The optimal cut-off point corresponds to the stron-
gest association with incident cardiovascular event. This method was used to divide patients into high-risk and low-risk groups based on their individual 
predicted risk scores
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without the need for additional, costly tests. We have 
also developed a web-based risk calculator that allows 
users to easily calculate risk score by entering the values 
of variables. By using the RSF model to calculate the risk 
score for CVE, clinicians can effectively stratify patients 
based on their risk level. This enables better identification 
of high-risk individuals and the development of person-
alized medical strategies. Such a personalized approach 
allows for targeted interventions, proactive manage-
ment of high-risk populations, and the timely initiation 
of treatment strategies, such as enhanced monitoring or 
preventive therapies.

There are several limitations in this study. Firstly, the 
study was conducted at a single center, and the sample 
size was limited, which affected the statistical power and 
generalizability of the findings. The calibration curve for 
the RSF model showed suboptimal calibration, even in 
the training set, which may indicate the RSF model was 
undertrained. This study also did not enforce consistent 
feature sets across models, which may affect the fairness 
of performance comparisons. Secondly, variables with 
more than 20% missing data were excluded, and multiple 
interpolation methods were used to handle the remaining 
missing values. However, there is still potential for inter-
polation bias, which may affect model accuracy. Addi-
tionally, some important indicators, such as CRP and 
hs-CRP, were excluded during model construction due 
to missing data, which may limit the comprehensiveness 
of the analysis. Thirdly, common risk factors for CVE in 
ESKD patients, such as hypertension and dyslipidemia, 
were not included in the analysis due to data limitations. 
Fourth, the median follow-up period of 31 months may 
not be long enough to comprehensively assess long-term 

cardiovascular risk, particularly for 5-year outcomes. 
This could lead to data insufficiency, estimation uncer-
tainty, and potential censoring bias. Finally, the findings 
of this study require external validation to confirm their 
generalizability and robustness.

Conclusions
The RSF model may be a useful method for evaluating 
CVE risk in PD patients.
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