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Abstract
Background and objective This study has two main objectives. First, to evaluate a feature selection methodology 
based on SEQENS, an algorithm for identifying relevant variables. Second, to validate machine learning models that 
predict the risk of complications in patients with acute myeloid leukemia (AML) using data available at diagnosis. 
Predictions are made at three time points: 90 days, six months, and one year post-diagnosis. These objectives 
represent fundamental steps toward the development of a tool to assist clinicians in therapeutic decision-making and 
provide insights into the risk factors associated with AML complications.

Methods A dataset of 568 patients, including demographic, clinical, genetic (VAF), and cytogenetic information, was 
created by combining data from Hospital 12 de Octubre (Madrid, Spain) and Instituto de Investigación Sanitaria La 
Fe (Valencia, Spain). Feature selection based on an enhanced version of SEQENS was conducted for each time point, 
followed by the comparison of four classifiers (XGBoost, Multi-Layer Perceptron, Logistic Regression and Decision Tree) 
to assess the impact of feature selection on model performance.

Results SEQENS identified different relevant features for each prediction horizon, with Age, TP53, − 7/7Q, and EZH2 
consistently relevant across all time points. The models were evaluated using 5-fold cross-validation, XGBoost achieve 
the highest average ROC-AUC scores of 0.81, 0.84, and 0.82 for 90-day, 6-month, and 1-year predictions, respectively. 
Generally, performance remained stable or improved after applying SEQENS-based feature selection. Evaluation on an 
external test set of 54 patients yielded ROC-AUC scores of 0.72 (90-day), 0.75 (6-month), and 0.68 (1-year).
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Introduction
Acute myeloid leukemia (AML) is a heterogeneous and 
multifactorial disease characterized by a wide range of 
molecular alterations leading to malignant transformation 
of hematopoietic stem cells [1]. It is the most frequent type 
of acute leukemia in adults with a 5-year relative survival of 
30.5% reported by the Surveillance, Epidemiology, and End 
Results Program (SEER) in the USA (SEER12:  h t t p  s : /  / s e e  r .  
c a n  c e r  . g o v  / s  t a t  f a c  t s / h  t m  l / a m y l . h t m l). The European Can-
cer Information  S y s t e m (ECIS) reported a 5-year relative 
survival of 46.9% for men aged 15 to 44 years versus 7.5% 
for men aged 65–74 years (Source: ECIS - European Can-
cer Information System From  h t t p  s : /  / e c i  s .  j r c  . e c  . e u r  o p  a . e u, 
accessed on 3/JAN/2023).

The goal of treatment is to achieve complete remission 
(CR) of leukemia with initial therapy, followed by consol-
idation and/or maintenance efforts to deepen the remis-
sion and maximize response duration.

For patients fit for intensive chemotherapy, induction 
therapy remains centered around one or two cycles of 
anthracyclines and cytarabine, as recommended by ELN 
2022. According to PETHEMA protocols [2], intensive 
chemotherapy (IC) regimens include 3 + 7 or 2 + 5 induc-
tion (idarubicin or daunorubicin and Ara-C), liposomal 
cytarabine and daunorubicin (CPX-351), fludarabine, 
idarubicin, and Ara-C (FLAG-IDA), high-dose cyta-
rabine (HDAC), fludarabine and high-dose cytarabine 
(FLA), idarubicin, cytarabine, and etoposide (ICE), mito-
xantrone plus cytarabine, and clofarabine plus cytara-
bine. After achieving CR, consolidation ideally involves 
regimens incorporating intermediate-dose cytarabine [3].

For patients not eligible for intensive chemotherapy, 
non-intensive treatment options include low-dose cyta-
rabine (LDAC)-based regimens, hypomethylating agent 
(HMA) monotherapy, venetoclax (VEN)-based regimens, 
clinical trial or supportive care. Non-fit intensive treat-
ment patients should be evaluated early during the first 
cycle, after three cycles, and then repeated every three 
cycles for patients in remission [3]. In contrast, patients 
undergoing intensive chemotherapy should be evaluated 
after the first cycle and subsequently every two cycles if 
in remission.

Treatment failure occurs due to initial resistance and 
failure to achieve CR but more frequently due to the 
recurrence of leukemia after achieving CR. These fail-
ures are associated with an unfavourable outcome. In 

addition, treatment toxicity contributes to the mortality 
of these patients, especially in the early phases of treat-
ment. Therefore, an early estimation of the response is 
crucial to correctly manage the patients.

The potential of artificial intelligence (AI) methodolo-
gies to enhance the management of patients with leu-
kemia is presented in the reviews [4–6], demonstrating 
their capacity to facilitate advancements in the compre-
hension of leukemia mechanisms and the stratification 
of risks for treatment adaptation. A number of potential 
avenues have been proposed for the development of AI 
models with clinical utility. These include the expan-
sion of the accessibility of multicentric databases, the 
implementation of prospective model validation, and 
the progressive incorporation and evaluation of machine 
learning (ML) models in clinical trials.

The initial fundamental step in the development of 
models that could support medical decisions is to iden-
tify the relevant features involved in the prediction of 
interest. In the context of this study, the focus is on the 
evolution of AML patients. Karami et al. [7] sought 
to identify prognostic factors for survival in patients 
with AML using machine learning techniques. A data-
set comprising 249 patients was employed. The authors 
compare several feature selection algorithms in order to 
identify the 25 most predictive features. Subsequently, a 
number of machine learning models are trained, evalu-
ated and compared. The optimal combination is RelieF 
[8] with Gradient Boosted Tree model, which yielded an 
ROC-AUC of approximately 0.93, 72% sensitivity, and 
91% specificity. In [9], although developed for chronic 
myeloid leukemia (CML), authors present a compara-
tive study of eight machine learning models trained with 
an 837-patient cohort to predict five-year survival from 
12 variables identified as the more predictive ones by 
the minimum redundancy maximum relevance feature 
(mRMR) selection method [10]. The variables extracted 
from electronic medical records comprise demographic 
data, medical history, clinical manifestations, and labo-
ratory data. The optimal model exhibits a ROC-AUC of 
0.85, a sensitivity of 86%, and a specificity of 85%.

A number of studies have demonstrated the utility 
of AI models in predicting the evolution of leukemia 
in patients, thereby facilitating the personalisation of 
their care. In [11, 12], authors showed that AI models 
could tailor the AML therapeutic decisions according to 

Conclusions The models achieved performance levels that suggest they could serve as therapeutic decision support 
tools at different times after diagnosis. The selected variables align with the European LeukemiaNet (ELN) 2022 risk 
classification, and the SEQENS-based feature selection effectively reduced the feature set while maintaining prediction 
accuracy.
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genomic-clinical data. Based on survival analysis (log-
additive Cox hazard modeling), the models provide the 
evolution of a patient from diagnosis by estimating the 
probability of the patient being alive with or without 
remission, or with or without recurrence over time. Sid-
diqui et al. [13] compared several ML models (Logistic-
regression (LR), Decision-Tree, and Random-Forest) 
in predicting in-hospital mortality after AML induc-
tion treatment with patient demographics, comorbidi-
ties, and information available at admission. The models 
achieved ROC-AUC scores ranging from 0.70 to 0.78 
and could have helped to detect 51 patients who suf-
fered treatment-related mortality. Another comparison 
of 9 ML models is presented in [14] where they were 
trained for two purposes: predict complete remission and 
2-year overall survival. In an external test cohort, models 
achieved ROC-AUC ranging in [0.71–0.80] and [0.65–
0.75], respectively.

In [15], the authors propose using ML models to 
anticipate the blood transfusion AML patients will need 
during their treatment (red-blood-cell and platelet quan-
tities). They compare five ML models: Support Vector 
Machine, Linear Discriminant Analysis, Artificial Neural 
Network, LR, and Lasso-logistic. These models exhibit 
ROC-AUC scores in the range [0.82–0.88] for red-blood-
cell prediction. The ROC-AUC score for platelets varies 
from 0.80 to 0.85 in the training cohort, while it ranges 
from [0.63–0.70] in the test cohort. Besides, a significant 
increase in overall survival was observed in populations 
receiving more blood transfusions, suggesting that opti-
mal blood management could lead to an overall increase 
in patient survival. In [16], the authors compare ten ML 
models for predicting mortality and relapse in children 

with acute lymphoblastic leukemia (ALL). The dataset 
comprises 161 patients with 15 variables (demographic, 
laboratory, clinical side effects). The model with the high-
est accuracy to predict mortality achieves an ROC-AUC 
of 0.74, while the relapse prediction reaches 0.84 ROC-
AUC. More recently, our previous study [17] trained 
an XGBoost model to predict the risk of complications 
at 90  days after diagnosis in AML patients, achieving a 
ROC-AUC of 0.85 by leave-one-out cross-validation on 
the training dataset and 0.7 on the external test dataset.

A summary of all aforementioned key works in the 
literature is presented in Table 1. In light of this back-
ground, this paper presents two main contributions. The 
first is a feature selection process utilising an enhanced 
version of the SEQENS algorithm [18]. The second is a 
ML model that estimates the risk of complications (resis-
tant disease, recurrence or death) in patients diagnosed 
with AML, based on the variables identified as relevant 
in the first step.

This paper introduces a three-stage feature selection 
methodology. Firstly, the variables are ranked according 
to their relation strength (importance) with the target 
(remission or complication). This ranking is generated 
using the SEQENS algorithm [18]. This ensemble algo-
rithm computes multiple Sequential Feature Selections 
using multiple inductors across multiple dataset parti-
tions. SEQENS offers several notable advantages: (a) it 
supports all types of tabular data, (b) it explores poten-
tial interactions between variables and does not limit 
itself to treating them independently, and (c) it enhances 
the stability and robustness of its rankings by combin-
ing multiple inductors (each partitioning the hyperspace 
differently), thereby benefiting from their diverse per-
spectives. In the second stage, the published SEQENS 
is improved by randomly shuffling the target variable. It 
is then possible to assess whether the variables provide 
more information than would be expected by chance. 
Variables that meet this criterion are considered relevant. 
Finally, we search for the most concise and predictive 
possible subset from these relevant variables using the 
Sequential Backward Search algorithm [19].

Consequently, applying this methodology leads to 
another interesting result, providing a list of the variables 
that are related to the target (relevant). These relevant 
variables can be debated, confirming or refining impli-
cations already known or opening up new research per-
spectives on disease mechanisms.

Figure 1 illustrates the purpose and intended application 
of the proposed predictive model. This suport-decision 
model, which uses patients’ pre-induction clinico-biolog-
ical variables as input, aims to estimate the risk of compli-
cations within the subsequent three, six, or twelve months 
(90, 180, and 365  days, respectively) following an AML 
diagnosis. Complications are here defined as resistant 

Table 1 Performance summary of relevant works in the 
literature. When available, results from external cohort validation 
are reported. Three metrics are shown: ROC-AUC, sensitivity (True 
Positive Rate or TPR), and specificity (True Negative Rate or TNR)
Study Prediction objective Method ROC-AUC TPR TNR
[7] AML survival rate RelieF + GBT 0.93 0.72 0.91
[9] CML 5-year survival mRMR + SVM 0.85 0.86 0.85
[13] AML inpatient 

mortality
Random 
Forest

0.78 0.09 0.99

[14] AML complete 
remission

SVM 0.80 0.77 0.51

[14] AML 2-year survival SVM 0.75 0.67 0.74
[15] Red-blood-cells in 

AML
LassoLR 0.88 – –

[15] Platelets in AML SVM 0.70 – –
[16] ALL mortality in 

children
ANN 0.74 0.80 0.68

[16] ALL relapse in 
children

Boosting 0.84 0.97 0.71

[17] 90-day AML 
complications

XGBoost 0.7 0.57 0.79
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disease, recurrence, or death. In response to the recom-
mendation to utilise multicentric data, this study employs 
cohorts from two Spanish hospitals.

Section Materials and methods describes the data-
set and how it was acquired and preprocessed. Section 
Results presents the relevant features obtained for the 
three time-window predictions and the performance 
exhibited by the predictive models. Section Discussion 
is a discussion about the main findings of this paper. 
Finally, the conclusions of this work are detailed in Sec-
tion Conclusions.

Materials and methods
Dataset
The dataset includes newly diagnosed or relapsed/refrac-
tory AML reported to the PETHEMA AML registry 
(NCT02607059). Diagnosis was established according to 
the World Health Organization criteria [20].

The dataset is multicentric and combines two distinct 
AML populations: one acquired by Hospital 12 de Octu-
bre in Madrid, consisting of 500 patients, and another by 
Hospital La Fe in Valencia, comprising 221 patients, for a 
total of 721 individuals. By integrating data from differ-
ent populations, our goal is to better capture the inherent 
diversity of the disease, thus improving the generalisabil-
ity of the lists of relevant features and the constructed 
models.

The first dataset was collected by Hospital 12 de Octu-
bre (hereinafter referred to as H12O) as part of a study 

approved by the Comité de Ética de la Investigación 
Clínica con Medicamentos (CEIm) with registration num-
bers 19/434 and 20/236. This dataset initially comprised 
500 patients and 56 variables. During the preprocessing 
phase, patients and variables that did not meet quality 
standards, as well as those with unclear outcomes at the 
selected time periods after diagnosis, were excluded. The 
quality criteria applied are detailed in Sections Data cura-
tion and Patient condition labelling.

The second dataset was acquired by Hospital La Fe 
(HUiPLaFe, Valencia, Spain), hereinafter referred to as 
LAFE. All adult patients (> 18  years) with newly diag-
nosed or relapsed/refractory AML (excluding acute pro-
myelocytic leukemia), in accordance to the World Health 
Organization criteria (2016 and 2022), regardless of the 
treatment received, were eligible for the study. The Insti-
tutional Ethics Committee for Clinical Research of Insti-
tuto de Investigación Sanitaria La Fe (IISLaFe) approved 
this study with registration number 2019/0117. Written 
informed consent in accordance with the recommen-
dations of the Declaration of Human Rights, the Con-
ference of Helsinki, and institutional regulations were 
obtained from all patients [21, 22].

The LAFE dataset comprised 221 patients and 31 vari-
ables before the preprocessing phase. The variables in H12O 
that were unavailable in the LAFE dataset were automati-
cally imputed using the same imputation methods applied 
to the training data. Some patients were excluded based on 
the quality criteria outlined in Section Patient condition 
labelling, resulting in a reduction of the number of usable 
patients and variables, depending on the specific scenario.

The variables in this study encompass various types: 
demographic data, clinico-biological variables, cytoge-
netic information, and genetic data.

Gene variant analyses were conducted using Next-Gen-
eration Sequencing (NGS) strategies with harmonized 
criteria previously established by the PETHEMA group 
[23]. IISLafe and H12O utilized a targeted NGS gene 
panel covering 32 genes frequently mutated in AML: 
ASXL1, BCOR, BRAF, CALR, CBL, CEBPA, CSF3R, 
DNMT3A, ETV6, EZH2, FLT3, GATA2, HRAS, IDH1, 
IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PTPN11, 
RUNX1, SETBP1, SF3B1, SRSF2, STAG2, TET2, TP53, 
U2AF1, WT1, and ZRSR2. La Fe performed sequencing 
using the Ion Torrent Genexus System (ThermoFisher 
Scientific), while 12 Octubre used the Ion GeneStudio 
S5 System (ThermoFisher Scientific). Quality assessment 
criteria included uniformity > 85% and a mean read depth 
of 1000X.

Mutational profiling was performed via targeted NGS 
using panels implicated in myeloid pathology. The total 
number of reads obtained in each sample was two mil-
lion, with an average depth of coverage > 1000 reads per 
nucleotide and high uniformity amongst all fragments 

Fig. 1 Model predicting the n-days risk of complications for AML patients 
as a clinical support-decision system
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(median 92%). Data analysis was performed with Ion 
Reporter v4.4 (Life Technologies, Carlsbad, CA, USA), 
identifying single nucleotide variants (SNV) and small 
insertions or deletions (InDels). Default parameters were 
applied, filtering out variants with a total coverage of at 
least 70 reads and a variant allelic coverage of at least 
10 reads. Additionally, variants with a minor allele fre-
quency (MAF) > 0.01 in the general population according 
to the single nucleotide polymorphism database (NCBI, 
dbSNP150 [24]) and/or the 5000-exome sequencing proj-
ect [25] were also rejected as possible polymorphisms 
[26]. Remaining variants were annotated using COSMIC, 
ClinVar, and CKB Jackson Laboratory, allowing those 
variants present in some tumors to be retained, as well 
as those presenting dbSNP and previously identified as 
cancer mutations. This way, only pathogenic or probably 
damaging variants with VAF ≥1% were considered for 
the study. Variants that were absent from dbSNP or COS-
MIC but deemed deleterious due to associated protein-
level functional changes, or due to their occurrence in 
conserved regions, were also included in the final analy-
sis. Cytogenetic analyses were performed locally.

In our dataset, each of the included genes’ Variant 
Allele Frequency (VAF) is represented as a continuous 
value between 0 and 1, corresponding to the percentage 
of mutated cells in a sample that carry an observed gene 
mutation. Cytogenetic variables are binary, where a value 
of 1 indicates that the chromosome is altered, while a 
value of 0 indicates an unaltered state.

It is important to note that, while the intended purpose 
of the model is to estimate outcomes for different time 
horizons after diagnosis (as seen in Fig. 1), all predictions 
are made at the time of diagnosis using only pre-induc-
tion data. No follow-up data is considered in this study, 
and the model does not incorporate continuous follow-
up times, as its focus is on predefined target horizons.

Data curation
A data curation process was carried out to determine the 
variables suitable for inclusion in the predictive model. 
For this purpose, several criteria were considered:

  • Bias criterion: variables exhibiting bias were 
discarded. For instance, a variable with a strong 
correlation with the target should be revised and, if 
this correlation is due to an abnormality during data 
acquisition, the feature must be excluded.

  • Quality criterion: variables with a significant amount 
of missing values that cannot be accurately imputed, 
or variables that are quasi-constant (e.g., a binary 
variable where only a small proportion of patients 
exhibit values different from the mode), were 
removed.

  • Expert criterion: the variables that are suspected 
or known to have an influence on the evolution of 
leukemia were included, provided that their quality 
was sufficient.

The results of the quality check were reviewed in col-
laboration with healthcare professionals. Their exper-
tise was crucial in confirming which variables should be 
included in the model and which should be ultimately 
discarded. The variables that passed the quality criteria at 
any proposed time horizon (90 days, 6 months, or 1 year 
after diagnosis) are detailed in Table 2 (demographic and 
clinical variables) and Table  3 (genetic and cytogenetic 
variables). It is important to note that, because the set 
of observations included in the dataset varies across dif-
ferent target time periods, preprocessing steps were con-
ducted independently for each target.

Quasi-constant variables
Quasi-constant variables are eliminated, specifically 
those where the most frequent value (the mode) is pres-
ent in more than 95% of the patients. In other words, all 
variables in which fewer than 5% of the patients exhibit 
values different from the mode are discarded. This pro-
cess is referred to as quasi-constant filtering.

These variables are excluded due to the insufficient 
number of distinct observations (lack of variability), 
which makes it difficult to determine whether any 
observed relationship with the target is meaningful or 
merely due to chance. In other words, to disambiguate 
these quasi-constant variables, increasing the number of 
obsevations (patients) would be necessary.

Missing data
Several variables with a high proportion of missing val-
ues were excluded from the study to mitigate the uncer-
tainty and potential biases introduced by imputation. 
To guide this process, the IQA missing data assessment 
algorithm, presented in [27], was employed. IQA deter-
mined the optimal imputer for each variable by evaluat-
ing the cross-validation performance of a set of candidate 
methods, including univariate imputers (mean, mode, 
and zero imputation) and multivariate imputers (Iterative 

Table 2 Descriptive statistics for demographic and clinical 
variables used in the final models. The mean, standard deviation, 
and 5th to 95th percentile ranges are computed from all 
patients in the combined H12O+LAFE dataset. Since Gender is a 
categorical, binary variable, a mean of 0.4 indicates that 60% of 
the patients are in category 0 (male) and 40% are in category 1 
(female)

Mean Std 5%–95%
White-Blood-Cells (WBC) 34303.0 55150.2 1103.5–157744.5
Age 63.4 15.0 35.0–84.0
Bone-Marrow-Blasts (BM_Blasts) 54.6 26.1 15.0–94.0
Gender 0.4 0.5 0–1
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Random Forest and Bayesian Ridge Regression). Both the 
proportion of missing values and the imputation quality 
were assessed for each variable. Variables with more than 
40% missing data that could not be satisfactorily imputed 
were removed from further analysis. For each data split, 
imputation models were trained exclusively on the train-
ing set and subsequently applied to impute missing val-
ues in both the training and test sets. This approach 
ensures consistency across splits and prevents overesti-
mating model performance in later stages.

Correlated variables
Correlated variables generally do not improve model per-
formance and may obscure valuable interactions between 
variables when using tree-based algorithms, as well as 
perturbing feature importance estimations [28]. In our 
dataset, the maximum observed absolute Pearson corre-
lation coefficient between any pair of features is equal or 
below 0.6. However, since some groups of variables in our 
data are coincidentally missing in the same patients, the 
imputation process could introduce correlations between 
these variables. For this reason, a post-imputation filter 
is applied. When a pair of variables exhibits an absolute 
Pearson coefficient (r) above 0.8, one of them is excluded 
from the study, with exceptions made for variables whose 
relevance in relation with AML has been firmly estab-
lished. These variables are included in a pre-defined 
allowlist, drawn from the genetic abnormalities recog-
nised in the 2022 European LeukemiaNet guidelines [3]. 
Finally, a second filter ignoring this allowlist is applied 

to discard one variable for each pair with correlations 
exceeding 0.95, as such highly correlated variables are 
likely to convey redundant information.

Figure  2 shows the correlation matrix of variables 
after imputing missing values. It is important to note 
that, since different numbers of patients with unknown 
groundtruth outcomes were excluded from the study for 
each time target, the resulting correlation matrices vary 
slightly. However, for the sake of brevity, and because the 
observed deviations were negligible, we present only the 
matrix corresponding to the 90-day target horizon. As 
shown, no variable pairs exceeded the predefined cor-
relation threshold, resulting in no variables being dis-
carded due to correlation. This was true for the three 
time horizons. The most highly correlated groups (r > 0.5) 
were − 5/5q with − 17/17p and TP53_VAF, and FLT3_VAF 
with FLT3_ITD and FLT3_ITK.

Patient condition labelling
Complete remission (CR) required the absence of extra-
medullary disease, < 5% blast cells in the bone mar-
row (BM), and absence of blasts in the peripheral blood 
(PB). A bone marrow blast count between 5% and 25%, 
along with a decrease of more than 50% from baseline, 
was considered partial remission (PR), regardless of PB 
counts. Patients who did not met the response criteria 
mentioned above were categorized as resistance. Patients 
who died before assessment for response of first cycle of 
induction were classified as induction death. Relapse was 

Table 3 Description of all genetic (VAF) variables and cytogenetic abnormalities. The percentage of mutations (value > 0) of each 
variable is presented

% mut. Mean Std % mut. Mean Std
TET2 24.77 0.10 0.20 EPOR 3.04 0.02 0.08
NF1 6.78 0.05 0.16 ETV6 1.87 0.01 0.07
KMT2A 5.37 0.03 0.15 KDM6A 3.50 0.02 0.10
EZH2 5.37 0.03 0.15 PHF6 2.34 0.01 0.09
JAK2 11.92 0.03 0.11 PRPF40B 0.47 0.00 0.03
CBL 6.07 0.02 0.08 SETBP1 0.93 0.01 0.05
SRSF2 10.75 0.05 0.15 SF3A1 2.57 0.01 0.04
KIT 10.28 0.02 0.08 SMC1A 0.08 0.00 0.04
SF3B1 5.14 0.02 0.09 U2AF1 2.10 0.01 0.08
TP53 23.13 0.12 0.26 VHL 1.40 0.01 0.07
DNMT3A 23.13 0.10 0.19 CALR 0.16 0.00 0.03
ASXL1 9.81 0.04 0.13 MPL 0.62 0.00 0.04
IDH1 18.69 0.06 0.13 SH2B3 0.08 0.00 0.03
KRAS 9.81 0.02 0.07 FLT3_ITK 10.05 0.16 0.37
NRAS 19.86 0.05 0.12 FLT3_ITD 10.51 0.06 0.22
NPM1 14.02 0.05 0.14 −7/7q 9.58 0.11 0.32
IDH2 11.68 0.05 0.14 −17/17p 7.01 0.08 0.28
ZRSR2 2.34 0.02 0.14 −5/5q 12.38 0.15 0.36
RUNX1 16.12 0.08 0.20 t(8;21) 1.64 0.02 0.14
FLT3 23.36 0.06 0.14 inv(16)/t(16;16) 4.67 0.06 0.23
BCOR 0.55 0.05 0.19
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defined as ≥ 5% blast cells in BM or PB, or documented 
extramedullary AML after achieving CR [3].

The follow-up of each patient provides insight into 
their condition (either in remission or experiencing com-
plications) at specific time intervals after being diag-
nosed with Acute Myeloid Leukemia. Consequently, the 
solution adopted in this paper is based on supervised 
learning.

The predictive model is trained using the variables 
associated with a patient and their condition at three 
distinct time periods: 90 days, 6 months, and 1 year. The 
patient’s condition, which serves as the target variable, is 
the outcome value that the model is designed to predict. 

Patients with resistant disease, recurrence, or exitus are 
grouped into a single category labeled with complication. 
These patients are assigned a target value of 1 (positives). 
Patients in remission are classified under the in remission 
category and are assigned a target value of 0 (negatives). 
Thus, the prediction task is framed as a binary classifica-
tion problem.

To determine the patient’s status at a given time, the 
time intervals between several key dates are used: last 
follow-up, death, recurrence, remission, and diagnosis.

Figure  3 illustrates the criteria used to establish the 
n-day patient’s status. Patients are classified as having 
complications within the first n days if they (1) die, (2) 

Fig. 2 Correlation matrix of the dataset in the 90-day target scenario after imputing missing values

 

Fig. 3 n-day state computing rules. In this study, the prediction is made at 3, 6 and 12 months
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experience a recurrence after an initial complete remis-
sion, or (3) have a resistant disease (achieving complete 
remission later than n days). For a target period of n days, 
patients who remain in complete remission with a last 
follow-up occurring after the n-day mark are considered 
to be in remission. However, some patients with com-
plete remission were excluded from the analysis if their 
last follow-up occurred before the n-day threshold, as 
their remission status at the n-day mark could not be reli-
ably confirmed.

Patients with inconsistent date sequences (e.g., with 
missing dates, dates in an incorrect chronological order, 
or with wrong formats) were excluded from the study. 
Table 4 presents the number of observations available for 
each patient condition in the dataset, corresponding to 
each prediction target. Furthermore, Fig. 4 illustrates the 
evolution of patient outcomes (detailing remission and 
complications) as we consider subsequent periods after 
diagnosis. This figure demonstrates how some patients 
transition between different statuses over time with vary-
ing proportions. Due to the lack of data annotations, it 
also shows how some patients with initially unknown sta-
tuses enter the usable dataset as their condition becomes 
known at later time points. In order to provide insight 
into the stability of the target variable as the prediction 
window increases, we calculated the percentage of indi-
viduals who did not change their remission-complica-
tion status. From 90 to 180 days, 392 out of 503 patients 
maintained their status (78%), and from 180 to 365 days, 
430 patients out of 568 retained their condition (76%). 
In other words, at each increment of the prediction 

Table 4 Number of patients in each status for the 
three prediction time windows. The classes balance 
%complications/%remitted is provided in the last row

90 days 6 months 1 year
Remission 189 190 129
Resistant disease 32 10 3
Recurrence 61 68 104
Exitus 146 235 332
Total 428 503 568
%positive/%negative 56/44 62/38 77/23

Fig. 4 Evolution and transfering of patient outcomes at different periods after diagnosis
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period, approximately 75% of the dataset remains con-
sistent, with a trend toward an increasing number of 
complications.

Since we exclude the patients with unknown status at 
each target time horizon, the total number of available 
observations varies across scenarios, as it can be seen in 
Table 4. For this reason, the previous preprocessing steps 
can have different outcomes. Table 5 shows the number 

and sets of variables that were discarded from the analy-
sis at each scenario.

Model building methodology
Ideally, a predictive model designed for decision sup-
port should have the following characteristics: (1) require 
the fewest possible input variables, (2) especially do not 
include features that are irrelevant to the target, and (3) 
achieve the highest possible performance. To meet these 
requirements, a three-stage methodology is proposed: (1) 
rank the variables based on their importance in relation 
to the target, (2) identify relevant and irrelevant variables 
(or, more precisely, those whose contribution is indistin-
guishable from chance), and (3) select the most predic-
tive subset among the relevant features.

The first phase involves estimating the relevance of 
each variable and ranking them by descending order. 
To accomplish this, the SEQENS ensemble algorithm is 
employed [18]. Figure  5 outlines the steps and compo-
nents of the method. The dataset (a) is initially divided 
into multiple train/test partitions (b). These parti-
tions serve as the input to multiple feature selectors (c, 
blocks S1 to Sn). SEQENS employs the sequential fea-
ture search [19], a greedy wrapper feature selection that 
require the use of an inductor. Five inductors are used 

Table 5 Features discarded during preprocessing based on 
various quality criteria at different target time horizons. The 
number of discarded features for each criterion is indicated in 
parentheses. The correlation filter is not included, as no variables 
were removed based on this criterion
Time Missing-data filter Quasi-constancy 

filter
90 (8) cebpa_vaf, bcorl1_vaf, wt1_vaf,

hb, pb_blasts, ldh, stag2_vaf, platelet
(6) thpo_vaf, calr_
vaf, mpl_vaf,
sh2b3_vaf, epas1_
vaf, rad21_vaf

180 (11) cebpa_vaf, bcorl1_vaf, wt1_vaf,
hb, pb_blasts, ldh, smc1a_vaf, platelet,
stag2_vaf, epas1_vaf, bcor_vaf

(3) thpo_vaf, 
rad21_vaf,
sh2b3_vaf

365 (10) cebpa_vaf, bcorl1_vaf, wt1_vaf,
pb_blasts, ldh, stag2_vaf, platelet,
epas1_vaf, bcor_vaf, hp

(5) thpo_vaf, calr_
vaf, rad21_vaf,
smc1a_vaf, 
prpf40b_vaf

Fig. 5 Synopsis of the SEQENS components. (a) The dataset is comprised of observations Oi (rows) and variables or features Fj  (columns). (b) Observa-
tions are divided into a train set and a test set. (c) Each partition is sent to multiple sequential feature selectors. Each selector outputs a scored subset of 
selected variables. (d) Low-scored subsets are discarded. (e) The result is aggregated from the selected subsets. (f) The output is a list of features ranked 
by relevance
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here: XGBoost, Gradient Boosting, Random Forest, 
Support Vector Machine, and K-Nearest Neighbours. 
Consequently, for each partition, five sequential fea-
ture selections are computed, with each selection being 
derived from one of the five inductors available (c). Each 
feature selection outputs two elements: the subset of 
variables that best predict the target and the prediction 
score (d). SEQENS finally integrates the feature selections 
in a voting scheme (e). When a feature is selected in one 
of the sequential feature selections, it receives a weighted 
vote through a refinement that will be introduced subse-
quently in Eqs. 2. A hyperparameter optimization is per-
formed for each inductor used in the SEQENS algorithm, 
tuning them for the task. Table  6 provides a summary 
of the hyperparameter search spaces explored for each 
model type.

The second phase aims to calculate the threshold at 
which a variable can be considered relevant. In other 
words, the goal is to determine how many votes are nec-
essary to ensure that a variable is not selected by chance. 

For this purpose, the target is randomly shuffled, thereby 
breaking any potential relationships between the features 
and the target. It is important to note that only the tar-
get variable is shuffled, meaning that the relationships 
between predictive variables remain intact, preserving 
any potential interactions between them. After shuffling 
the target, SEQENS is reapplied using the same configu-
ration as the original setup, ensuring that the sole source 
of randomness is the shuffling process. The ranking of 
relevant features is then recalculated. This procedure is 
repeated multiple times, shuffling the target recurrently 
to enhance the statistical robustness of the results. This 
method provides an estimate of the number of votes each 
variable can accumulate when the target is randomized 
(i.e., without any genuine information for solving the 
task). As a result, a different vote threshold is calculated 
for each feature. The greater the difference between the 
votes a variable receives with the original target ver-
sus the shuffled target, the more relevant the variable 
is deemed to be. It is important to emphasise that this 
stage represents a significant improvement to the original 
SEQENS algorithm as published in [18].

In order to identify the subset of relevant features, a 
weighted score is computed by integrating the number of 
votes each feature receives and the overall performance 
when the feature is included. Let x1, x2, . . . , xn be the 
n covariates in the dataset, with v1, v2, . . . , vn denoting 
their respective number of votes in the ensemble. Addi-
tionally, let βi

1, βi
2, . . . , βi

vi
 represent the scores of the 

vi sequential feature selections where a variable xi is 
selected, and let S be the total number of feature selec-
tions. The weighted score for each variable is calculated 
using Equation  1. In the undeveloped form of the for-
mula, the left component represents the percentage of 
sequential feature selectors that vote for a variable, while 
the right component is equivalent to the mean score 
of those sequential feature selectors. Since β ranges 
between [0,1], the weighted score is also constrained 
within this range. A weighted score of zero indicates 
either that a variable was never selected or, if selected, 
its predictive power (possibly in combination with other 
variables) was no better than random chance. Conversely, 
a score of 1 indicates that the variable was consistently 
selected and also perfectly predicts the target (again, pos-
sibly in combination with other variables). 

 
weighted_score(xi) =

(vi

S

) (
1
vi

vi∑
s=1

βi
s

)
= 1

S
·

vi∑
s=1

βi
s (1)

Each score βi
s, which has been defined as the score of 

each sequential feature selector where the variable xi 
has been voted, is calculated based on its ROC-AUC. 
The ROC-AUC is adjusted to ensure that a naive model 
(with predictions equivalent to random chance) has no 

Table 6 Hyperparameter search spaces for inductor models in 
SEQENS
Model Parameter Search space
KNeighbors n_neighbors 2 — 10

weights [uniform, distance]
leaf_size 10 — 50

RandomForest n_estimators 20 — 100
min_samples_split 2 — 20
min_samples_leaf 1 — 10
max_depth 1 — 10
max_features [sqrt, log2]

XGBoost booster [gbtree]
objective [binary:logistic]
n_estimators 50 — 150
learning_rate 0.001 — 1
max_depth 1 — 10
grow_policy [depthwise, lossguide]
subsample 0.8 — 1
colsample_bytree 0.5 — 1
colsample_bylevel 0.5 — 1
colsample_bynode 0.5 — 1
reg_alpha 0.0001 — 1
reg_lambda 0.0001 — 1

GradientBoosting loss [log_loss]
n_estimators 20 — 100
learning_rate 0.01 — 1
max_depth 1 — 8
min_samples_leaf 1 — 10
min_samples_split 2 — 20
subsample 0.8 — 1
max_features [sqrt, log2]

SupportVector C 0.1 — 10
kernel [linear, rbf ]
gamma [scale, auto]
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influence on the weighting process (i.e., a ROC-AUC of 
0.5 is adjusted to 0, while 1 remains 1). For a given vari-
able xi and a specific selector s, this adjustment follows 2.

In the case of the shuffled target scenario, a weighted 
score is calculated for each instance of target shuf-
fling. This allows the calculation of a confidence interval 
around the mean score for each feature. Features whose 
original-target weighted score (as defined by Equation 1) 
exceeds the upper bound of the 95% confidence interval 
of the shuffled-target weighted score are considered rele-
vant. This approach is designed to eliminate from consid-
eration any variables whose contribution to the task may 
be due to chance. 

 
βi

s = |ROCAUC(s) − 0.5|
1 − 0.5

 (2)

The third phase involves feature selection, where the goal 
is to identify the subset of relevant variables with the 
highest predictive power. To achieve this, the Backward 
Sequential Feature Search (BSFS) algorithm is employed, 
following a greedy approach [19]. This iterative process 
eliminates the variable that contributes least to predic-
tive power at each step. At each iteration, a subset of size 
L is used as a seed, from which all possible subsets with 
one fewer variable (size L − 1) are generated and evalu-
ated. For example, a subset of three variables (v1,v2,v3) 
generates three subsets of two variables: (v1,v2), (v2,v3), 
(v1,v3). The subset that performs best is then used as the 
seed for the next iteration. The process continues until no 
features remain, with the best-performing subset from all 
iterations being selected as the final solution.

Predictive models
This study compares four types of classifiers that estimate 
the probability that a patient belongs to either the “with 
complications” or “in remission” class. The classifiers are: 
shallow decision trees (DT) with a maximum depth of 5, 
logistic regression (LR), multi-layer perceptrons (MLP) 
as artificial neural networks [29], and extreme gradient 
boosting (XGBoost) as an ensemble tree-based classifier 
[30].

The use of XGBoost is motivated by its widespread 
adoption in clinical decision support systems across a 
range of diseases, including COVID-19 [31, 32], coronary 
diseases [33], and osteosarcoma [34]. In a comparative 
empirical study involving 11 well-established classifiers 
across 71 datasets [35], found that the Stochastic Gra-
dient Boosting Trees (GBDT) algorithm achieved the 
highest mean ROC-AUC. Meanwhile [36], found that all 
considered implementations of GBDT perform excep-
tionally well across various scenarios. The model oper-
ates by training a series of decision trees sequentially, 
where each tree aims to reduce the prediction error by 

improving on the failures of the previous tree. For more 
detailed insights into this model, readers can refer to 
[37, 38]. Practically, XGBoost is particularly notable for 
its comprehensive documentation, faster performance, 
enhanced regularization compared to other GBDT 
implementations [30] and is generally easier to optimize 
for tabular data [39].

Neural networks constitute another state-of-the-
art approaches. The use of MLP has been motivated 
by a recent study [40] comparing XGBoost, MLP and a 
naive classifier (returning the majority class) to estimate 
the overall survival of AML patients, in which the MLP 
exhibited the best predictive power.

DT and LR are simple, interpretable models used here 
to measure the improvement brought by the use of more 
sophisticated but harder to explain non-linear models, 
such as XGBoost and MLP. While DT serves as a baseline 
non-linear machine-learning method, LR is often treated 
as a statistical method, adjusting its coefficients which 
can be interpreted as odds ratio. When complex mod-
els are unable to improve on the performance obtained 
by an explainable baseline model, the latter should be 
preferred.

The hyperparameters of each model (with the excep-
tion of DT) are tuned using Tree Parzen Estimator (TPE) 
[41], a versatile Bayesian optimization method. Following 
each division of the dataset into training and evaluation 
sets, various combinations of hyperparameters are evalu-
ated through cross-validation conducted exclusively on 
the training set. The combination that yields the highest 
ROC-AUC is selected for building the final model. The 
hyperparameter search spaces explored for these predic-
tive models are detailed in Table 7.

Evaluation method and metrics
Cross-validation
The proposed models are evaluated using 5-fold cross-
validation. In each of the five data splits, 80% of the indi-
viduals are used as the training set, while the remaining 
20% serve as the test set. For each fold, hyperparameter 
tuning is performed on additional splits of the training set 
as outlined in Section Predictive models. The imputation 
methods are fitted on the training set and subsequently 
applied to both the training and test sets. Thereafter, two 
predictive models are trained on the preprocessed train-
ing data: the first utilising all available variables, and the 
second employing solely the corresponding selected vari-
ables from feature selection. Using each model, the prob-
ability of complications for every patient in the test set is 
calculated. Performance metrics for each model (across 
all folds) are detailed in the subsequent sections and 
computed by comparing these predictions to the ground 
truth.
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ROC curve
The Receiver Operating Characteristic (ROC) curve is 
generated for each fold by varying the threshold on the 
probability of complications and computing the sensitiv-
ity (True Positive Rate, TPR) and specificity (True Nega-
tive Rate, TNR) at each threshold step. The Area Under 
the Curve (AUC) is also computed for each fold, provid-
ing an overall measure of the model’s performance in 
terms of its balance between sensitivity and specificity. To 
summarize the performance across folds, the ROC curves 
are aggregated by binning the TPR values and averaging 
the corresponding TNR values at each step. Similarly, the 
average AUC is computed. In both cases, the 95% confi-
dence interval of the mean is calculated, offering insight 
into the stability of the model’s performance.

Operating threshold
Throughout the ROC curve, an operating point (i.e., the 
probability decision threshold) can be set by the user 
of the predictive model. By setting this point, the user 
adjusts the model’s behaviour to balance the trade-off 
between sensitivity and specificity.

In this study, a candidate operating point is set at the 
threshold which maximizes Youden’s index [42], calcu-
lated as shown in Equation 3. This point maximises the 

sum of sensitivity and specificity (or equivalently mini-
mises the sum of errors). In addition to this threshold, 
thresholds corresponding to the 25th, 50th, and 75th risk 
percentiles are also used to generate confusion matrices 
comparing predictions with ground truth of each fold. 
Five well-established performance metrics suited for 
imbalanced case scenarios (True Positive Rate or TPR, 
True Negative Rate or TNR, Positive Predictive Value or 
PPV, Negative Predictive Value or NPV, and F1-Score), 
along with Youden’s index (J), are calculated at each of 
these decision thresholds. 

 J = sensitivity + specificity − 1 (3)

External test
To further assess the presented models’ performance, a 
final test was performed using test data from patients that 
were unseen during all previous processes. This separate 
dataset consists of 54 patients from LAFE diagnosed with 
AML, whose status was periodically monitored after they 
began treatment. Although these patients were treated 
in the same hospitals as those in the main dataset, their 
records were obtained in more recent batches, and were 
not derived from a random split of a larger original set. 
While some variables were provided in different ranges, 
they were linearly mapped through consistent transfor-
mations, such as converting percentages (in the range 
0–100) to decimals (0–1), ensuring compatibility across 
datasets.

Three models, each for a specific time horizon, were 
built using all records from the H12O+LAFE dataset as 
a training set. The variables used for each model were 
those selected following the feature selection presented 
in Section Feature selection using the H12O+LAFE data-
set. The external test results in Section External test pres-
ent thepredictive power of the three models.

Imputers described in Section Missing data are trained 
to fill-in missing values in the training set, which are then 
used to impute missing values in the test set. The external 
test set is complete and contains no missing variables or 
values; therefore, imputation was not required.

For each time horizon, the model’s hyperparameters 
were tuned, and the model was trained using the entire 
training dataset, interchanging the target for each spe-
cific prediction interval. These models were subsequently 
used to generate predictions for the 54 patients in the test 
set. The groundtruth labels for these patients were finally 
compared with the model predictions, and the same per-
formance metrics used in prior experiments were calcu-
lated for this evaluation.

Table 7 Hyperparameter search spaces for evaluated models
Model Parameter Search space
XGBoost booster [gbtree]

objective [binary:logistic]
n_estimators 50 — 150
learning_rate 0.001 — 1
max_depth 1 — 10
grow_policy [depthwise, lossguide]
subsample 0.8 — 1
colsample_bytree 0.5 — 1
colsample_bylevel 0.5 — 1
colsample_bynode 0.5 — 1
reg_alpha 0.0001 — 1
reg_lambda 0.0001 — 1

MultilayerPerceptron n_layers 1 — 10
n_neurons/layer 5 — 50
activation [tanh, relu]
solver [sgd, adam]
alpha [0.0001, 1]
batch_size 10 — 100
learning_rate [constant, invscaling, 

adaptive]
learning_rate_init 0.001 — 0.1
max_iter 100 — 300

LogisticRegression C 0.001 — 100
penalty [l1, l2, elasticnet]
solver [lbfgs, liblinear, saga]
l1_ratio 0 — 1
max_iter 100 — 300
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Results
Relevant features
Following the steps described in Section Model building 
methodology, variables were ranked by their relevance to 
the prediction task across all scenarios using SEQENS. In 
this section, we present the ranking results for the com-
bined dataset. Figure  6 illustrates the relevant features 
identified in each scenario, with their scores detailed and 
available for side-by-side comparison in Table  8. These 
relevant features, identified for each dataset and time 
threshold, serve as the starting point for the subsequent 
feature selection task, th results of which are presented in 
Section Feature selection.

As shown in Table 9, nine variables are consistently 
relevant across all three prediction windows: Age, TP53, 
SRSF2, − 7/7q, EZH2, KIT, ASXL1, − 5/5q, and NPM1, 
although their importance varies over time. IDH1, JAK2, 

White-Blood-Cells, and U2AF1, are relevant at earlier 
stages but cease to be relevant at one year. Bone-Mar-
row-Blasts, TET2, FLT3-ITD, and EPOR, which are not 
relevant at three months, become relevant at six months 
and one year. − 17/17p, BCOR and RUNX1 are only rel-
evant at the 3-month prediction window, while MPL is 
relevant only at 180  days. Gender, SF3B1, and KMT2A 
become significant only at the 1-year prediction window.

Feature selection
After identifying the relevant features in each scenario, a 
subset of these was selected using the Backward Sequen-
tial Feature Search algorithm, as explained in Section 
Model building methodology (third phase). Figure  7 
shows the selection process and final result for each of 
the three prediction scenarios using the combined data-
set. The candidates remaining after each iteration of the 

Fig. 6 Features importance ranking for the combined H12O+LAFE dataset. (top) 90-day-prediction. (middle) 6-month prediction. (down) 1-year predic-
tion. Variables are ranked by their difference between their weighted score with the original target and their mean weighted score with shuffled targets. 
Relevant features are highlighted in bold font
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aforementioned feature selection process are shown, with 
each iteration progressively removing one feature from 
the initial set of relevant features.

While the detailed process for each of the nine scenar-
ios is not presented here for the sake of brevity, the com-
plete feature selection results across the three datasets 
and three target periods can be found in Table 10.

Model cross-validation performance
In the nine scenarios (comprising three target periods 
and three datasets), models were optimised, trained, 

and evaluated using both the complete set of variables 
and the selected subset. Table  11 shows the ROC-AUC 
results for the XGBoost classifiers, the multilayer per-
ceptron classifiers, decision trees, and logistic regression. 
Figure 8 presents the ROC curves for the XGBoost mod-
els corresponding to the combined dataset models, along 
with their respective AUC values.

Furthermore, in this section, we present confusion 
matrices for each of the final XGBoost models, which 
achieved the best performance among the three clas-
sifier types, trained using the selected variables of the 
combined dataset. Each matrix includes five well-known 
metrics suited for imbalanced scenarios, along with 
Youden’s index (J). The a-posteriori probability that max-
imizes J is selected as the optimal cut-point, which varies 
depending on the scenario: 90 days (Table 12), 6 months 
(Table 13) and 1 year (Table 14).

Lastly, while only the ROC curves for the combined 
dataset have been presented, the complete ROC-AUC 
results for all nine scenarios can be found in Table  15. 
This table summarizes the change in ROC-AUC when 
the training and validation datasets are limited to the 
selected variables.

External test
Finally, we present the performance metrics of three 
XGBoost models trained on the entire H12O+LAFE 
dataset, each one designed to predict complications at a 
specified time horizon and evaluated using a blind test 
set as explained in Section External test. Figure 9 displays 
the ROC curves and AUC values for each model, while 
Tables 16, 17, and 18 summarize various metrics when 
setting the operating point at different risk thresholds.

Discussion
To the best of our knowledge, no extensive work has 
been conducted on machine learning models specifically 
designed to predict treatment outcomes in acute myeloid 
leukemia (AML) at different time intervals post-diag-
nosis. This study also aims to provide insights into the 
genetic and clinico-biological variables that may serve as 
valuable predictors for estimating the risk of complica-
tions at these time intervals.

In [18], ten feature selection algorithms were com-
pared, demonstrating that, in average, SEQENS iden-
tifies relevant variables more effectively than other 
state-of-the-art algorithms. Consequently, we have pro-
posed a feature selection method based on SEQENS, 
incorporating enhancements to the original version 
such as the combination of five inductors and target 
shuffling (see Section Model building methodology). 
Nevertheless, it would also be worthwhile to apply 
alternative feature selection methods, especially those 
that have not been compared in [18].

Table 8 Relevance evolution over time of the variables 
identified as relevant in two or more time-periods

90 days 6 months 1 year evolution
Age 0.72 0.74 0.74 −
TP53_VAF 0.45 0.55 0.33 ∧
−7/7q 0.35 0.42 0.48 /

NPM1_VAF 0.11 0.51 0.23 ∧
EZH2_VAF 0.21 0.26 0.36 /

ASXL1_VAF 0.20 0.30 0.13 ∧
SRSF2_VAF 0.37 0.17 0.04 \
−5/5q 0.16 0.11 0.25 ∨
IDH1_VAF 0.27 0.23 \
Bone-Marrow-Blasts 0.16 0.29 /

JAK2_VAF 0.24 0.10 \
KIT_VAF 0.07 0.03 0.20 ∨
FLT3_VAF 0.15 0.13 −
TET2_VAF 0.12 0.11 −
White-Blood-Cells 0.09 0.11 −
EPOR_VAF 0.12 0.06 \
U2AF1_VAF 0.08 0.04 \
FLT3_ITD 0.05 0.07 −

Table 9 Relevant features found by SEQENS for the H12O+LAFE 
dataset for each target period. Variables in bold appear as 
common features in at least two time targets
90 days 6 months 1 year
Age Age Age
TP53_VAF TP53_VAF TP53_VAF
SRSF2_VAF SRSF2_VAF SRSF2_VAF
 − 7/7q −7/7q −7/7q
EZH2_VAF EZH2_VAF EZH2_VAF
KIT_VAF KIT_VAF KIT_VAF
ASXL1_VAF ASXL1_VAF ASXL1_VAF
 − 5/5q −5/5q −5/5q
NPM1_VAF NPM1_VAF NPM1_VAF
IDH1_VAF IDH1_VAF Gender
−17/17p BM_Blasts BM_Blasts
JAK2_VAF JAK2_VAF SF3B1_VAF
BCOR_VAF TET2_VAF TET2_VAF
RUNX1_VAF FLT3_ITD FLT3_ITD
FLT3_VAF MPL_VAF FLT3_VAF
WBC WBC KMT2A_VAF
U2AF1_VAF U2AF1_VAF

EPOR_VAF EPOR_VAF
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Among the relevant features identified, nine are consis-
tently important across all three time periods: Age, TP53 
(adverse), − 7/7q (adverse), EZH2 (adverse), KIT, NPM1 
(favorable), ASXL1 (adverse), SRSF2 (adverse) and − 5/5q 
(adverse). The risk associations provided in parentheses 

correspond to those listed in the European Leukemi-
aNet 2022 (ELN2022) classification [3]. While KIT is the 
only gene that is not explicitly linked to a risk category in 
ELN2022, it is still listed as one of the additional recom-
mended genes to be tested at diagnosis (Table 4 in [3]). 

Fig. 7 Features selected by BSFS for the combined dataset. (Top) 3-month target; (Middle) 6-month target; (Down) 1-year target. Each dot represents the 
performance of a model fitted with the remaining feature subset in each step of the selection process. The optimal feature subset is highlighted in green
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In the 3-month and 6-month target scenarios, common 
relevant features include IDH1, JAK2 (additional gene 
recommended to test at diagnosis by ELN2022), U2AF1 
(adverse), and white-blood-cell count. The successful 
development of new therapeutic agents, including IDH1 
inhibitors, is referenced in [43]. For predicting longer-
term complications (6 and 12 months), the relevant fea-
tures are TET2 (an additional recommended gene to be 
tested at diagnosis [3]), EPOR, FLT3-ITD (intermediate), 
and bone marrow blasts.

When analyzing the relevant variables (all exceed-
ing random-target performance) ranked by their mean 
importance (Table 8), we observe that age consistently 
shows the strongest importance across all three time 
horizons, with its importance remaining stable over 
time. Variables exhibiting increasing importance over 
time are − 7/7q, EZH2, and bone-marrow blasts. Alter-
natively, variables with decreasing importance include 
SRSF2, IDH1, JAK2, EPOR, and U2AF1. These findings 

could help to identify the key variables at each time point 
after diagnosis when estimating the risk of complications. 
Variables that are particularly relevant at an early stage 
may be more closely linked to leukemia’s refractoriness to 
treatment. Alternatively, variables that gain importance 
at 6 or 12 months may be more associated with leukemia 
relapse. These insights are of significant value for patient 
management, as they could guide the timing of treatment 
intensification according to the patient’s risk at different 
stages. Further research is warranted to explore these 
observations in greater detail.

Furthermore, we have presented the selected variables 
found for each scenario and collaborating hospital (Table 
10). Age, TP53 (VAF), − 7/7q, and EZH2 (VAF) were con-
sistently found to be intersectional across all three time 
period targets. Additionally, we observed several vari-
ables appearing exclusively in the results from one of the 
hospitals. The two cohorts originate from two hospitals 
and exhibit variation in terms of size and the number of 
genes. While this circumstance is suboptimal, the dif-
ferences may also more accurately reflect the intrinsic 
heterogeneity of the disease. The results suggest that 
the multicentric aspect of this work is key. By combin-
ing multiple datasets, each cohort offers complementary 
information. This heterogeneity of data should enhance 

Table 10 Selected variables for each scenario, considering 
varying time periods and hospitals. Variables that appear in both 
the combined scenario and either of the individual hospital 
scenarios within the same time period are highlighted in bold
Time H12O+LAFE H12O LAFE
90 days Age Age Age

TP53_VAF TP53_VAF ASXL1_VAF
SRSF2_VAF SRSF2_VAF SRSF2_VAF
−7/7q −7/7q −7/7q
IDH1_VAF IDH1_VAF −17/17p
JAK2_VAF JAK2_VAF NPM1_VAF
−5/5q EPOR_VAF −5/5q
EZH2_VAF
FLT3_VAF

180 days Age Age Age
TP53_VAF TP53_VAF TP53_VAF
NPM1_VAF FLT3_ITK NPM1_VAF
−7/7q −7/7q −7/7q
ASXL1_VAF JAK2_VAF ASXL1_VAF
EZH2_VAF EZH2_VAF −5/5q
IDH1_VAF KIT_VAF IDH1_VAF
SRSF2_VAF SRSF2_VAF wbc
TET2_VAF TET2_VAF
EPOR_VAF EPOR_VAF
U2AF1_VAF U2AF1_VAF
FLT3_ITD

1 year Age Age Age
−7/7q −7/7q −7/7q
EZH2_VAF EZH2_VAF −17/17p
TP53_VAF FLT3_ITK TP53_VAF
BM_Blasts Gender BM_Blasts
NPM1_VAF KMT2A_VAF NPM1_VAF
KIT_VAF KIT_VAF ASXL1_VAF
TET2_VAF ETV6_VAF TET2_VAF

Gender

Table 11 Mean ROC-AUC with 95% confidence interval (5-Fold 
cross-validation) at different times after diagnosis using three 
distinct classifiers: XGBoost (XGB), multilayer perceptron (MLP), 
decision trees (DT), and logistic regression (LR)
Time Variables Model ROC-AUC (95% CI)
90-day Selected XGB 0.82 (0.78 − 0.85)

MLP 0.80 (0.76 − 0.85)
DT 0.77 (0.70 − 0.84)
LR 0.78 (0.72 − 0.85)

All XGB 0.80 (0.77 − 0.84)
MLP 0.75 (0.69 − 0.81)
DT 0.69 (0.65 − 0.74)
LR 0.74 (0.65 − 0.82)

6-month Selected XGB 0.84 (0.79 − 0.89)
MLP 0.81 (0.73 − 0.88)
DT 0.78 (0.72 − 0.84)
LR 0.82 (0.75 − 0.89)

All XGB 0.84 (0.75 − 0.92)
MLP 0.79 (0.75 − 0.83)
DT 0.74 (0.69 − 0.79)
LR 0.79 (0.69 − 0.89)

1-year Selected XGB 0.82 (0.76 − 0.87)
MLP 0.82 (0.75 − 0.89)
DT 0.81 (0.77 − 0.85)
LR 0.83 (0.79 − 0.87)

All XGB 0.84 (0.82 − 0.87)
MLP 0.75 (0.63 − 0.86)
DT 0.72 (0.70 − 0.75)
LR 0.77 (0.71 − 0.83)
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the generalisability of predictive models and facilitate the 
identification of relevant variables.

In the validation results using the combined dataset for 
both training and evaluation within a K-Fold setting, the 
XGBoost classifier consistently demonstrates the high-
est average ROC-AUC values across different time points 

and variable sets. Nonetheless, the multilayer perceptron 
model shows competitive performance, especially when 
using the selected variables. Decision trees, serving as a 
baseline model, yield the lowest ROC-AUC values overall, 
although the upper bounds of their confidence intervals 
overlap with the mean ROC-AUC of the top-performing 

Table 12 Mean validation metric values (5-Fold) at different percentile decision thresholds, 90 days after diagnosis
Thres. TPR TNR PPV NPV F1-Score J
p25 0.88±0.05 0.51±0.12 0.7±0.07 0.77±0.12 0.78±0.04 0.39±0.12
p50 0.73±0.05 0.79±0.02 0.81±0.02 0.69±0.08 0.77±0.02 0.52±0.05
p75 0.4±0.03 0.95±0.02 0.91±0.04 0.56±0.06 0.56±0.03 0.35±0.05
max(J) 0.75±0.07 0.81±0.05 0.83±0.04 0.71±0.08 0.78±0.03 0.55±0.04

Table 13 Mean validation metric values (5-Fold) at different percentile decision thresholds, 6 months after diagnosis
Thres. TPR TNR PPV NPV F1-Score J
p25 0.91±0.03 0.53±0.05 0.76±0.04 0.79±0.08 0.83±0.03 0.45±0.08
p50 0.7±0.04 0.85±0.06 0.88±0.05 0.63±0.06 0.78±0.05 0.55±0.1
p75 0.38±0.03 0.96±0.03 0.94±0.04 0.48±0.05 0.54±0.04 0.33±0.06
max(J) 0.77±0.07 0.82±0.09 0.88±0.05 0.69±0.07 0.82±0.04 0.59±0.07

Table 14 Mean validation metric values (5-Fold) at different percentile decision thresholds, 1 year after diagnosis
Thres. TPR TNR PPV NPV F1-Score J
p25 0.85±0.02 0.65±0.07 0.9±0.02 0.56±0.09 0.87±0.01 0.51±0.08
p50 0.6±0.02 0.83±0.06 0.92±0.03 0.38±0.06 0.72±0.02 0.42±0.09
p75 0.31±0.0 0.96±0.04 0.96±0.04 0.29±0.03 0.47±0.0 0.26±0.04
max(J) 0.81±0.06 0.77±0.08 0.92±0.03 0.55±0.1 0.86±0.03 0.58±0.06

Fig. 8 ROC curves computed for the H12O+LAFE dataset using XGBoost through 5-fold cross-validation at different time horizons, using all variables 
(blue) and selected variables (orange). In each case, the mean ROC-AUC with 95% confidence interval is shown
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models. It is worth noting that logistic regression, despite 
being a simple classifier, achieved competitive results, 
comparable to both MLP and XGBoost in several sce-
narios, and even outperformed XGBoost when using 

selected variables in the 1-year scenario. The relatively 
strong performance of logistic regression could be indic-
ative of the underlying linearity or independent relation-
ships between the selected variables and the outcome, 

Table 15 Mean 5-Fold cross-validation ROC-AUC of models trained with all variables (left number) versus models trained with the 
selected subsets for each scenario (right number). The direction of arrows between both numbers indicates if the score has increased 
(↗), maintained (the difference is less than 0.01) (→) or decreased (↘)
Time H12O+LAFE H12O LAFE
90 days 0.804 ↗ 0.816 0.833 ↗ 0.860 0.713 → 0.713
6 months 0.836 → 0.840 0.854 → 0.857 0.773 ↗ 0.807
1 year 0.842 ↘ 0.817 0.834 ↗ 0.848 0.705 ↗ 0.827

Table 16 External test performances of a model trained with H12O+LAFE dataset for predicting 90-day complications. 25, 50 and 75 
percentiles are shown, as well as that which maximizes Youden’s index (J)
Threshold TPR TNR PPV NPV F1 J
p25 0.92 0.44 0.62 0.86 0.74 0.37
p50 0.62 0.63 0.62 0.63 0.62 0.25
p75 0.35 0.85 0.69 0.57 0.46 0.2
p34/max(J) 0.85 0.56 0.65 0.79 0.73 0.4

Table 17 External test performances of a model trained with H12O+LAFE dataset for predicting 6-month complications. 25, 50 and 75 
percentiles are shown, as well as that which maximizes Youden’s index (J)
Threshold TPR TNR PPV NPV F1 J
p25 0.86 0.42 0.64 0.71 0.74 0.28
p50 0.66 0.71 0.73 0.63 0.69 0.36
p75 0.38 0.96 0.92 0.56 0.54 0.34
p66/max(J) 0.52 0.88 0.83 0.6 0.64 0.39

Fig. 9 ROC curves and AUC values computed for the external test set when predicting at different time horizons, using only selected variables
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suggesting that complex models may not always offer 
substantial improvements in predictive accuracy.

Given that XGBoost’s performance led in most of the 
scenarios, demonstrating robust performance across 
time horizons and variable sets, our subsequent discus-
sion focuses on its results. Nonetheless, the competi-
tiveness of logistic regression highlights the potential of 
simpler, more interpretable models, particularly in sce-
narios where the relationship between features and out-
comes is less complex or when the goal is to maintain 
transparency.

We observed that the mean model performance 
remained stable across the different time periods. 
Although this may appear counterintuitive, as extending 
the time interval typically introduces greater uncertainty, 
the stable performance could be explained by shifts in 
the distribution of the outcome variable over time. As 
patients advance through their treatment, they transi-
tion from a state of resistant disease to other outcomes 
such as remission, relapse, or death (Fig. 4). Resistant 
disease could be considered an intermediate condition, 
which may be more difficult to distinguish from com-
plete remission (a non-complication). However, as time 
passes, the dataset is increasingly populated by patients 
who either experience complications or approach exi-
tus. Consequently, in the longer term, the predictive task 
is simplified to essentially differentiating between exi-
tus and non-exitus, wich may be less complex and could 
explain the stable model performance over time despite 
the increasing uncertainty.

In regard to the results obtained with the external test 
set, a decrease in model performance is observed when 
compared to the cross-validation results (approximately 
from 0.8 ROC-AUC to 0.7). This is to be expected but 
still represents a promising result in that it maintains a 
ROC-AUC of approximately 0.7 when applied to unseen 
observations during the training. This ROC-AUC 
decrease can be attributed to several factors. The external 
test set is relatively small, comprising 54 patients. At the 
time of this study’s publication, further test data are not 
yet available for analysis. Indeed, acute myeloid leukemia 
is a rare disease, with approximately 3.7 cases diagnosed 
per 100,000 inhabitants per year in Spain. Consequently, 
the collection of data from new patients is a medium to 
long-term ongoing process. Nevertheless, the outcomes 
yielded by this preliminary cohort are promising in 

terms of predictive power, and the model is anticipated 
to demonstrate robust generalisation while augmenting 
the sample size. Secondly, the external cohort comprises 
solely LAFE patients. As demonstrated in Table 1, mod-
els trained and evaluated on the LAFE data consistently 
exhibited lower scores, indicating that predictions on this 
dataset may be more challenging. This may have contrib-
uted to the lower performance observed in the external 
test. Besides, the external cohort data was collected at 
a later stage and under potentially different conditions, 
raising the possibility of data drift (i.e., the distribution of 
the data may have shifted over time).

The results presented in Table 15 show primarily con-
sistent model performance when comparing models 
trained using all variables with those trained on only 
selected subsets of variables. Interestingly, there is an 
overall tendency for improved performance in the lat-
ter scenario, where only selected variables are used. As 
observed in Table 11, this trend holds across the three 
classification models evaluated in this study. Specifically, 
performance improvements with selected variables were 
most pronounced for the multilayer perceptron and deci-
sion tree models. It is worth noting that neither of these 
two model types served as inductors within SEQENS. 
This outcome underscores SEQENS’ capability to effec-
tively identify the relevant features that have the highest 
predictive power for estimating the risk of complications. 
Although alternative feature selection algorithms could 
be tested (e.g., exploring more variable combinations or 
genetic approaches), BSFS has demonstrated its effective-
ness in isolating the smallest subset of features that retain 
the most critical information.

Conclusions
In this paper, we present machine learning models 
for predicting the risk of complications at 3, 6, and 
12 months in AML patients, utilizing demographic, clin-
ico-biological, genetic, and cytogenetic data available at 
diagnosis. We propose the use of an enhanced version of 
SEQENS as a relevant feature identification methodol-
ogy that preserves valuable potential interactions, which 
is essential for addressing a complex, multifactorial dis-
ease. This way, we identified a set of relevant features for 
each distinct time period, with common variables across 
all time periods including Age, TP53, − 7/7q, EZH2, 
KIT, NPM1, ASXL1, SRSF2, and − 5/5q. Among these, 

Table 18 External test performances of a model trained with H12O+LAFE dataset for predicting 1-year complications. 25, 50 and 75 
percentiles are shown, as well as that which maximizes Youden’s index (J)
Threshold TPR TNR PPV NPV F1 J
p25 0.79 0.37 0.69 0.5 0.74 0.16
p50 0.59 0.68 0.77 0.48 0.67 0.27
p75 0.32 0.89 0.85 0.42 0.47 0.22
p53/max(J) 0.59 0.74 0.8 0.5 0.68 0.33
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backward feature selection consistently selected Age, 
TP53, − 7/7q, and EZH2 in all three time intervals. Nota-
bly, most of these variables align with the risk factors out-
lined by the 2022 European LeukemiaNet [3].

Using the features selected by the SEQENS-based 
methodology, the XGBoost predictive models achieved 
mean ROC-AUCs of 0.82 (95% CI: 0.78−0.85) at 90 days, 
0.84 (95% CI: 0.79−0.89) at 6 months, and 0.82 (95% CI: 
0.76−0.87) at 12 months post-diagnosis. When evaluated 
on a separate cohort of 54 unseen patients, we obtained 
ROC-AUCs of 0.71, 0.77, and 0.68, respectively. In most 
cases, the predictive power of models using the selected 
variables was equal to or greater than those using the 
full feature set, validating the effectiveness of the pro-
posed methodology. This highlight the practical benefits 
of reducing the number of features, which can decrease 
the costs of data collection while maintaining predictive 
performance.

The model described in this article is available for trial 
at https://lmacre.iti.es, where users can input patient data 
via a form to receive a risk percentile relative to the train-
ing population. Those interested in testing the tool can 
request access by contacting aml-team@iti.es.

The findings of this study, which are currently under-
going further validation in collaborating hospitals at the 
time of publication, suggest that the proposed model 
could serve as a valuable decision support tool for man-
aging AML patients. The results of this ongoing valida-
tion, which involve new, unseen patient data, will be 
crucial in determining the long-term applicability and 
usefulness of our model. By offering risk-based insights 
derived from a reduced set of highly predictive variables, 
the model may assist in therapeutic decision-making and 
guide the frequency of follow-up visits for each patient.

As future work, ongoing efforts include collecting addi-
tional data to expand the external test cohort, thereby 
increasing the confidence in the results. This process also 
allows for the gradual expansion of the training dataset, 
enabling the evaluation of its impact on model predictive 
power and generalisation. We also recommend exploring 
predictive models based on survival analysis. Such tech-
niques would enhance the handling of censored patients 
and provide temporal cohesion in predictions across dif-
ferent time intervals, thereby improving the robustness 
and clinical applicability of the models. Additionally, fur-
ther research could focus on AI explainability, address-
ing a key barrier to the clinical adoption of AI tools by 
making the models’ predictions more transparent and 
interpretable.
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