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Abstract
The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their 
unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly 
Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. 
However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER 
methods without delving into their learned representations. In this work, we explore the untapped potential 
of these representations by considering their contextual richness and entity-specific information. Our proposed 
methodology extracts representations generated by a transformer-based NER model on EHRs data, combines 
them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for 
a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer 
(NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 
231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the 
effectiveness of extracting and employing high level textual representations that capture relevant information as 
named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the 
information in EHRs that the model considers the most crucial during the decision-making process. We validated 
this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical 
attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our 
method, showcasing statistically significant improvements over traditional manually extracted clinical features.
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Introduction
The advancement of medicine is inherently tied to the 
availability and accessibility of extensive clinical data. 
Among the most valuable sources of information about 
patient health, Electronic Health Records (EHRs) stand 
as a vital resource, meticulously documenting the medi-
cal history and clinical procedures of individuals.

We can distinguish between structured and unstruc-
tured EHRs. Structured EHRs contain organized infor-
mation, often in a tabular form, which makes the data 
more comprehensible to computers. In contrast, unstruc-
tured EHRs contain information in free text form. EHRs 
are frequently presented in an unstructured format, pos-
ing challenges for systematic processing and analysis [1]. 
Consequently, automating the processing of data within 
unstructured EHRs has become a critical challenge in 
medical research, as it holds the potential to uncover hid-
den insights and enhance patient care. The use of Natu-
ral Language Processing (NLP) tools, specifically Named 
Entity Recognition (NER) has proven instrumental in 
extracting meaningful information from these complex 
medical documents, especially with the introduction of 
large-scale pre-trained models built on the Transformer 
architecture [2].

Whilst existing literature has explored methods utiliz-
ing NER models to extract information from unstruc-
tured data, the embedding representations created 
by these models have not received due consideration. 
Transformers have demonstrated an exceptional ability 
to create dense embeddings of text data capturing the 
contextual relationships between words and entities. This 
contextual embedding potentially contains information 
not only about the presence of individual entities but also 
related to the relationships and context in which they 
appear. Effective extraction and use of these enriched 
informations would offer an opportunity to enhance 
the performance of automated clinical tasks based of 
unstructured EHRs analysis.

In this work, we propose HEAL (Hierarchical Embed-
ding Attention for overall survivaL), an interpretable 
methodology that uses NER-driven EHR representations 
combined through a hierarchical attention mechanism 
to highlight the most clinically relevant information in 
unstructured data for medical applications. As a case of 
study, we focus on Overall Survival (OS) prediction in 
Non Small Cell Lung Cancer (NSCLC) patients. NSCLC 
is the most prevalent form of lung cancer, account-
ing for an estimated 135,000 deaths per year. Accurate 
prognosis is crucial for effective treatment planning and 
improved patient care. Despite the vast amount of clini-
cal data available in unstructured EHRs [3], the narrative 
sections have not yet been fully utilized for building pre-
dictive models in this context. To address this limitation, 
our model extracts clinically relevant features from EHRs 

and transforms them into a representation specifically 
designed to address the unique challenges associated 
with predicting OS in NSCLC.

Our main contributions are: (i) the development of a 
completely automated process for extracting a rich rep-
resentation from unstructured EHR data by utilizing 
NER and attention mechanisms; (ii) the validation of our 
approach on a real-world clinical problem, i.e. OS predic-
tion in NSCLC; (iii) the comparison with clinical features 
manually extracted by human experts, which validates 
the hypothesis that EHRs can yield more informative 
features; (iv) the quantitative and qualitative evaluation 
of attentional maps generated by our model enhanc-
ing model transparency and interpretability by domain 
experts; (v) ablation tests to validate each module of the 
pipeline, showcasing the importance of a multiclass NER, 
that refers to the task of identifying and categorizing 
multiple types of named entities within text.

Background and motivations
The use of NER has proven instrumental in extract-
ing meaningful information from unstructured EHRs. 
For many years, research on clinical NER lagged behind 
the research on general domain NER, mostly due to the 
lack of available clinical data. To alleviate this problem, 
research contests (i2b2/n2c2, CCKS, SemEval, etc.) and 
the research communities (MIMIC, THYME, MED-
LINE, etc.) provided public datasets that are highly cor-
related with the progress of clinical NLP. The application 
of machine learning and deep learning methods, such as 
CRF [30] and BiLSTM [31], in clinical NER tasks resulted 
in remarkable results [32]. However, the actual boost to 
this field was provided by the advent of large-scale pre-
trained models built on the BERT architecture, a deep 
learning model based on the Transformer paradigm. 
This is evident in Table 1 which shows the most recent 
papers in the NER context applied to EHRs. Specifi-
cally, we observe that 8 out of 12 employ a BERT-based 
approach, which aligns with the methodology utilized in 
our study. Concerning the clinical entities domain, most 
papers cover general topics and only three papers focus 
on a specific pathology [22, 26, 29]. This implies a lack of 
depth and detail on a single disease or condition, which 
could limit the understanding and practical application 
of information. In other words, there is not enough focus 
on specific issues that may require a more in-depth treat-
ment to be understood and managed effectively. Addi-
tionally, nearly all of these papers address a multiclass 
problem, given the prevalence of multiple entities rather 
than just one. In light of this, our approach involves 
implementing a multiclass NER system. We believe that 
the distinctive classes within the NER embeddings can 
provide significant benefits when using such representa-
tions to train a predictive model. Among the literature 
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examined, we found only two papers that include NER 
to build a predictive model [23, 25], but they do not use 
NER embeddings as feature representations. Instead, 
entities are extracted through a NER system and sub-
sequently transformed into numerical representations, 
primarily using various embedding techniques such as 
BERT-based models or Word2Vec. This process, how-
ever, with a Transformer based model results in the loss 
of EHRs contextual information surrounding the entities, 
which can provide valuable insights for a more compre-
hensive and accurate understanding. In terms of predict-
ing overall survival, which measures the length of time 
patients remain alive from diagnosis or treatment initia-
tion, conventional studies have predominantly relied on 
manually extracted clinical features [33, 34]. However, 
there is a significant gap in research where NER is unde-
rutilized for the analysis of unstructured EHRs as a pri-
mary data source for prognostic predictions. Integrating 
NER into survival prediction models offers the potential 

to uncover previously unrecognized patterns and asso-
ciations within EHR data, ultimately enhancing the accu-
racy of prognostic assessments.

Methods
The proposed approach is depicted in Fig. 1. It starts with 
a collected dataset of EHRs, which serves as input to a 
NER system for generating embedding representations of 
words within each EHR sentence. The subsequent stage 
involves HEAL, where a hierarchical attentional mecha-
nism is employed for weighted aggregation of embedding 
representations. Initially, words are aggregated within 
each sentence, followed by aggregation at the sentence 
level across patient reports. The resulting output is then 
forwarded to a risk assessment network. The outputs 
consist of patients’ OS predictions and associated expla-
nations, reflecting the significance attributed to report 
sentences by the attention mechanism for the prognostic 

Table 1 Recent advances in the State-of-the-Art of NER applied to EHR
Model Ref. NER Dataset Application Entities NER Performance Entity 

Usage
MC-BERT + BiL-
STM + CNN + MHA + CRF

[4] CCKS17 [5], CCKS19 
[6], cEHRNER [7]

NER in clinical 
notes

9 entities: Body, Treatment, Signs, 
Check, Disease, Lab, Medicine, Opera-
tion, Symptom

F1: 94.2%, 86.5%, 
92.3% on CCKS17, 
CCKS19, cEHRNER

None

BiLSTM-CNN-Char [8] 2010 i2b2/VA [9], 2014 
n2c2 [10], 2018 n2c2 
[11]

NER in clinical 
notes

4 entities: Medical Problem, Treatment, 
Test, Drug

F1: 87.6%, 96.1%, 
89.9% on i2b2/VA, 
2014 n2c2, 2018 n2c2

None

MUSA-BiLSTM-CRF [12] CCKS17 [5], CCKS18 
[13]

NERin clinical 
notes

5 entities: Disease, Symptom, Examina-
tion, Treatment, Body part

F1: 92.0%, 91.8% on 
CCKS17, CCKS18

None

BERT [14] 2018 n2c2 [11], 2009 
n2c2 [15], 2010 n2c2 
[9], 2012 n2c2 [16], 
ShARe13 [17]

NER in clinical 
notes

4 entities: Drugs, Dosages, Reasons, 
Adverse drug events

F1: 90.0%, 80.9%, 
88.4%, 87.5%, 82.6% 
on 2018 n2c2, 2009 
n2c2, 2010 n2c2, 
2012 n2c2, ShARe13

None

BERT-BiLSTM-CRF [18] ShARe13 [17], 
ShARe14 [19]

NER in clinical 
notes

1 entity: Disorder F1: 79.9%, 80.7% on 
ShARe13, ShARe14

None

BERT [20] i2b2-2010 [9], VietBi-
oNER [21]

NER in clinical 
notes

3 entities: Medical Problem, Treatment, 
Tests

F1: 87.7%, 80.9% on 
i2b2-2010, VietBioNER

None

CancerBERT [22] Proprietary dataset 
(EHRs)

Breast cancer 
phenotypes

8 entities: Hormone receptor type, 
Hormone receptor status, Tumor size, 
Tumor site, Cancer grade, Histological 
type, Tumor laterality, Cancer stage

F1: 87.6% None

scispaCy [23] MIMIC-III [24] NER in clinical 
notes

2 entities: Disease, Chemical None Mortality 
prediction

med7 [25] MIMIC-III [24] NER in clinical 
notes

7 entities: Dosage, Drug, Duration, 
Form, Frequency, Route, Strength

None Mortality 
prediction

Rule-based [26] CCKS20 [27], gastros-
copy text dataset, 
mixed dataset

Breast cancer 
phenotypes

6 entities: Disease, Anatomy, Imaging, 
Lab, Drug, Operation

F1: 87.9%, 99.8%, 
96.2% on CCKS20, 
gastroscopy text, 
mixed dataset

None

Ensemble of CRF, mul-
tilingual Transformers 
(BERT, XLM RoBERTa) and 
LSTM

[28] Proprietary dataset 
(hospital EHRs)

NER in clinical 
notes

11 entities: Clinical Dept, Date, Dura-
tion, Evidential, Frequency, Occur-
rence, Problem, Test, Time, Treatment, 
Value

F1: 89.2% None

RoBERTa [29] Proprietary dataset 
(hospital EHRs)

Breast cancer 
information

23 entities related to Breast Cancer 
domain

F1: 95.0% None
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task. Subsequent sections provide a more detailed exami-
nation of these components.

Materials
We included clinical reports from the CLARO data-
set [35, 36], which comprises 231 patients diagnosed 
with stage III and IV NSCLC. In total, we collected 829 
clinical reports, covering reports about oncological and 
radiotherapy visits. These reports were gathered prior to 
the initiation of each patient’s therapy and include a com-
prehensive array of patient information, such as personal 
data, medical history, reason for visit, notes on histology 
and imaging, physical examinations, preliminary diagno-
sis, prescriptions and advice, conclusions, and follow-up 
details.

The population was enrolled under two different 
approvals of the Ethical Committee: the first approved on 
30 October 30 2012 and registered at ClinicalTrials.gov 
on 12 July 2018 with Identifier NCT03583723; the second 
approved on 16 April 2019 with Identifier 16/19 OSS. 
Written informed consent was obtained from all patients. 
The authors confirm that all ongoing and related trials for 
this intervention are registered.

NER system
NER in EHRs is a NLP technique aimed at the automatic 
recognition and classification of biomedical entities. 
These entities can be individual words or phrases within 
a text that pertain to predefined biomedical categories, 
referred to as entity types. These entity types provide fun-
damental clinical information with respect to a specific 
objective, such as diagnosis, patient health status, ther-
apy, etc.

Our proposed NER approach, illustrated in Fig. 2, con-
sists of three steps: corpus generation, model training, 
and model validation. The first step involves annotating 
clinical notes, followed by sentence detection and tokeni-
zation. With the assistance of two domain experts, we 
defined 25 entity types related to the NSCLC domain, as 
detailed in Table 2, and performed the annotation using 
Doccano [37].

In the annotated corpus, sentences were separated 
using the dot character (‘.’) and the double new line 
character (‘\ n\ n’), as two occurrences typically indi-
cated the start of a new sentence. After sentence detec-
tion, each sentence underwent tokenization, where it 
was broken into atomic units using various separators, 

Fig. 2 Proposed NER approach. Panel 1) shows the corpus generation, including annotation and the pre-processing of the raw text (sentence detection 
& tokenization). Panel 2) shows the fine-tuning phase, whereas panel 3) the validation phase. Both 2) and 3) are carried out considering a 10 fold cross-
validation experimental setup (10 fold CV black dotted box)

 

Fig. 1 Proposed approach
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such as spaces, brackets, and punctuation marks. This 
process resulted in the creation of a corpus comprising 
annotated sequences, with an entity type label assigned 
to each token. The annotated corpus was then iteratively 
split into training and test sets using a stratified 10-fold 
cross-validation per patient, meaning that reports from 
the same patient were entirely included in a single fold.

To assess the reliability of the annotations, we com-
pared a second independent clinician’s annotations with 
the original using the F1-score [38], a measure favored in 
prior studies [39–41]. The F1-score was computed both 
at the token and entity levels. At the token level, correct 
annotations are those with mutual agreement between 
annotators, while at the entity level, full agreement across 
all tokens is required for correctness. The average IAA 
scores were 0.98 ± 0.04 for tokens and 0.97 ± 0.08 for 
entities, indicating overall reliability.

In the second step, we fine-tuned the MedBITR3+ 
checkpoint, derived from the pre-trained Biomedical 
BERT for ITalian (BioBIT) [42], on the training set. Bio-
BIT uses Italian translations of English resources and a 
domain-specific Italian corpus. We chose MedBITR3+ 
for its strong performance in NER tasks [42]. Fine-tuning 
adapts it to recognize NSCLC-specific biomedical enti-
ties, addressing class imbalance in our dataset (Fig. 3), 
where some entity types (e.g., FAM) are less frequent 
than others (e.g., POS). To mitigate this, we applied the 
focal loss function [43], effective in NER tasks [44]. Spe-
cifically, we adopted the focal loss function as described 
in [45].

In the third step, the fine-tuned model was evaluated 
on the test set using F1-score, Precision, and Recall. Enti-
ties were considered correctly predicted only when all 
tokens matched the ground truth exactly. The perfor-
mance of MedBITR3+ was compared with mBERT [46] 
and UmBERTo [47], demonstrating that MedBITR3+ 
outperformed both with an F1 score of 84.3% ± 9.4%. 
This result aligns with the scores reported in Table 1, 
confirming the consistency of the model’s performance 
with existing research [45]. This success can be attrib-
uted to MedBITR3+’s specialized pre-training on Italian 
biomedical texts, which allows it to deeply understand 
medical terminology and nuances, crucial for accurately 
interpreting clinical reports.

HEAL: hierarchical embedding attention for overall 
survival prediction
Before feeding survival data into the risk assessment 
neural network, a hierarchical attentional mechanism is 
employed to generate a comprehensive patient represen-
tation from all sentences within their clinical reports.

HEAL is depicted in Fig. 4 and presented in the follow-
ing subsections

Table 2 Entity types acronyms and descriptions, sorted 
alphabetically based on the “Entity type” column
Entity type Acronym Description
Anatomical 
position

POS The specific anatomical location of the 
cancer or anomaly, such as the right 
lung.

Cancer CAN Physicians’ descriptions of tumors (e.g. 
‘adenocarcinoma’) and metastasis 
concepts (e.g. ‘bone metastasis’).

Cancer stage STA The stage of the tumor at the time of 
diagnosis.

Comorbidity COM Diseases or conditions that co-occur 
with a cancer diagnosis.

Date DAT Dates of exams, diagnosis, and follow-
up implicity mentioned in the clinical 
notes.

Dosage DOS The dosage of drugs (e.g., 25 mg) and 
therapy.

Drug DRU The names of drugs used in the treat-
ment of cancer patients.

Exam EXA All the medical examinations under-
gone by a cancer patient.

Familiarity FAM Cancer cases in the patient’s family 
clinical history.

Focal anomaly FAN Any type of abnormality or suspicious 
pathology, such as nodules and lesions.

Height HEI Height of a cancer patient.
Histology HIS Histological characteristics of the 

cancer, such as ‘squamous’.
Mass MAS Abnormal growth of cells that forms a 

mass or tumor within the tissue.
Medication 
frequency

FRE The frequency of medication 
administration.

Morphology MOR Shape and structure of the tumor, 
such as a solid formation with irregular 
margins.

Numerical Rating 
Scale

NRS Pain level on a scale from 0 to 10, with 
0 indicating no pain and 10 represent-
ing the worst tolerable pain.

Patient event PEV When a treatment has been given 
to a patient, reduced, changed, or 
discontinued.

Patient symptom PSY Symptoms experienced by the patient.
Quantity habits QHA The quantity of cigarettes smoked by 

the patient or alcohol consumed.
Therapy TPY The name of the therapy used to treat 

patients, including radiotherapy and 
surgery.

Therapy duration DUR The duration of a patient’s cancer 
treatment or the period during which a 
specific drug was administered.

Teraphy line TPL The number of cycles within a therapy.
TNM 
classification

TNM T describes the tumor’s size, N indicates 
the status of nearby lymph nodes, M 
indicates the presence of metastasis.

Tumor 
progression

TUP Changes in the rate of growth or inva-
siveness of cancer cells.

Weight WEI Weight of a cancer patient.
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Problem statement
Survival data offers three essential pieces of informa-
tion for each instance or patient: observed features, time 
elapsed since features were first collected, and a label 
indicating whether the event (e.g., death) has occurred. 
In our approach, we consider survival time as discrete, 
with a finite time horizon. The time set, denoted as T, 
is defined as T  = {0, …, Tmax}, where Tmax represents 
the predetermined maximum time horizon. Given that 
the event of interest may not always be observed due 
to patients being lost to follow-up, survival data often 
involve censoring. Censoring happens when the obser-
vation of an individual ends before the event of interest 
occurs. Patients may cease participating in the study or 
being monitored before the event of interest takes place. 
Addressing this challenge is a crucial aspect of our analy-
sis. We define censoring as the event 0 and the set of pos-
sible events, including censoring, as K = {0, 1}, where 
1 represents the event of interest, i.e. the death of the 
patient. Each data point or instance is therefore a triple 
(x,s, k) where x∈X  is a D-dimensional vector of features, 
s∈T  is the time at which the event ‘death’ or censoring 
occurred, and k∈K  is the event ‘death’ or censoring that 
occurred at time s. The dataset D = {(x(i), s(i), k(i))}N

i=1 
describes a finite set of observed instances or patients in 
our analysis. For each tuple (x(i), s(i), k(i)) with k(i) ̸= 0 

our focus lies in determining the actual probability 
P (s = s(i), k = k(i)|x = x(i)). This probability mod-
els the likelihood that a patient with features x(i) will 
encounter the event k(i) at the specific time s(i). Given 
the inherent limitation that the true probability can-
not be precisely ascertained from any finite dataset, our 
objective is to derive estimates P̂  that serve as approxi-
mations to these true probabilities.

Hierarchical attention mechanism
For each patient the vector of features x(i) is derived by 
harnessing NER-driven representations extracted from 
their clinical reports and a hierarchical attention mecha-
nism to combine these representations. Specifically, for 
each token identified as part of an entity within a sen-
tence, we extract the embedding representation ej  of size 
dE  generated by the NER system prior to the classifica-
tion layer as shown in Fig. 4. In this approach, only the 
embeddings of the entities identified within the sentence 
are considered, without incorporating the surrounding 
context. However, the loss of information is mitigated 
by the contextualized token representations produced 
by the NER Transformer model, which inherently cap-
tures broader contextual information [2]. Addition-
ally, sentences that do not contain any entity tokens are 

Fig. 3 Histogram of entity types. On the y-axis we show the count (on the left) and the a-priori class probability (on the right) of each entity type. On the 
x-axis we show the various entity types. In addition to the histogram, we also display the Lorenz curve (in orange), which illustrates the distribution of 
entities in terms of their occurrences
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discarded, as they do not provide relevant information 
for the NER model.

Subsequently, we introduce a weighting step trough 
a soft attention layer (token attentional layer), that pro-
vides the sentence embedding sl as follows: 

 
sl =

Q∑
j=0

wjej  (1)

where wj  is the weight produced by the soft attention for 
the token embedding ej , Q is the total number of tokens 
in the input sentence and l ranges from 1 to the total 
number of sentences R in the patient clinical reports that 
contain at least one token classified as an entity. Since 
each sentence may contain a variable number of tokens 
and each clinical report consists of a different number 
of sentences, both Q and R are defined dynamically at 
runtime for each mini-batch. Specifically, Q is set to the 
maximum number of tokens in a single sentence across 
all sentences in the mini-batch, while R is defined as 
the maximum number of sentences containing at least 
one token classified as an entity across all patients’ clini-
cal reports in the mini-batch. To ensure uniform tensor 
shapes in the mini-batch, we use padding with all-zero 
vectors of size dE , which receive a weight of zero from 

both the token-level and sentence-level attention layers, 
ensuring they do not contribute to the final representa-
tion. It is worth nothing that sl has the same size dE  of 
the token embedding.

The sentence embeddings, originating from all sen-
tences within a patient’s clinical reports, are then input-
ted into a sentence attentional layer, i.e., the right most 
block in Fig. 4 that compute 

 
x(i) =

R∑
l=0

wlsl, (2)

where wl is the weight produced by the sentence atten-
tional layer for the sentence embedding sl. It is a com-
prehensive representation of the patient’s clinical 
information and serves as the vector of features for the 
risk assessment network in Fig. 4. It is worth noting that 
this layer incorporates a soft attention mechanism that 
shares weights with the token attentional layer. This is 
possible because both the token and sentence embed-
dings have the same dimensionality, dE , allowing the 
use of a single soft attention layer implemented as a fully 
connected layer of size dE . The purpose of weight shar-
ing is twofold: first, to decrease the overall number of 
network parameters, thereby mitigating overfitting on 

Fig. 4 Proposed architecture: The architecture utilizes token embeddings generated by the NER system before the classification layer. Each token em-
bedding classified by the NER system as an entity (Entity Embedding) undergoes a weighting process through a token attentional layer. This produces 
a weighted average of the same embedding size, named as Sentence Embedding. The sentence embeddings derived from all sentences in a patient’s 
clinical reports, are then fed into a sentence attentional layer, which shares weights with the token attentional layer. The outcome is a weighted average 
vector, maintaining the original embedding size dE , referred to as the patient embedding x(i) . The patient embedding is the input of the risk assess-
ment network
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small data and reducing computational complexity; sec-
ond, to enhance the transferability of features between 
layers since the clinical relevance of a sentence is cor-
related to the clinical relevance of a recognized clinical 
entity. Hence, the result is a weighted average vector, 
maintaining the same embedding size dE  and named as 
the patient embedding.

Risk assessment network
The body of literature addressing survival analysis often 
approaches the event of interest as the first hitting time 
of an underlying stochastic process. In a medical con-
text, survival analysis pertains the duration a patient sur-
vives. A significant challenge in survival analysis involves 
understanding the relationship between the distribu-
tion of hitting times and the covariates, which represent 
individual features. Previous research in this field often 
assumes a specific form for the underlying stochastic 
process, utilizing available data to learn the relationship 
between covariates and the parameters of the model, 
subsequently deducing the connection between covari-
ates and the distribution of first hitting times, also known 
as the risk of the event (e.g., the risk of death). In this 
paper we take a markedly different approach to survival 
analysis by leveraging a deep neural network named 
DeepHit [33]. DeepHit learns the distribution of first hit-
ting times directly, without making assumptions about 
the form of the underlying stochastic process. The objec-
tive is to instruct the risk assessment network to acquire 
the knowledge of P̂ , the estimate for the joint distribu-
tion of the first hitting time and competing events. Deep-
Hit consists of a shared sub-network (SN) and multiple 
cause-specific sub-networks (CSNs), contingent upon 
the number of events k. To guarantee the learning of the 
joint distribution of k competing events, as opposed to 
the marginal distributions of individual events, Deep-
Hit employs a single softmax layer as its output layer. 
Furthermore, the model incorporates a residual con-
nection linking the input covariates to the input of each 
cause-specific sub-network, contributing to the overall 
robustness and effectiveness of the learning process. In 
our specific context, the sole event under consideration 
is the patient’s death, denoted as k = 1. Consequently, 
we have just one cause-specific subnetwork (CSN). The 
shared sub-network and the cause-specific sub-net-
work are composed of LS  and LC  fully-connected lay-
ers, respectively. Here, LS  and LC  represent the hidden 
layers of the SN and CSN. The number of these layers, 
along with the number of hidden neurons, is determined 
through random search optimization, detailed in subsec-
tion 5.3. The shared sub-network takes clinical covariates 
x(i) as inputs and generates an output vector fs(x(i)) 
capturing the latent representation of covariates. On the 
other hand, the cause-specific sub-network takes pairs 

z = (fs(x(i)), x(i)) as inputs and produces an output vec-
tor fc(z) representing the probability of the first hitting 
time. Notably, these sub-networks incorporate both the 
output of the shared network and the original covariates 
as inputs. This design choice allows the sub-networks to 
access the learned common representation fs(x(i)) while 
retaining the ability to learn distinct aspects of the rep-
resentation. The softmax layer generates a probability 
distribution denoted as y(i) = [y(i)

1 , . . . , y
(i)
Tmax

], where 
y

(i)
s  represents the estimated probability P̂ (s(i), k(i)|x(i)) 

indicating the likelihood of the patient i experiencing 
event k(i) = 1 at the time s(i). This architectural frame-
work encourages the network to grasp potentially non-
linear and even non-proportional relationships between 
covariates and associated risks. To assess the risk of 
event occurrence, the cause-specific cumulative inci-
dence function (CIF), expressed as Fk(i)(s(i)|x(i)), is 
employed. This function quantifies the probability of the 
event k(i) = 1 occurring on or before time t(i), given the 
covariates x(i). Formally, the CIF for event k(i) = 1 is 
expressed as: 

 
Fk(i)(t(i)|x(i)) =

t(i)∑
s(i)=0

P (s = s(i), k = k(i)|x = x(i)). (3)

However, since the true CIF Fk(i)(s(i)|x(i)) is not known, 
we utilize the estimated CIF 

 
F̂k(i)(t(i)|x(i)) =

s(i)∑
m=0

y1,m. (4)

Loss function
In our implementation of DeepHit we define a loss func-
tion L, that has been specifically crafted to effectively 
handle censoring data. It is expressed as the formula 
L = αL1 + βL2 + γL3 where α, β, γ weight the three 
terms L1, L2, L3 now described. The term L1 embodies 
the log-likelihood of the joint distribution concerning the 
first hitting time and the unique event, i.e. death (k(i)=1). 
Notably, this formulation has been adapted to accom-
modate the presence of censored data. For patients who 
have not experienced censoring, L1 encapsulates both 
the occurrence of the event and the corresponding time 
at which it occurred. On the other hand, for patients who 
have been subject to censoring, L1 effectively captures 
the time at which the patient becomes censored, indicat-
ing that they were alive up to that specific point in time 
and providing valuable information regarding their status 
at that juncture. This adjustment ensures that censoring 
is appropriately accounted for, offering a more accurate 
representation of patient outcomes. Formally 
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L1 = −
N∑

i=1
[1(k(i) ̸= 0) · log(y(i)

k(i),s(i))

+1(k(i) = 0) · log(1 −
K∑

k=1
F̂k(s(i)|x(i)))],

 (5)

where 1() is an indicator function and N  is the number of 
patients in the dataset. The first term captures the infor-
mation contributed by patients who have not undergone 
censoring. The second term addresses censoring bias by 
leveraging the understanding that these patients are con-
firmed to be alive at the time of censoring. This acknowl-
edgment enables the model to anticipate that the first 
hitting event will occur after the specified censoring time.

L2 integrates a blend of cause-specific ranking loss 
functions, and it uses the estimated CIFs computed at 
various times, corresponding to the instances when 
events actually occur. This approach is employed to fine-
tune the network for each cause-specific estimated CIF. 
Since this study focuses on a single event, there is only 
one cause-specific estimated CIF. Our methodology 
employes a ranking loss function that incorporates the 
concept of concordance: a patient experiencing an event 
at time s should exhibit a higher risk at that specific time 
s than a patient who has survived beyond s. This ensures 
that the model not only predicts the occurrence of the 
event, but also correctly orders the risks of death over 
time. Formally 

 

L2 =
K∑

k=1

θk ·
N∑

i=1
i ̸=j

Ak,i,j · η(F̂k(s(i)|x(i)), F̂k(s(i)|x(j))), (6)

where the coefficients θk are chosen to trade off ranking 
losses of the k − th competing event, η(a, b) is a convex 
loss function defined as η(a, b) = exp

(
− (a−b)

σ

)
 with σ 

set equal to 0.1 and Ak,i,j  is defined as follows: 

 Ak,i,j = 1(k(i) = k, s(i) < s(j)), (7)

and represents pairs (i, j) acceptable for event k. Since 
this study focuses on a single event, only one coefficient, 
i.e. θ1, is included, and its value is fixed at 1. The inclu-
sion of L2 in the overall loss function penalizes the mis-
ordering of pairs concerning each event. Consequently, 
minimizing the total loss serves to incentivize the correct 
ordering of pairs for each event.

L3 is a calibration loss: it focuses on how well predicted 
probabilities align with observed outcomes, ensuring that 
the model’s predicted risk accurately reflects the true 
event occurrence. It is defined as follows: 

 
L3 =

K∑
k=1

1
N

·
N∑

i=1

(F̂k(s(i)|x(i)) − Ii), (8)

where Ii represents the indicator of the event, specifi-
cally, the death of the patient. When Ii equals 1, it sig-
nifies the occurrence of the patient’s death. Conversely, 
when Ii equals 0, it indicates truncation.

Experiments
This section elucidates the comparisons and ablation 
studies conducted to evaluate the effectiveness and 
quality of our approach. Additionally, it elaborates on 
the experimental setting and the performance metric 
employed for these evaluations.

Comparison with clinical features
The effectiveness of our method was assessed through 
a comprehensive comparison with the clinically rel-
evant features manually extracted by human experts 
listed in Table 3. These features were selected based on 
the guidance of two domain experts, an oncologist and 
a radiation oncologist, and had been utilized in previous 
research [48]. They served as the sole input for the risk 
assessment network.

Ablation tests
To assess the significance of each module in our pro-
posed architecture, we conducted the following ablation 
tests:

1. No NER: this approach involves combining at first 
attention layer (token level attention in Fig. 4) the 
embedding of all tokens within a sentence, not only 
of those belonging to an entity type, ignoring the 
NER output. This ensures that all sentences in the 
patient’s clinical reports are taken into account. It 
serves to assess the importance of incorporating 
NER classification output to understand the 
contribution of NER classification in order to extract 
discriminative features for OS prediction.

Table 3 Patients’features
Feature Description Values
Gender The gender of the patient [M, F]
Overall Stage The cancer stage [II, III, IV]
cT The clinical tumor size 

classification
[1, 2, 3, 4]

cN The lymph node classifications [0, 1, 2, 3]
cM The metastasis classification [0,1]
Histology The specific diagnosis related to 

the cancer type
[Adenocarcino-
ma, Squamous, 
Other, Unknown]

CTV Clinical Target Volume of tumor [1.8–568.61] cm3

Age The age of the patient [29–92]
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2. Binary NER (Bi-NER): in binary NER, a token 
within a sentence is classified as belonging to an 
entity or not, without additional subcategorization 
into specific types defined in Table 2. It serves to 
evaluate the relevance of multiclass NER as opposed 
to binary NER in order to extract discriminative 
features for OS prediction.

3. No HEAL: this approach involves substituting HEAL 
with a simple average among all the entity token 
embeddings that are outputted by the NER system, 
without any distinction in sentences. It allows to 
assess the importance of weighting information in 
clinical reports.

4. Only Sentence Attention (SA): this approach 
substitutes only the first attention layer (token level 
attention in Fig. 4) with a simple average among all 
entity token embedding of a sentence. The sentence 
level attention is maintained, allowing to understand 
the importance of weighting sentences within patient 
clinical reports.

5. Only Token Attention (TA): this approach 
substitutes the second attention layer (sentence level 
attention in Fig. 4) with a simple average among all 
sentence token embedding in the patient clinical 
reports. The token level attention is maintained, 
allowing to understand the importance of weighting 
tokens within sentences.

6. No weight sharing (No WS): this method 
specifically eliminates weight sharing between 
the token level attention layer and the sentence 
level attention layer. This aspect is crucial for 
understanding how weight distribution influences 
the model’s ability to capture complex relationships 
within the data.

7. Degradated NER (Deg-NER): this method utilizes 
a degraded NER system with an F1 score of 65%, 
achieved by introducing noise through the random 
removal of correctly identified entities. This approach 
allows for the evaluation of how a reduction in entity 
quality impacts overall model performance.

Experimental setting
During the training and evaluation of the risk assessment 
network, a 10-fold cross-validation was implemented 
on a per-patient basis. Within each cross-validation 
iteration, an additional stratified inner 10-fold cross-val-
idation was conducted to fine-tune the network hyperpa-
rameters reported in Table 4. This optimization process 
involved a random search with 100 iterations over the 
hyperparameter space depicted in Table 4. The entire 
process was repeated five times for each setting (HEAL, 
clinical features, ablation tests) to address fluctua-
tions in the results, ultimately providing a more reliable 
and precise perspective on the performance of the risk 

assessment network. All experiments were implemented 
in PyTorch and run on a NVIDIA A100 GPU with 40 GB 
of VRAM. Table 5 shows the durations required for ran-
dom search, training, and testing within a single fold are 
depicted for each modality, providing a detailed break-
down of the computational times associated with the 
experiment. It’s crucial to note that approaches incor-
porating at least one attention-level layer exhibit higher 
computational times for random search and training 
compared to others, particularly evident in scenarios 
featuring two attention-level layers, as exemplified by 
HEAL. However, the time required for testing remains 
comparable to alternative approaches.

Performance metric
We use the time-dependent concordance index (Ctd

-index) as our metric of performance, which ranges from 
0 to 1. It is important to highlight that the conventional 
concordance index (C-index) [50] is a widely utilized 
discriminative metric. The C-index operates under the 
assumption that patients with longer lifespans should 
be associated with a lower risk compared to those with 
shorter lifespans. However, the ordinary C-index is cal-
culated solely at the initial observation time, lacking 
the capacity to capture potential variations in risk over 
time. In contrast, the time-dependent concordance 
index considers the temporal aspect, offering a more 

Table 4 Hyperparameters search space of the risk assessment 
network
Hyperparameter Search space
Batch size [8, 16]
# hidden layers for both SN (LS ) and CSNs (LC ) [1, 2, 3, 5]
# neurons per hidden layer [20, 50, 100, 200]
Dropout rate [0.2, 0.3, 0.4]
Activation function [ReLU, SELU]
α [0.1, 0.5, 1.0, 3.0]
Loss function Lβ [0.1, 0.5, 1.0, 3.0]
γ [0.1, 0.5, 1.0, 3.0]

Table 5 Random search, training and testing times across a 
single fold
Approach Random 

search 
Time[h]

Training 
Time[s]

Testing 
Time[s]

Testing 
Time per 
Patient[s]

Clinical features 0.88 3.18 0.10 0.004
No NER 0.73 2.51 0.10 0.004
Bi-NER 52.39 137.80 6.18 0.281
No HEAL 0.75 2.90 0.10 0.004
SA 2.74 11.60 0.39 0.018
TA 20.83 128.1 2.10 0.160
No WS 58.61 140.00 6.18 0.281
Deg-NER 52.39 137.80 6.18 0.281
HEAL 52.39 137.80 6.18 0.281
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comprehensive understanding of how risk evolves over 
the course of observation. The Ctd-index for event k is 
defined as: 

 

Ctd = P (F̂k(s(i)|x(i)) > F̂k(s(i)|x(j))|s(i) < s(j))

≈

∑
i̸=j

Ak,i,j ·1(F̂k(s(i)|x(i))>F̂k(s(i)|x(j)))

∑
i̸=j

Ak,i,j
.

 (9)

Thus, the Ctd-index for event k is computed by compar-
ing pairs of observations. In each pair, one patient has 
experienced event k at a specific time, whilst the other 
has neither encountered the event nor been truncated 
to that time. The significance of this discriminative index 
lies in its independence from a single fixed time. This 
characteristic renders it well-suited for situations where 
the impact of covariates on survival undergoes variations 
over time. In other words, this index is particularly valu-
able when risks exhibit non-proportional behavior over 
the course of observation.

Results and discussions
Table 6 summarizes the results averaged over 5 runs, 
presenting the performance metrics in terms of the Ctd

-index for the compared modality. For the HEAL modal-
ity, the model achieved an average Ctd-index of 0.639 
with a low standard deviation of 0.014, which is lower 
than the standard deviations of other methods, indicat-
ing higher consistency across the runs. Conversely, the 
model’s performance decreased in No HEAL modality, 
yielding an average Ctd-index of 0.558. This observa-
tion highlights the importance of appropriately weighing 
information within clinical reports for optimal predic-
tive outcomes. The ablation test with only the Sentence 
Attention (SA) mechanism led to improved performance, 
with an average Ctd-index of 0.624. Although slightly 
lower than HEAL, this enhancement suggests that stra-
tegically weighting sentences inside clinical reports had 
a positive impact to overall performance. In the absence 
of weight sharing inside HEAL, the model exhibited an 
average Ctd-index of 0.615, which is slightly lower than 
HEAL by 0.009. This suggests that the network performs 
better with a reduced number of parameters, possibly 
due to training with a limited number of samples. Both 
the binary NER (Bi-NER) and the no NER modalities 
resulted in significatively lower performances, with an 
average Ctd-index of 0.546. This indicates the fundamen-
tal role of NER label information in training an effective 
predictive model, emphasizing that tokens not associated 
with entities are of low informational value. Compared 
to the binary NER (Bi-NER) and no NER modalities, 
the degraded NER (Deg-NER) modality demonstrated 
improved performance, though it remained significantly 
below HEAL. This highlights not only the essential 

role of NER label information in predictive modeling 
but also the necessity of a high-quality NER system to 
achieve optimal performance. Clinical features exhibited 
a slightly lower performance with an average Ctd-index 
of 0.590. This suggests that the proposed automated pro-
cess outperforms manually extracted features by humans. 
In summary, these results offer insights into the relative 
effectiveness of different modalities and model configura-
tions in predicting risk, with the HEAL modality emerg-
ing as the most consistent and effective among the tested 
approaches.

In order to further validate the difference between 
the proposed approach and the compared methods, 
we performed the Student’s t-test in a pairwise fashion, 
considering HEAL angaist each competitor. The results 
are summarized in Table 7. A significance threshold 
α̂ of 0.05 was established for the conducted tests. The 
results of t-tests again highlight the pivotal role of atten-
tion mechanisms:for all competitors lacking attention 
mechanisms, the p-values consistently fell below the 
established threshold of 0.05, indicating statistical sig-
nificance. The significance of the p-value persists even 
for the TA competitor, where an attention mechanism is 
present. However, this mechanism aggregates all words 
in patient clinical reports, disregarding sentence split-
ting and thus the hierarchical structure of our method-
ology. Noteworthy are the elevated p-values associated 
with the other scenarios featuring at least one attention 

Table 6 Results of Ctd-index for individual modalities obtained 
from 5 iterations
Approach Ctd-index (mean±std)
Clinical features 0.590 ± 0.019
No NER 0.546 ± 0.029
Bi-NER 0.499 ± 0.023
No HEAL 0.558 ± 0.023
SA 0.624 ± 0.027
TA 0.570 ± 0.037
No WS 0.615 ± 0.033
Deg-NER 0.563 ± 0.026
HEAL 0.639 ± 0.014

Table 7 Statistical analysis of performance differences between 
HEAL and the other modalities. Statistically significantly 
differences (p-value < 0.05) are highlighted in bold
Approach Compared to ∆Ctd-index (mean) p-value

HEAL Clinical features 0.049 0.001
No NER 0.093 <0.001
Bi-NER 0.140 <0.001
No HEAL 0.081 <0.001
SA 0.015 0.290
TA 0.069 0.004
No WS 0.024 0.174
Deg-NER 0.076 <0.001
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mechanism, specifically in the exclusive presence of the 
Sentence Attention (p-value = 0.290) and the absence 
of weight sharing (p-value = 0.174). Even if the two 
approaches are similar to HEAL, the Ctd-index mean 
and standard deviation values reveal a consistent trend 
towards superior and more robust outcomes with HEAL. 
Attributing our model’s superiority, we highlight two key 
factors: the inclusion of weighting tokens within sen-
tences before weighting the sentences themselves, and 
the use of weight sharing. The first significantly enhances 
the comprehension of clinical information, particularly 
when dealing with larger data volumes compared to the 
Sentence Attention (SA) approach. The second reduces 
the number of parameters compared to the No Weight 
Sharing (No WS) approach, contributing to the model’s 
efficiency and effectiveness.

Interpretability
In deep learning models, the challenge of interpretabil-
ity arises from the intricate nature of understanding and 
elucidating the rationale behind model’s specific deci-
sions. In our work, we address this interpretability chal-
lenge by leveraging attentional maps generated through 
the hierarchical attention mechanism in order to high-
light the specific portions (sentences) of the input data 
(clinical reports) that the model deemed most crucial 
during the decision-making process. An example of 
attentional map is shown in Fig. 5, which presents sen-
tences extracted from the clinical reports of a patient 
who has been assigned an 86% risk score of experiencing 
“death” within 29 months. This score is primarily attrib-
uted to the patient’s comorbidities, such as IA (Aortic 
Insufficiency) and AMI (Acute Myocardial Infarction), 
as well as treatments like Tiklid and Folingrav, since sen-
tences mentioning these factors received higher scores 
from the sentence-level attention mechanism (0.081 and 
0.069). Interestingly, not only clinical concepts but also 
attributes like weight and height appear in sentences with 
high attention scores. Conversely, the names of the exams 
(PET scans) received less importance, likely because 
they are routine and not discriminative for the outcome 
prognosis. This trend is further depicted in Fig. 6, which 
illustrates the contribution of the different entity types 
to OS prediction. For each entity type, a relevance score 
is computed by first averaging the token-level attention 
scores assigned to each entity occurrence (since an entity 
may span multiple tokens). The total attention score is 
then obtained by summing these mean scores across 
all occurrences of that entity type and dividing it by the 
number of occurrences, ensuring a fair comparison 
across entity types. As a result, it is possible to observe 
that entity types with strong clinical relevance, such as 
comorbidities and histology, are among the most influen-
tial. However, non-clinical factors like weight and height 

also contribute significantly to the attention scores, high-
lighting the model’s ability to capture diverse predictive 
signals.

Sanity check
To evaluate the robustness and reliability of the model 
in generating attentional maps we implemented a sanity 
check that involved comparing attentional maps obtained 
from a faulty system angaist those from the accurate 
system. The attentional maps from the faulty system are 
generated by training the model using randomly per-
muted OS labels, following a data randomization test 
[49]. The primary objective of the sanity check is to dis-
cern whether the model can distinguish between the 
true signals influencing its decisions and mere noise or 
random associations. Cosine similarity analysis between 
attentional maps of the two systems yielded a mean score 
of 0.578 with a standard deviation of 0.138, indicating a 
relatively substantial difference between attentional maps 
from the faulty and accurate systems.

Experts agreement assessment
To qualitatively assess the attentional maps generated by 
our model during the decision-making process, we mea-
sures the agreement with domain experts on the impor-
tance given by the model to the sentences within patients’ 
clinical reports for predicting clinical outcomes.

To this end we set up a questionnaire consisting of four 
questions, each corresponding to an individual patient’s 
clinical report under examination. For each question, 
participants assess the level of agreement with the sig-
nificance assigned by the model to the sentences within 
the report. In particular, each sentence in the report was 
highlighted with a specific color denoting its importance. 
We employed a three-level highlighting system: orange 
for the most important sentences (those receiving the 
highest attentional weights from the model), blue for 
the least important sentences (those receiving the lowest 
attentional weights from the model) and green for sen-
tences falling in between. For each question, participants 
have the option to choose from five different response 
levels: completely agree, agree, neutral, disagree, and 
completely disagree. These responses were systematically 
encoded on a numerical scale using the Likert scale, with 
values ranging from 0 for “completely disagree” to 4 for 
“completely agree”. The questionnaire was proposed to 
four domain-experts. We obtained an overall agreement 
of 67.2%, which suggests a substantial level of consen-
sus among the respondents. This indicates a noteworthy 
degree of alignment in perceptions regarding the model’s 
attention to critical information within clinical reports. 
However, it is important to further explore the remaining 
32.8%, where participants have divergent views. Specifi-
cally, these divergent perspectives manifest a clinicians’ 
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tendency to attribute higher significance to particular 
sections in the descriptions of CT and MRI exams, as 
well as to the diagnosis itself, even though the model 
does not categorize these details as the least crucial in 
the reports. Moreover, since the diagnosis is consistent 
for almost all patients in the cohort, the model may not 
emphasize this feature significantly when distinguishing 
between patients for prognostic purposes.

Conclusions
This paper introduces a novel and interpretable meth-
odology designed to enhance the extraction of clinically 
significant information from unstructured data. We 
accomplish this by employing a multiclass NER approach, 
coupled with a hierarchical attention mechanism. The 
synergy of these components enables us to highlight the 
most pertinent clinical details, thereby increasing the 

Fig. 5 Example of Attentional Map: within each sentence in patient clinical reports, only the words identified as entities by the NER system, highlighted 
in yellow, are aggregated into the sentence embedding. These sentences receive a score assigned by the second attention layer (sentence level atten-
tion), with higher scores depicted in shades of red and lower scores tending towards blue. The text was translated from Italian to English for presentation 
purposes
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relevance of the data, especially in the context of medical 
applications. We apply our methodology in the context 
of NSCLC to predict OS. The results of our experiments 
underscore the significance of employing multiclass NER 
and the hierarchical attention mechanism in accurately 
predicting OS in NSCLC. Notably, our findings reveal 
that the automated system generated by this methodol-
ogy yields more informative features compared to fea-
tures manually extracted by human experts.

Beyond the achievements highlighted in this study, 
our methodology can be tailored to tackle a broader 
spectrum of clinical prediction tasks, extending beyond 
the specific focus on overall survival in the context of 
lung cancer, opening up the possibility of its applica-
tion in diverse medical domains. For instance, it could 
be applied to predict disease progression, treatment 
response, or patient prognosis across various medi-
cal conditions beside lung cancer. Moreover, we aspire 
to create a robust multimodal framework, tailoring the 
methodology to comprehensively handle diverse modali-
ties beyond the narrative section of EHRs, including 
images and the structured section of EHRs.

In conclusion, the presented methodology not only 
advances the understanding of NSCLC prognosis but 
also lays the foundation for a broader spectrum of clinical 
prediction applications. Its adaptability, along with the 
potential to synergize with different data sources, makes 

it a promising tool for the future of medical research and 
healthcare.
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