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Abstract
Background  Systemic inflammatory response syndrome (SIRS) is a frequent and serious complication of acute 
pancreatitis (AP), often associated with increased mortality. This study aims to leverage automated machine learning 
(AutoML) algorithms to create a model for the early and precise prediction of SIRS in AP.

Methods  This study retrospectively analyzed patients diagnosed with AP across multiple centers from January 2017 
to December 2021. Data from the First Affiliated Hospital of Soochow University and Changshu Hospital were used for 
training and internal validation, while testing was conducted with data from the Second Affiliated Hospital. Predictive 
models were constructed and validated using the least absolute shrinkage and selection operator (LASSO) and 
AutoML. A nomogram was developed based on multivariable logistic regression (LR) analysis, and the performance 
of the models was assessed through receiver operating characteristic (ROC) curves, calibration curves, and decision 
curve analysis (DCA). Additionally, the AutoML model’s effectiveness and interpretability were assessed through DCA, 
feature importance, SHapley Additive exPlanation (SHAP) plots, and locally interpretable model-agnostic explanations 
(LIME).

Results  A total of 1,224 patients were included, with 812 in the training cohort, 200 in validation, and 212 in testing. 
SIRS occurred in 33.7% of the training cohort, 34.0% in validation, and 22.2% in testing. AutoML models outperformed 
traditional LR, with the deep learning (DL) model achieving an area under the ROC curve of 0.843 in the training set, 
and 0.848 and 0.867 in validation and testing, respectively.

Conclusion  The AutoML model using the DL algorithm is clinically significant for the early prediction of SIRS in AP.

Keywords  Automated machine learning, Systemic inflammatory response syndrome, Acute pancreatitis, Predictive 
models, Artificial intelligence
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Introduction
Acute pancreatitis (AP) is a frequent cause of severe 
abdominal pain, occurring due to the activation of pan-
creatic enzymes that cause self-digestion of the pancreas 
and initiate a chain of inflammatory responses, poten-
tially leading to various complications [1]. While the 
symptoms of acute pancreatitis (AP) typically resolve 
on their own in most patients, approximately 20% may 
develop severe complications, including prolonged organ 
failure and the onset of systemic inflammatory response 
syndrome (SIRS) [2]. If SIRS persists, it heightens the risk 
of persistent organ dysfunction, potentially progressing 
AP to severe acute pancreatitis (SAP) [3]. SIRS is a key 
factor in the progression of SAP and is closely linked to 
its severity, which can lead to multiple organ failure and 
even death [1, 4, 5]. Therefore, early detection and treat-
ment of SIRS are essential.

In the early stages of AP, the condition starts as a local-
ized sterile inflammation of the pancreas and quickly 
progresses to SIRS, often accompanied by compensatory 
anti-inflammatory response syndrome (CARS) [6]. The 
mechanism of SIRS is complex and is associated with the 
anti-inflammatory response mediated by Th2/Treg differ-
entiation [7–9]. Studies have shown that gut microbiota 
translocation, the release of extracellular ATP, and activa-
tion of endogenous coagulation pathways are all closely 
related to inflammatory factors [7, 10, 11]. Additionally, 
studies have also shown that elevated serum levels of 
Pentraxin 3 (PTX3) are closely associated with SIRS and 
ultimately result in fatal outcomes in critically ill patients 
[12]. Staubli SM et al. indicates that PTX3 performs 
worse than C-reactive protein (CRP) and Acute Physiol-
ogy and Chronic Health Evaluation II (APACHE II) in 
predicting SIRS. All three biomarkers exhibited weak 
predictive discrimination, with area under the receiver 
operating characteristic curve (AUROC) values of 0.54, 
0.69, and 0.69, respectively. When CRP and PTX3 are 
used in combination, the AUC value increases to 0.7 [13].

Most of these studies relied on traditional logistic 
regression (LR) models, with some not fully address-
ing the problem of multicollinearity among variables. 
Recently, the growing use of machine learning (ML) in 
healthcare has attracted attention, with both supervised 
and unsupervised learning offering powerful algorithms 
for handling large amounts of clinical data. Unlike tradi-
tional LR models, ML provides clear advantages in pre-
dicting patient outcomes, complications, and prognosis 
[14, 15]. Traditional ML algorithms typically include 
Support Vector Machines (SVM), Artificial Neural Net-
works (ANN), Bayesian learning, and Random Forests. 
A newer approach, AutoML, automates the selection of 
algorithms and hyperparameters to build customized 
models tailored to specific data. In contrast to traditional 
ML, AutoML employs techniques like intelligent early 

stopping, cross-validation, regularization, and hyperpa-
rameter optimization, allowing for the development of 
more accurate models in less time.

In this study, we will utilize the H2O AutoML platform 
to develop and validate a range of ML models for the 
early and accurate prediction of SIRS in patients with AP. 
The performance of these models will be compared with 
that of the traditional LR method.

Materials & methods
Patients
This study retrospectively gathered clinical data from 
hospitalized AP patients at Changshu Hospital, the First 
Affiliated Hospital of Soochow University, and the Sec-
ond Affiliated Hospital of Soochow University, cover-
ing the period from January 2017 to December 2021. All 
three hospitals are tertiary teaching institutions located 
in Suzhou, Jiangsu, China. The data from Changshu Hos-
pital and the First Affiliated Hospital were split into a 
training set and an internal validation set in an 8:2 ratio, 
while the data from the Second Affiliated Hospital served 
as an independent test set.

The diagnostic criteria for AP were based on the 
revised 2012 Atlanta classification [16]. To diagnose 
acute pancreatitis (AP), a patient must satisfy at least 
two of the following three criteria: (1) typical abdominal 
pain; (2) serum amylase levels exceeding three times the 
normal upper limit; and (3) imaging findings consistent 
with AP [16]. Adults aged 18 years and older who meet 
the above criteria will be included in this study. Accord-
ing to the criteria for SIRS, a diagnosis of AP can be 
made in patients who exhibit two or more of the follow-
ing conditions: (1) a body temperature greater than 38 °C 
or less than 36 °C; (2) a heart rate exceeding 90 beats per 
minute; (3) a respiratory rate greater than 20 breaths 
per minute or arterial carbon dioxide tension (PaCO2) 
less than 32  mm Hg; and (4) a white blood cell count 
greater than 12,000 cells/mm³, less than 4,000 cells/mm³, 
or more than 10% immature (band) forms [17]. Dur-
ing hospitalization, patients who meet the diagnostic 
criteria for SIRS will be classified into the SIRS group, 
while those who do not meet the criteria will be classi-
fied into the non-SIRS group. Patients with chronic liver 
disease, chronic kidney disease, hematological disorders, 
recurrent, chronic, traumatic, or idiopathic pancreatitis, 
pancreatic cancer, a history of pancreatic surgery, those 
who have undergone chemoradiotherapy, and pregnant 
patients will be excluded from the study. All included 
patients will receive treatment following the established 
guidelines for managing AP. The ethics committee of 
Changshu Hospital Affiliated to Soochow University has 
approved this study.
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Data collection
Demographic information, clinical data, and details of 
comorbidities were extracted from electronic medical 
records. Relevant laboratory tests, including complete 
blood counts, coagulation tests, and serum biochemical 
markers, were collected within 24 h of admission. A total 
of 34 variables were analyzed, with more details provided 
in Supplementary Table S1. Missing data were assumed 
to be random and were imputed using a random forest 
algorithm through the “mice” package in R software [18]. 
The study flowchart is shown in Fig. 1.

Statistical analysis
In this study, we used the Shapiro-Wilk test to assess 
whether continuous variables followed a normal dis-
tribution. Continuous variables were expressed as 
mean ± standard deviation (SD) if they followed a normal 
distribution, and as median (interquartile range) if not. 
Categorical variables were presented as frequencies. For 
group comparisons, categorical variables were analyzed 
using Pearson’s Chi-square test or Fisher’s exact test, 
while continuous variables were compared using the non-
parametric Mann-Whitney U test. A two-sided p-value 

Fig. 1  The flowchart of this study
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of less than 0.05 was considered statistically significant. 
All statistical analyses were performed using R software 
(version 4.2.1) with the following packages: H2O (version 
3.36.0.2), tableone (version 0.12.0), tidyverse (version 
1.3.0), tidyquant (version 1.0.2), and lime (version 0.5.1).

Logistic regression algorithms and automated machine 
learning algorithms
To address multicollinearity among variables, the LASSO 
regression model was applied using the “λmin + 1se” 
criterion for univariate analysis. Independent risk fac-
tors were identified through binary LR with a backward 
stepwise method, and a nomogram was constructed. 
The model’s predictive ability was evaluated using ROC 
curves, calibration curves, and decision curve analysis 
(DCA).

For the ML component, this study utilized the H2O 
package (www.h2o.ai) for AutoML, which automatically 
selects suitable algorithms and combines them into vari-
ous ensemble models. These included the default Ran-
dom Forest (DRF), a random grid of Gradient Boosting 
Machines (GBM), Extremely Randomized Forest (XRF), 
a random grid of Deep Learning (DLs), and a fixed grid 
of Generalized Linear Models (GLMs). Hyperparam-
eters were optimized through a grid search with 5-fold 
cross-validation on the training set, and the area under 
the curve (AUC) was used to evaluate the performance 
of different hyperparameter combinations. AutoML visu-
alizations included feature importance, SHapley Addi-
tive exPlanation (SHAP) plots, and Local Interpretable 
Model-agnostic Explanations (LIME). Feature impor-
tance highlights each feature’s contribution to the ML 
model’s predictions. SHAP provides insights into how 
specific features influence individual predictions, offering 
clear, interpretable explanations. LIME interprets pre-
dictions by fitting a locally interpretable model around a 
specific instance.

Results
Baseline characteristics
The clinical characteristics and baseline data of 1,224 
patients are detailed in Table  1. Based on the diagnos-
tic criteria, 389 patients (31.8%) were identified as hav-
ing developed SIRS. For model validation, patients from 
Changshu Hospital and the First Affiliated Hospital of 
Soochow University were randomly allocated into a train-
ing set (n = 812, 80%) and a validation set (n = 200, 20%). 
Furthermore, patients from the Second Affiliated Hospi-
tal of Soochow University served as an independent test 
set (n = 212). Within the training, internal validation, and 
test sets, 274 patients (33.7%), 68 patients (34.0%), and 47 
patients (22.2%) respectively developed SIRS.

Development of prediction model
Univariate analysis was performed using the LASSO 
regression model with the “λmin + 1se (0.059)” criterion 
and 5-fold cross-validation to address multicollinearity 
among variables (Supplementary Figure S1). For multi-
variate analysis, backward stepwise LR identified three 
independent risk factors out of 34 variables, which were 
used to create a nomogram (Fig.  2). And, the results of 
the multivariate LR can be found in Supplementary Table 
2. Calibration curves for the training, validation, and test 
datasets (Fig.  3) showed mean absolute errors of 0.049, 
0.023, and 0.044, respectively, highlighting the LASSO 
model’s strong predictive accuracy compared to actual 
outcomes. DCA for the test set indicated that the LASSO 
model provided additional benefits when predicting SIRS 
probabilities between 10% and 90%, with a net benefit 
ranging from 1 to 17%. For instance, if a clinician esti-
mated a 40% probability of SIRS in a patient, early inter-
vention could offer a 6% additional benefit, equating to 
detecting 6 cases of SIRS without unnecessary treatments 
out of 100 patients. This approach outperforms the “treat 
none” strategy (represented by the horizontal line in Sup-
plementary Figure S2), which assumes no true positives 
or false positives. Net benefit analysis confirms that the 
LASSO model improves patient outcomes regardless of 
individual preferences. The test set’s ROC curve (Supple-
mentary Figure S3) achieved an AUC of 0.856, as detailed 
in Table 2.

The study constructed 53 models using four ML algo-
rithms: Deep Learning (DL), Gradient Boosting Machine 
(GBM), Generalized Linear Model (GLM), and Distrib-
uted Random Forest (DRF). Stacked ensemble models 
were omitted due to challenges in interpretation. Among 
these, the DL model demonstrated the best performance, 
achieving the highest AUC of 0.867 in the test cohort and 
effectively managing imbalanced data. Figure 4 highlights 
that in the GBM model, neutrophil count (N), white 
blood cell count (WBC), and C-reactive protein (CRP) 
were the most critical features, followed by lactate dehy-
drogenase (LDH), serum calcium (Ca2+), alkaline phos-
phatase (ALP), lymphocyte ratio (Lr), activated partial 
thromboplastin time (APTT), gamma-glutamyl transfer-
ase (GGT), and international normalized ratio (INR). N 
and CRP were common significant variables in both the 
GBM and LASSO models. The SHAP plot in Fig. 5 ranks 
the top ten important features in the GBM model: WBC, 
CRP, N, LDH, Ca2+, Lr, ALP, GGT, prothrombin time 
(PT), and total bilirubin (TB). Variables closer to a value 
of 1 were more strongly associated with a higher likeli-
hood of SIRS progression. For example, the red portion 
of CRP, concentrated on the right of axis = 0, suggests 
that elevated CRP levels in patients with AP are linked 
to an increased risk of SIRS. The LIME plot of the GBM 
model demonstrates the contributions of key variables to 

http://www.h2o.ai
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SIRS progression, with Supplementary Figure S4 show-
ing that both cases 1 and 2 were predicted to have a high 
risk of SIRS. In both cases, Ca2+ was the most influential 
feature, while N contributed the least to the risk of SIRS 
progression.

DCA for the test set showed that AutoML models pre-
dicting SIRS probabilities between 10% and 100% could 
offer additional benefits ranging from 1 to 20%. For 
instance, if a clinician assessed a patient’s SIRS likeli-
hood at 20%, early intervention could improve outcomes 
by at least 15%. This approach significantly outperforms 
the “treat none” strategy (represented by the horizontal 
line in Supplementary Figure S5), which results in no true 
positives or false positives.

Comparisons models developed by LR and automl
In the test set, the AUC values of the five models were as 
follows: the DL model had the highest AUC at 0.867, fol-
lowed by the LASSO model at 0.856, the GLM at 0.853, 
the GBM at 0.833, and the DRF at 0.830. Among these 
models, the DL model achieved an AUC and accuracy 
both exceeding 0.80, demonstrating better predictive 
performance compared to the other models. Details are 
listed in Table 2.

Discussion
AP can be classified into three stages based on its patho-
logical progression: the acute response phase, systemic 
infection phase, and residual infection phase. During the 
acute response phase, the self-digestion of pancreatic 
enzymes triggers the activation of inflammatory factors, 
accompanied by the activation of inflammatory cells, the 
release of chemokines, adhesion molecules, reactive oxy-
gen species, platelet-activating factor (PAF), and endo-
thelin. This causes local inflammation to escalate into 
SIRS [3, 5]. If SIRS persists, endotoxins and phospholi-
pase A2, through systemic circulation and the mesenteric 
lymphatic pathway, sustain and amplify the inflamma-
tory cascade, potentially leading to more severe SIRS and 
even multiple organ dysfunction syndrome (MODS) [3]. 
Research by Tan et al. and Sharma et al. further found 
that AP patients with SIRS are more prone to developing 
infected pancreatic necrosis (IPN), and the duration of 
SIRS is comparable to APACHE II and CT Severity Index 
(CTSI) scores in predicting IPN, MODS, and mortality 
[19, 20]. Studies have shown that early onset of SIRS in 
AP is usually associated with a higher mortality rate [21]. 
Therefore, early and accurate assessment of AP with SIRS 
is crucial for improving prognosis.

In this study, we developed and validated a range 
of models for the early detection of SIRS using both 
AutoML and LR methods. Compared to traditional uni-
variate and multivariate analyses, AutoML significantly 
reduced the time required while improving accuracy, Va
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which greatly enhanced operational efficiency. Addition-
ally, the ensemble model integrated multiple machine 
learning algorithms and used several classifiers to com-
bine prediction outcomes, resulting in improved overall 
performance [22]. We applied four AutoML algorithms 
(GBM, DRF, GLM, and DL) for the early prediction of 
SIRS, with all models outperforming standard algorith-
mic techniques. The DL model achieved the highest 
AUC in the test set, a critical indicator for evaluating 
model effectiveness. Since our goal was to quickly iden-
tify AP patients at risk of developing SIRS, sensitivity and 

accuracy were also crucial assessment metrics. Both the 
DRF and GLM models demonstrated sensitivities above 
0.950, while the DL model achieved an accuracy of 0.807. 
Therefore, in this study, the DL model was found to be 
the most successful.

WBC and N are important indicators of inflamma-
tory response and are widely used in the diagnosis and 
prognostic assessment of inflammatory diseases [23, 
24]. When the body experiences severe infection or an 
inflammatory response, both WBC and N levels typically 
rise significantly, reflecting the immune system’s reaction 

Table 2  Comparison of LR and automl models for early prediction of SIRS in the test cohort
AUC Sensitivity Specificity Accuracy PPV NPV LR+ LR−
AutoML
GBM 0.833 0.936 0.612 0.684 0.407 0.971 2.414 0.104
DRF 0.830 0.979 0.564 0.656 0.390 0.989 2.243 0.038
GLM 0.853 0.957 0.624 0.698 0.421 0.981 2.548 0.068
DL 0.867 0.787 0.812 0.807 0.544 0.931 4.190 0.262
Logistic regression
LASSO 0.856 0.915 0.697 0.745 0.462 0.966 3.019 0.122
LR, Logistic regression; AutoML, Automated machine learning; SIRS, Systemic inflammatory response syndrome; PPV, Positive predictive value; NPV, Negative 
predictive value; LR+, Positive likelihood ration; LR−, Negative likelihood ratio

Fig. 3  Calibration curve of the LASSO model in the training, validation, and test set

 

Fig. 2  Nomogram of the LASSO model for the early prediction of SIRS
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to pathogens or injury [24, 25]. Therefore, it is not sur-
prising that both are considered predictor variables for 
SIRS. CRP is a common acute phase reactant closely 
related to inflammatory responses. It is synthesized and 
secreted by the liver and is essential for maintaining nor-
mal immune function. Under normal circumstances, 
CRP levels remain within a standard range, but they rise 
rapidly when the body is subjected to an inflammatory 
cell invasion. CRP has excellent stability and detectability, 
making its level changes highly sensitive indicators of the 
degree of inflammatory response and cellular or tissue 
damage [13]. Relevant studies indicate that changes in 
CRP levels can occur significantly earlier than the onset 
of clinical symptoms [24]. Some research also suggests 
that the CRP level at admission serves as a predictive fac-
tor for the severity of acute pancreatitis [26].

Kolodecik TR et al. found that measuring LDH activ-
ity within 12 h of onset can serve as a biomarker for the 
early prediction of acute pancreatitis (AP) prognosis, 
with a sensitivity of 63.6% and specificity of 89.6% [27]. 
Additionally, LDH is also a key variable in the RANSON 

Fig. 5  SHAP of the GBM model in the training set

 

Fig. 4  Variable importance of the GBM model in the training set
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score [28]. In an in vitro study of lymphocytes from 
burned rats, it was found that the transformation activ-
ity of lymphocytes significantly increased, accompa-
nied by elevated levels of interleukins (IL-1, IL-2, IL-6), 
which was consistent with changes in cell proliferation 
[29]. Furthermore, the study indicated that in addi-
tion to macrophages and neutrophils, lymphocytes also 
expressed Toll-like receptor 4 (TLR4) and nuclear factor 
kappa B (NF-κB), both of which provide the basis for ini-
tiating and promoting the inflammatory response [30]. 
TLR4, one of the earliest discovered TLR subtypes, is a 
type I transmembrane protein composed of extracellu-
lar, I transmembrane, and intracellular regions. It is the 
only confirmed receptor and signaling molecule within 
the TLR family that recognizes lipopolysaccharide (LPS), 
a key endotoxin component, thus playing an initiating 
role in the inflammatory response [31]. When LPS binds 
to TLR4 on lymphocytes, it activates the main signaling 
pathway, the NF-κB pathway [32]. This pathway triggers 
and promotes the transcription of various genes related 
to the inflammatory response, encoding a range of cyto-
kines and inflammatory mediators, including TNF-α, 
intercellular adhesion molecule-1, IL-1, IL-2, IL-6, and 
prostaglandins, thereby driving the inflammatory pro-
cess. If these cytokines and inflammatory mediators are 
excessively expressed and released, they can lead to a cas-
cade of inflammatory mediators, rapidly escalating local 
inflammation into SIRS.

When the host’s immune system is unable to com-
bat pathogenic factors, it may lead to hepatocyte dam-
age, obstructed bile secretion, and disrupted bilirubin 
metabolism, resulting in the appearance of jaundice. 
Research indicates that the dysfunction of stem cells dur-
ing the development of sepsis may be associated with 
the release of inflammatory cytokines, which is often 
closely related to the progression of SIRS. SIRS is a sys-
temic inflammatory response of the body to infection or 
other pathogenic factors, characterized by the excessive 
release of inflammatory cytokines. GGT, ALP, and TB are 
widely distributed in the biliary system and are primarily 
excreted through the bile ducts, making them important 
serum markers for assessing biliary obstruction [33]. In 
our study, patients with higher levels of these three mark-
ers had an increased risk of developing SIRS, which may 
be related to prolonged biliary obstruction and poor bac-
terial growth in the bile. Animal studies have also shown 
that the concentration of the GGT marker is closely asso-
ciated with the risk of death from SIRS [34].

There is a close interaction between the inflammatory 
response and the coagulation mechanism. The inflamma-
tory response can activate the coagulation system, while 
the coagulation mechanism also plays a regulatory role 
in the inflammatory response. During the development 
of sepsis, pathogens produce endotoxins and exotoxins, 

which stimulate the release of a large number of inflam-
matory cytokines and mediators, activating the coagu-
lation system and leading to a hyper-coagulable state in 
the blood. At the same time, this response also inhibits 
the fibrinolytic and anticoagulant systems to varying 
degrees. The formation of microthrombi in the micro-
vasculature can result in microcirculatory disturbances 
[35]. Therefore, it is not surprising that PT is used as a 
predictive indicator for SIRS. In the systemic inflamma-
tory response of sepsis, inflammatory factors such as 
interleukin-1β and interleukin-6 can bind to calcium-
sensing receptors (CaSR) present in the parathyroid 
gland and renal tubules, leading to a decrease in para-
thyroid hormone (PTH), 1,25-dihydroxyvitamin D, and 
blood calcium levels [36]. Vitamin D is closely related to 
calcium regulation, and Watkins has noted a high inci-
dence of vitamin D deficiency in patients with sepsis. The 
SIRS can impair the expression of vitamin D receptors in 
immune cells and reduce the levels of vitamin D binding 
protein. Supplementing with vitamin D may have anti-
inflammatory effects and could help improve sepsis and 
the coagulopathy associated with disseminated intravas-
cular coagulation (DIC) [37].

This study has the advantage of utilizing AutoML to 
construct a series of models that are more accurate and 
sensitive in the early prediction of SIRS compared to tra-
ditional algorithms. The predictive factors in these mod-
els are based on routine detection indicators for AP, and 
our study is multicenter, facilitating the models’ applica-
tion and promotion. However, there are some limitations 
to this study. First, novel biomarkers highlighted in recent 
research were not included, as they have not yet been 
widely implemented in clinical practice. Second, since 
this is a retrospective study, further prospective research 
is required to validate our findings. Finally, the sample 
size of this study is relatively small, and larger sample-
size studies are needed to confirm our conclusions.

Conclusions
We developed and validated a series of models using 
the AutoML platform for the early prediction of SIRS in 
patients with AP. These models outperformed scoring 
systems constructed with traditional algorithms and may 
provide direction for the application of AutoML in future 
medical research. Additionally, the performance of the 
DL model is better than that of the other models.
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