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Abstract
Background  Pediatric asthma is a common chronic respiratory disease worldwide, and its acute exacerbation events 
significantly impact children’s health and quality of life. Machine learning, an advanced data analysis technique, has 
shown great potential in healthcare applications in recent years. This systematic review aims to assess the application 
of ML techniques in pediatric asthma exacerbation and explore their effectiveness and potential value.

Methods  Studies from four electronic databases, including PubMed, EBSCO, Elsevier, and Web of Science, from Jan 
2000 to Jan 2025, were searched. Studies applying the ML methods for pediatric asthma exacerbation and published 
in English were eligible. The risk of bias and applicability of the included studies was assessed using the Effective 
Public Health Practice Project (EPHPP) quality assessment tool.

Results  A total of 23 studies were selected for inclusion in this review, covering different ML models such as decision 
trees, neural networks, and support vector machines. These studies focused on analyzing risk factors for asthma 
exacerbation, diagnosing and predicting, optimizing and allocating healthcare resources, and comprehensive asthma 
management. The results show that ML techniques have significant advantages in the application of pediatric asthma 
exacerbation and in the provision of personalized health care.

Conclusions  ML techniques show great promise for application in pediatric asthma exacerbations. With further 
research and clinical validation, these techniques are expected to provide strong support for diagnosis, personalized 
treatment, and long-term management of pediatric asthma exacerbation.

Clinical trial number  Not applicable, Prospero registration number CRD42024559232.
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Background
Asthma is one of the most common chronic respira-
tory diseases and has a significant impact on suffer-
ers and their families. The symptoms of asthma include 
coughing, wheezing, chest tightness and shortness of 
breath. These symptoms vary from person to person, 
ranging from mild to severe, and may occur frequently 
or infrequently. An asthma exacerbation occurs when 
these symptoms worsen [1, 2]. Asthma exacerbation in 
adolescents and children aged 6–11  years according to 
the 2024 Global Strategy for Asthma Management and 
Prevention guidelines is defined as follows: Exacerba-
tions of asthma are episodes characterized by a progres-
sive increase in symptoms of shortness of breath, cough, 
wheezing or chest tightness and progressive decrease in 
lung function. Exacerbations may occur in patients with 
a preexisting diagnosis of asthma or, occasionally, as the 
first presentation of asthma. Among other things, the 
guidelines defined asthma exacerbation in children under 
5  years of age as an acute or sub-acute deterioration in 
symptom control that is sufficient to cause distress or 
risk to health and necessitates a visit to a healthcare pro-
vider or requires treatment with systemic corticosteroids 
[3]. These exacerbations often result in school absences, 
parental absenteeism, unplanned emergency department 
(ED) visits, and hospitalizations, severely affecting the 
health-related quality of life (HRQL) of children and their 
parents [4]. Despite interventions, nearly half of pediatric 
asthma patients experience exacerbations annually, with 
1/6 requiring ED visits and 1/20 hospitalization. These 
visits account for over 1.8 million ED visits and more 
than 60% of the total cost of asthma care [5–8].

In recent years, the use of machine learning (ML) algo-
rithms in pediatric asthma exacerbations has shown sig-
nificant potential. ML algorithms can assist physicians in 
more accurately diagnosing asthma by analyzing clinical 
data, such as electronic health records (EHRs), and pul-
monary function test results, as well as predicting the risk 
of asthma exacerbations by integrating multiple sources 
of data, including clinical indicators, environmental fac-
tors, and socioeconomic factors [9–31]. It also provides 
patients with more personalized and precise medical ser-
vices through its unique ability to process and analyze 
large and complex datasets and capture highly nonlinear 
relationships and complex interactions in the data [32–
35]. However, there is still a lack of systematic review on 
the applications of ML in pediatric asthma exacerbation 
management.

This study aims to comprehensively analyze the current 
research progress of ML techniques in pediatric asthma 
exacerbation management, identify the critical risk fac-
tors, evaluate the effectiveness of these techniques, and 
explore the potential applications of ML in the diagno-
sis and prediction of pediatric asthma exacerbations, 

personalized treatment, and long-term health manage-
ment. The knowledge synthesis from this study may pro-
vide a scientific basis for clinical decision-making, policy 
formulation, and health education, potentially improving 
the quality and efficiency of care in the future.

Methods
Search strategy
This systematic review complies with the Preferred 
Reporting Items for Systematic Reviews and Meta-Anal-
yses (PRISMA) standards. Institutional review board 
approval was not required, as publicly available data 
were used and no human subjects were involved. A com-
prehensive search was performed in PubMed, EBSCO, 
Elsevier, and Web of Science, covering the period from 
January 2000 to January 2025. Studies published before 
2000 were ineligible since they were considered less rel-
evant to modern asthma care [36]. The search strategy 
was centered around the terms “Asthma,” “Asthma exac-
erbation/attack/deterioration,” and “Machine learning/
Deep learning” and included their appropriate deriva-
tives and synonyms such as “Asthmas” OR “Bronchial 
Asthma” OR “Asthma, Bronchial”, “Learning, Machine” 
OR “Transfer Learning” OR “Learning, Transfer”, “Deep 
Learning” OR “Learning, Deep” OR “Hierarchical Learn-
ing” OR “Learning, Hierarchical”. Additionally, we exam-
ined the reference lists of included articles to identify any 
additional relevant studies not retrieved by the automatic 
searches. The whole search strategy [see Additional file 
1].

Inclusion and exclusion criteria
Eligibility criteria for inclusion were: (1) The study 
subjects included children and/or adolescents under 
18 years; (2)The study subjects had asthma exacerbation/
attack/deterioration and/or asthma exacerbation/attack/
deterioration included in the primary or secondary out-
come; (3) The language of the article was in English; (4) 
Research or application of ML for asthma exacerbation/
attack/deterioration was conducted; (5) Observational 
studies (including retrospective, prospective, cohort 
studies, case-control studies, etc.) and randomized con-
trolled trials (RCT) were eligible.

We excluded the following: (1) Books or dissertations 
or thesis or conference abstracts or comments or patents 
or awarded grant or editorial, or case reports; (2) System-
atic reviews or Meta-analysis; (3) Non-full text articles.

Screening and data extraction
Two authors (Chunni Zhou and Liu Shuai) independently 
scanned abstracts, titles, and citations retrieved by elec-
tronic and hand searches against the inclusion criteria 
to assess eligibility. Two review authors independently 
reviewed the full-text studies retrieved to determine final 
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eligibility. Disagreements were discussed and resolved by 
consensus, and if necessary, a third author (Meng Li) was 
involved.

Data were extracted by one reviewer (Chunni Zhou) 
and checked for consistency by the other two reviewers 
(Liu Shuai and Meng Li). Data extracted included first 
author, country, year, study design, data collection period, 
study population, sample size, type of ML algorithm, def-
inition of asthma exacerbation/attack/deterioration, out-
come events, and study results. For the ML algorithms, 
we also extracted validation methods and performance 
metrics. In addition, we read through each study to gen-
eralize and categorize the research objectives. Due to sig-
nificant methodological heterogeneity among the studies, 
a meta-analysis was not conducted. Instead, a narrative 
synthesis of the results was performed, and complete 
details of the included studies are reported in Table 1.

Quality assessment
The Effective Public Health Practice Project (EPHPP) 
quality assessment tool for quantitative studies [37] was 
used to assess each research regarding potential biases 
and global study quality. Studies were given a global rat-
ing of strong, moderate, or weak based on the score. The 
tool was used for removing confounders, blinding, inter-
vention integrity, and analysis, as these were irrelevant to 
the study designs assessed in this review. This left the fol-
lowing areas: selection bias, study design, data collection 
methods, and withdrawals and dropouts. One author 
(Chunni Zhou) conducted this assessment, and a discus-
sion was undertaken with the second author.

Results
Study selection
Figure  1 shows the study selection process. A total of 
675 papers were identified from four databases (PubMed 
(136), Elsevier (47), Web of Science (333), and Ebsco 
(159)). After excluding 335 duplicates, 340 papers were 
screened by titles and abstracts, leading to 31 potentially 
eligible papers. Then, full-text screening of these articles 
confirmed eligibility for 16. Additionally, examining the 
references of these articles yielded 7 more, totaling 23 
articles included in the review (Fig. 1).

Study characteristics
The publication year of these papers they were ranged 
from 2006 to 2024. Eight studies were published between 
2006 and 2015 [9–15, 28] and 15 between 2016 and 2024 
[16–27, 29–31]. Among these studies, 14 studies were 
from America [9–11, 14, 16, 17, 19, 23–27, 29, 30], three 
were from the Netherlands [13, 15, 18], and one each was 
from Canada [12], Greece [20], Korea [21], Japan [22], 
China [28] and Poland [31] (Fig. 2).

Nine were prospective studies [9, 12–15, 17, 18, 21, 31], 
including two prospective cohort studies [17, 18] and two 
prospective longitudinal studies [13, 15], with follow-up 
times of one [13, 15, 18], and three years [17]. Thirteen 
were retrospective studies [10, 11, 16, 19, 20, 22, 24–30], 
including one retrospective cohort study [27] and one 
case-crossover study [16], with follow-up periods of two 
[27] and eleven years [16]. One study was a random-
ized controlled trial with a 1-year follow-up [23]. In the 
randomized controlled trial, the intervention positively 
affected exacerbation outcomes [23] (Fig. 2).

The age range for populations varied across the studies: 
five included children aged 2–18 years [9, 10, 14, 19, 30], 
three included children aged 0–17 years [23, 25, 31], two 
included children aged 5–18 years [26, 27], two included 
children aged 6–18  years [15, 18], one each included 
children aged six months to 15  years [22], 1–14.5  years 
[20], 1–17  years [12], 2–21  years [24], 5–12  years [11], 
6–14 years [21], 6–16 years [13] and 6–17 years[29] and 
three did not specify the age of the pediatric participants 
[16, 17, 28] (Fig. 2).

The sample size varied from 14 to 54981 (eight stud-
ies ≤ 100 [13, 15, 17, 18, 20, 21, 28, 31], six studies ≤ 1,000 
[11, 12, 14, 23, 25, 30], four studies ≤ 10,000 [9, 10, 24, 26], 
four studies > 10,000 [16, 19, 22, 27] and one study not 
explained [29]). Full details of the included studies are 
reported in Table 1 (Fig. 2).

Definition of exacerbation and outcome
Ten studies did not specify a definition of asthma exac-
erbation [10, 14, 16, 17, 20, 21, 24, 28–31], three stud-
ies defined asthma exacerbation according to the most 
recent ATS/ERS [13, 15, 18], three studies defined 
asthma exacerbation using emergency room visits and 
hospitalizations [11, 12, 27], two studies defined asthma 
exacerbation using emergency room visits/hospitaliza-
tions or oral corticosteroid [23, 25], two studies defined 
asthma exacerbation using International Classifica-
tion of Diseases codes ICD9 or − 10 [22, 26], one study 
defined asthma exacerbation using concomitant receipt 
of albuterol and systemic corticosteroids [19], one study 
defined asthma exacerbation using only emergency 
room visits [9] and one study defined asthma exacerba-
tion using emergency room visits or hospitalizations or 
outpatient visit with usage of oral corticosteroids medi-
cations [29]. Seventeen of the studies had a primary or 
secondary outcome of pediatric asthma exacerbation [9–
13, 15–18, 20, 23, 25, 26, 28–31], while the remaining six 
studies included populations with pediatric asthma exac-
erbations [14, 19, 21, 22, 24, 27]. Therefore, the outcomes 
of the studies were mainly related to emergency room 
visits or hospitalizations [19, 24, 27], peak expiratory flow 
rate (PEFR) values [21], asthma control exacerbation [14], 
and antibiotic variants and adjunctive therapy [22].
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ML model related characteristics
Regarding learning algorithms, 23 studies utilized 59 dif-
ferent ML algorithms, which were categorized with the 
most popular being Bayesian Networks (BN), followed by 
Random Forests (RF), Decision Trees (DT), Neural Net-
works (NN) and Support Vector Machines (SVM) (Fig.3).

Because of data limitations, only five studies were 
included in this study to research the performance of 
their ML models, and the performance metrics were 
accuracy, sensitivity, specificity, Area Under the Curve 
(AUC), Positive Predictive Value (PPV) and Negative 
Predictive Value (NPV). Overall, most of the values of 
the six metrics of all the models in the five studies were 

high, especially the specificity, AUC and NPV were close 
to 100% for some models, and among all the metrics, 
the distribution of accuracy was the most concentrated, 
with most models around 70%, and the remaining met-
rics have a more dispersed distribution of values. The five 
models of Dexheimer JW et al [10] have higher values 
of sensitivity, specificity, AUC and NPV, among which 
the NPV of BN, Max-Min Hill-Climbing (MMHC) and 
Gaussian process (GP) reaches 98.9%, but the PPV of the 
five models are low, especially Artificial Neural Network 
(ANN), which has a PPV of only 38%. The values of the 
five models of Gardeux V et al [17] for the six metrics are 
relatively close to each other, with values between 60% 

Fig. 1  Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram
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Fig. 2  Study characteristics of the included studies. Note (a) study setting of the included studies; (b) study design of the included studies; (c) study 
population of the included studies; (d) publication years of the included studies; (e) sample size of the included studies
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and 70%. The accuracy, specificity, AUC and NPV of the 
six models of Luo G et al [14] were around 70% and 80%, 
but the sensitivity and PPV values were lower, with RF 
having the lowest sensitivity of 38.3%, showing a rectan-
gular pattern (Fig. 4).

Farion KJ et al [12] and Sanders DL et al [9] each 
included only one model. In the NB model of Farion KJ 
et al [12], the highest value of the five reported metrics 
was 85% (PPV), while the lowest value was 53% (NPV). 
In contrast, the Bayesian network model of Sanders DL et 
al [9] reported the highest value as 98.8%(NPV) and the 
lowest value as 44.7% (PPV).

Regarding algorithm validation methods, nine studies 
used cross-validation [9, 12–14, 19–21, 29, 31], six stud-
ies used split-sample validation [10, 15, 16, 24–26], two 
studies used bagging validation [18, 27], two studies used 
holdout validation [11, 17], and four studies did not men-
tion validation methods [22, 23, 28, 30].

Of the 23 studies included, 21 studies dealt with clas-
sification tasks using ML models [9–15, 17–21, 23–31], 
only one study dealt with clustering tasks [22], and one 
study dealt with association analysis tasks using associa-
tion rule mining [16].

The study showed that the number of variables entered 
into the model varied across studies, with 5 studies 

having a variable count of ≤ 10 variables [9, 18, 21, 22, 27], 
13 studies having a variable count of ≤ 50 variables [10, 
12, 14–17, 19, 20, 23–25, 28, 29], 1 study having a vari-
able count of > 100 variables [13], and 4 studies having an 
unknown specific variable count [11, 26, 30, 31]. In the 23 
studies, the types of variables input into the model were 
a mixture of numerical and categorical variables [9–31]. 
The numerical variables mainly included physiological 
indicators of patients (such as BMI, and pulmonary func-
tion indicators), environmental data, and genetic data. 
The categorical variables mainly included basic patient 
characteristics (such as gender, age, and ethnicity), clini-
cal characteristics (such as allergic constitution, comor-
bid conditions, and asthma severity), treatment-related 
factors (such as medication use and treatment group), 
and other clinical diagnostic information (such as symp-
tom severity).

In addition, regarding Explainable Artificial Intelligence 
(XAI), five studies were found to use feature importance 
maps to improve the interpretability of model results [11, 
18, 19, 24, 27], five studies to use interpretable models 
and visualize model structures and processes [9, 10, 16, 
20, 28] and one study to use the SHapley Additive expla-
nation (SHAP) method to calculate shapley values [30].

Fig. 3  Histogram of different ML algorithms for asthma exacerbation management. Note: There were a total of 59 models across the 23 studies, which 
were categorized to give a total of 12 categories of models
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Applications of ML algorithms in pediatric asthma 
exacerbations (categorized by disease management)
Assessment of risk factors
Eight studies have utilized ML to assess risk factors for 
pediatric asthma exacerbations, exploring genomic data, 
environmental elements, and socioeconomic status [11, 
16, 17, 21, 25–28]. Two studies focus on genomics [11, 
17], two on social factors [25, 27] and three on environ-
mental factors such as indoor and outdoor air pollutants 
[16, 21, 26, 28]. Some studies have analyzed the effects 
of genetic polymorphisms and air pollutants on pediat-
ric asthma exacerbations using Random Forest classifiers 
and association rule mining techniques [11, 16, 28], and 
one of them proposed two novel data mining methods 
(pattern-based decision tree (PBDT) and pattern-based 
class association rule (PBCAR)) to combine patient bio-
signals and environmental data for the application of 
asthma exacerbation. others have used deep learning 
algorithms, such as Long Short-Term Memory (LSTM) 
modeling, to predict the risk of pediatric asthma exac-
erbations and assessed the effects of indoor particulate 
matter concentrations on PEFRs in pediatric asthma [21]. 
In addition, studies also evaluated the performance of 
ML models across different socioeconomic groups, aim-
ing to minimize biases [25, 27]. Together, these studies 
emphasize the importance of individual differences and 

environmental factors in the management of pediatric 
asthma exacerbations.

Diagnosis and prediction of pediatric asthma exacerbations
Nine studies have applied ML to diagnose pediatric 
asthma exacerbations with high accuracy, leveraging clin-
ical data and patient characteristics [9, 10, 12, 13, 15, 18, 
20, 30, 31]. Three studies developed and evaluated Bayes-
ian networks for diagnosing patients in line with treat-
ment guidelines in pediatric emergency departments and 
predicting exacerbations post-medication withdrawal 
[9, 10, 20]. Three other studies utilized Volatile Organic 
Compounds (VOCs) and inflammatory markers to diag-
nose and predict exacerbations, with one noting high 
accuracy for certain VOC combinations [13, 15, 18]. One 
study used this to accurately identify pediatric asthma 
exacerbations from prehospital records by modifying an 
existing rule-based computable phenotype (CP) and cre-
ating a new machine learning-based CP [30]. One study 
used an AI-assisted home stethoscope and found that 
the parameters provided by the device were very effec-
tive in detecting pediatric asthma exacerbations [31]. 
Still another study compared the efficacy of various algo-
rithms, including Bayesian networks, ANNs, SVMs, and 
Gaussian processes, in predicting asthma exacerbations 

Fig. 4  Radar charts of ML model performance metrics. Note: Because of data limitations, all five models studied by Dexheimer JW were missing accuracy, 
with the SVM also missing AUC; the NB model studied by Farion KJ was missing AUC; and the BN model studied by Sanders DL was missing accuracy. BN, 
Bayesian Network; MMHC, Max-Min Hill-Climbing; ANN, Artificial Neural Network; GP, Gaussian process; SVM, Support Vector Machine; NB, Naive Bayes 
model; RF, Random Forest; DT, Decision Tree; KNN, K- Nearest Neighbor; DS, Decision stumps; DNN, Deep Neural Network
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in the ED, concluding that all achieved high accuracy 
[12].

Optimization and allocation of medical resources
Three studies explored the use of ML for optimizing 
medical resource allocation in pediatric asthma exacer-
bations [19, 22, 24]. One study compared four ML mod-
els, combining clinical, environmental, and social data to 
predict demand for hospitalization, with gradient boost-
ing performing the best results [19]. Another applied 
automated machine learning algorithms (autoML), which 
outperforming traditional ML [24]. The third analyzed 
hospitalization patterns in Japan, founding that antibiotic 
use and the use of other adjunctive treatments differed 
significantly between hospitals [22].

Comprehensive asthma management
Three studies have applied ML to comprehensive pediat-
ric asthma exacerbations management [14, 23, 29]. One 
study combined ML algorithms to predict asthma control 
exacerbations one week in advance by analyzing clinical 
and environmental data [14]. Two studies evaluated an 
artificial intelligence-assisted clinical decision support 
system (AI-CDS) [23, 29], specifically the Asthma Guid-
ance and Prediction System (A-GPS), which uses EHRs 
to provide clinical information and predict the risk of 
asthma exacerbation [23]. While all three studies utilized 
ML to enhance asthma management, the former study 
emphasized model development and improvement of 

prediction ability [14] and the latter two assessed AI-CDS 
in clinical practice [23, 29].

Quality assessment
The EPHPP quality assessment in Fig. 5 rated 5 studies as 
strong [13, 15, 18, 23, 27], 15 as moderate [10–12, 14, 16, 
17, 19–22, 24–26, 30, 31] and 3 as weak [9, 28, 29].

Discussion
This systematic review covers a broader and more recent 
time frame, spanning from Jan 2000 to Jan 2025, pro-
viding insights into the evolving use of ML in pediatric 
asthma exacerbations. It contains more than just pre-
dictions [4, 36, 38, 39], covering risk factor assessment, 
diagnosis and prediction of pediatric asthma exacerba-
tions, optimization and allocation of medical resources, 
and comprehensive asthma management, offering a more 
holistic understanding of ML’s role in this domain.

Findings
The review also highlights that majority of ML applica-
tions in the included studies were predictive models for 
pediatric asthma exacerbations. This trend likely reflects 
the rapid onset and dynamic nature of asthma exacerba-
tion, which can be life-threatening. Prediction of pediat-
ric asthma exacerbations plays a crucial role in enabling 
preventive interventions and targeted treatment [40]. 
Furthermore, disease diagnosis can provide physicians 
with actionable predictive data to support decision-mak-
ing, enhance healthcare process efficiency, and reduce 

Fig. 5  Quality assessment. Note The confounders, blinding, intervention integrity, and analyses did not apply to any of the studies and were therefore 
removed
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costs [40–42]. ML algorithms have been applied not only 
in predicting acute exacerbations of chronic obstruc-
tive pulmonary disease (COPD) [43–45] and acute kid-
ney injury [46, 47], but also in detecting and diagnosing 
conditions such as asthma, heart disease, and diabetes 
[48–50]. Additionally, ML aids in creating personalized 
treatment plans for diseases like cancer and rheumatoid 
arthritis [51, 52], while optimizing healthcare resources 
management [53, 54].

Because of the broad definition of pediatric asthma 
exacerbation, this study included studies that explicitly 
stated the keyword “asthma exacerbation”. This review 
also found that the definitions of pediatric asthma exacer-
bations varied across studies, with most studies defining 
pediatric asthma exacerbations as hospitalization, emer-
gency visits, and specific medical interventions, and the 
differing definitions of exacerbations lead to non-compa-
rable findings. In addition, different definitions may have 
an impact on the diagnosis of pediatric asthma exacerba-
tions, with looser definitions potentially including more 
potential pediatric asthma exacerbations, thus increasing 
sensitivity, but also diagnosing asthma exacerbations in 
patients who do not have an asthma exacerbation, which 
reduces specificity and leads to more false-positive diag-
noses; therefore standardizing the definition of pediatric 
asthma exacerbation could help improve both the quality 
of the study and the accuracy of the diagnosis [55, 56].

ML research in pediatric asthma is also different from 
adult asthma. The pathogenesis of pediatric asthma is rel-
atively complex, and many risk factors are still unknown; 
therefore, in studies of pediatric asthma, the focus is usu-
ally on factors associated with child growth and develop-
ment, such as family history and genetic predisposition 
[11, 17, 32]. Still, these factors are often difficult to con-
trol, and these factors may be less significant in studies 
of adult asthma exacerbations, which have focused more 
on lifestyle and environmental factors, such as air pollu-
tion and occupational exposures [57, 58]. Thus, in pedi-
atric asthma, controlling certain environmental factors, 
such as tobacco smoke exposure, pet hair and dust mites, 
may reduce the risk of asthma exacerbation [26, 32, 59]. 
In addition, ML models for pediatric asthma focus more 
on the explanatory nature of the models so that they can 
be accepted and used by physicians and parents. The 
interpretability of black-box models (such as the more 
complex ML and DL models) can be improved using 
techniques like feature importance analysis and Local 
Interpretable Model-agnostic Explanations (LIME), 
which are post-hoc interpretation methods [60, 61]. 
Alternatively, one can directly use interpretable mod-
els, such as linear models and decision trees, which have 
simple structures and are easy to understand and inter-
pret. In addition, textual interpretation and visualization 
of models or results can improve the interpretability of 

models and results to some extent. There is no unified 
and objective standard for assessing interpretability, 
and different methods and application scenarios may 
require different assessment indicators [62]. In addition, 
approaches integrating multiple ML algorithms have 
shown promising results in pediatric asthma exacerba-
tion studies, especially when considering multiple mete-
orological, environmental, and pollen factors [26]. This 
suggests that combining different machine-learning algo-
rithms may provide more accurate models for pediatric 
asthma exacerbation studies [12, 14, 17, 21]. Meanwhile, 
the emerging development of deep learning models has 
also shown advantages as they can efficiently process and 
refine the complex nonlinear relationships between risk 
factors, thus improving the model accuracy [14, 21, 63].

The inclusion of this systematic review revealed that 
the number of variables entered into the model varied 
across studies. Upon comparison, it was found that stud-
ies with a smaller number of model inputs included a 
correspondingly smaller number of study subjects, used 
fewer types of ML algorithms, and had simple models 
that were easy to manipulate, with high model interpret-
ability, and that the ML in these types of studies was more 
focused on the application of clinical practice for pediat-
ric asthma exacerbation; whereas, studies with a larger 
number of model inputs included a very large number 
of study subjects, and also used multiple ML algorithms 
for comparison, however crosswise, the accuracy of the 
resulting models was also higher, and the study focused 
more on ML method and prediction performance.

When assessing model performance, using a combina-
tion of metrics is essential, as relying on a single metric 
can be misleading. Different metrics capture different 
aspects of model performance, providing a more com-
prehensive evaluation. For instance, using accuracy alone 
can be very deceptive, particularly with unbalanced data-
set. In such cases, accuracy may overestimate model 
effectiveness by favoring the majority class while mask-
ing poor performance on minority classes. While AUC 
(area under the ROC curve) is robust to class imbal-
anced and offers a holistic view of model performance, it 
also has limitations. AUC does not convey how well the 
model performs at particular decision thresholds, which 
is critical for practical applications. For example, in pedi-
atric asthma exacerbation studies, the performance of 
the model under specific decision thresholds can directly 
affect clinical outcomes. Therefore, it is necessary to refer 
to metrics such as sensitivity, specificity, positive predic-
tive value (PPV) and negative predictive value (NPV). For 
example, if the model is used for screening and diagno-
sis of pediatric asthma exacerbations, then high sensitiv-
ity and NPV are essential to reduce underdiagnosis and 
underreporting, while high specificity and PPV help to 
minimize misdiagnosis and misreporting [40, 64–66].
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To effectively evaluate model performance, the choice 
of metrics should align with the characteristics of the 
dataset and the objectives of the modeling task. AUC is 
widely used to comprehensively assess a model’s abil-
ity to distinguish between categories. It summarizes the 
model’s performance under different thresholds and is 
particularly useful for unbalanced datasets. Sensitivity 
and specificity are critical when evaluating the perfor-
mance of a model on positive and negative classes. For 
situations where false positives and false negatives need 
to be balanced, metrics such as precision and recall (sen-
sitivity) can be combined into an F1 score to provide a 
balanced assessment, especially in unbalanced datasets. 
In addition, accuracy is a straightforward metric for mea-
suring the proportion of correct predictions. However, 
in unbalanced datasets, accuracy can be misleading, and 
metrics such as Precision-Recall Curve and Area Under 
Precision-Recall Curve (AUPRC) provide a more accu-
rate picture of model performance.

Ultimately, the selection of evaluation metrics should 
be tailored to the specific goals of the modeling task. For 
instance, AUC measures overall discriminatory power, 
sensitivity and specificity assess category-specific perfor-
mance, and theF1 scores balances precision and recall, 
providing a comprehensive understanding of model 
effectiveness [67–69].

Implications and recommendations
Regarding the diagnosis of pediatric asthma exacerba-
tion, the Global Strategy for Asthma Management and 
Prevention (Updated 2024) can be referred to for a com-
prehensive diagnosis by combining information from 
various aspects such as clinical symptoms, medical his-
tory, physical examination, and pulmonary function tests. 
Accurate diagnosis helps to detect signs of asthma exac-
erbation and take targeted treatment measures. However, 
it varies from region to region and should be standard-
ized according to local diagnostic criteria [3, 70].

In the clinical use of ML models to assist decision-
making, with the help of explanatory tools such as LIME, 
SHAP, the results of the model can be interpreted to help 
doctors and parents understand the model’s decisions. 
For example, through the SHAP method one can clarify 
which risk factors have a greater impact on the current 
prediction results, so as to take more targeted preventive 
measures, but also can choose some of its own ML algo-
rithms with better interpretability, such as decision trees, 
logistic regression and so on [60–62].

When evaluating the performance of the model, in 
addition to focusing on metrics such as accuracy and 
AUC, attention should also be paid to metrics such as 
the sensitivity, specificity, PPV and NPV of the model. 
These metrics can more comprehensively reflect the per-
formance of the model in practical applications and help 

doctors and assess the reliability and usefulness of the 
model [64–66, 69].

Strengths and limitations of the study
The strengths of this systemic review lie in its compre-
hensive search strategy, adherence to a rigorous sys-
tematic review methodology and reporting guidelines, 
and the independent assessment by researchers during 
title, abstract, and full-text screening, with data extrac-
tion verified by multiple reviewers. However, this review 
has some limitations. First, non-English studies were 
excluded, which may limit the generalizability of findings. 
Second, the definition of asthma exacerbation was not 
standardized across studies, making comparisons diffi-
cult. Third, meta-analysis could not be conducted due to 
significant heterogeneity in study samples, participants, 
and outcomes.

Future research
Future research on ML in pediatric asthma exacerbations 
holds considerable promise. Enhancing data quality and 
diversity is crucial, with the inclusion of broader datas-
ets encompassing pediatric asthma genetic information, 
environmental factors, and lifestyle habits. Additionally, 
algorithmic advancements, especially in deep learning, 
will drive further personalization of treatment, leading to 
improved efficacy. The integration of real-time monitor-
ing systems using wearables and smart devices will sup-
port detection and prevention. Finally, interdisciplinary 
collaboration among experts in medicine, data science, 
and engineering will be essential in addressing complex 
problems and developing more effective asthma manage-
ment tools.

Conclusions
The systematic review indicates great potential for ML 
in pediatric asthma exacerbation management, includ-
ing risk identification, diagnosis, and personalized care. 
However, challenges such as data quality, algorithm opti-
mization, and interdisciplinary collaboration need to be 
addressed in clinical practice. Future work should priori-
tize model robustness, data security, and clinical testing 
to advance the field.
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