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Abstract
Background  Accurately predicting the depth of anesthesia is essential for ensuring patient safety and optimizing 
surgical outcomes. Traditional regression-based approaches often struggle to model the complex and dynamic 
nature of patient responses to anesthetic agents. Machine learning techniques offer a promising alternative by 
capturing intricate relationships within physiological data. This study proposes a hybrid model integrating Long Short-
Term Memory (LSTM) networks, Transformer architectures, and Kolmogorov-Arnold Networks (KAN) to improve the 
predictive accuracy of anesthesia depth.

Methods  The proposed model combines multiple deep learning techniques to address different aspects of 
anesthesia prediction. The LSTM component captures the sequential nature of drug administration and physiological 
responses. The Transformer architecture utilizes attention mechanisms to enhance contextual understanding 
of patient data. The KAN models nonlinear relationships between drug infusion histories and anesthesia depth. 
The model was trained and evaluated on patient data from a publicly available anesthesia monitoring database. 
Performance was assessed using Mean Squared Error (MSE) and compared against other models.

Results  The hybrid model demonstrated superior predictive performance compared to conventional regression 
approaches. Tested on the VitalDB database, the proposed framework achieved a MSE of 0.0062, which is lower than 
other methods. The inclusion of attention mechanisms and nonlinear modeling contributed to improved accuracy 
and robustness. The results indicate that the combined approach effectively captures the temporal and nonlinear 
characteristics of anesthesia depth, offering a more reliable predictive tool for clinical use.

Conclusions  This study presents a novel deep learning framework for anesthesia depth prediction, integrating 
sequential, attention-based, and nonlinear modeling techniques. The results suggest that this hybrid approach 
enhances prediction reliability and provides anesthesiologists with a more comprehensive analysis of factors 
influencing anesthesia depth. Future research will focus on refining model robustness, exploring real-time 
applications, and addressing potential biases in predictive analytics to further improve clinical decision-making.
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Introduction
The depth of anesthesia (DoA) is a crucial factor in anes-
thesiology, significantly impacting patient outcomes dur-
ing surgical interventions. Monitoring DoA is necessary 
to make sure that analgesia, amnesia and muscle relax-
ation are achieved by patients which are the main targets 
of anesthesia. Anesthetizing agents should be delivered 
in right dosages in order to avoid excessive or insufficient 
anesthesia leading to some adverse effects like intraop-
erative awareness or hemodynamic instability [1, 2]. The 
complexity of anesthesia makes it essential to understand 
better how different levels affect physiological responses 
because different anesthetics can have an inhibitory 
effect on organ function whereby various clinical signs 
and symptoms may appear [1, 3]. The consciousness of 
patients must be managed very carefully during surgical 
interventions. The purpose of anesthesia is to provide a 
temporary suspension of consciousness so as not to feel 
pain nor remember anything during the procedure. How-
ever, clinicians often find it difficult to define accurately 
what is the right amount of anesthetic needed for total 
unconsciousness since the use of muscle relaxants hides 
vital signs such as breathing and movement [4]. For this 
reason, proper monitoring systems must be implemented 
for accurate anesthesia depth assessment and appropriate 
drug adjustments [5, 6].

DoA can be evaluated by a variety of methods. Tradi-
tional clinical assessments that are commonly used such 
as monitoring vital signs like heart rate and blood pres-
sure or observing patient responses, tend to be subjective 
and unreliable [4]. Among more advanced techniques, 
heart rate variability analysis, isolated forearm technique 
(IFT) or lower esophageal contractility (LOC) assess-
ments provide other insights into the patient’s anes-
thetic state [7]. However these methods may not always 
perfectly correlate with the actual depth of anesthesia. 
Hence, there is still need for precise monitoring tools. 
One widely recognized and applied means for monitor-
ing depth of anesthesia is the Bispectral Index (BIS). It is 
a non-invasive system that monitors brain activity mea-
suring it within a numerical range of zero meaning no 
brain activity and hundred indicating full consciousness 
[8, 9]. It has been endorsed by the U.S. Food and Drug 
Administration (FDA) as a reliable indicator for anes-
thetic depth and several studies have proven its effective-
ness in multiple surgical settings [10]. Continuous BIS 
monitoring allows anesthesiologists to titrate anesthetic 
agents thereby enhancing patients’ safety and comfort 
during procedures [11].

Traditional methods of monitoring DoA, particularly 
through target-controlled infusion (TCI) models, pri-
marily rely on pharmacokinetic-pharmacodynamic (PK-
PD) models that predict drug concentration based on 
propofol dosage. However, these models often do not 

incorporate the BIS as a measurement index, leading to 
inconsistencies during various stages of anesthesia. This 
limitation highlights the need for more robust monitor-
ing systems that can accurately reflect the patient’s state 
throughout the anesthesia process [12].

In recent years, there has been a significant develop-
ment in DoA monitoring models, particularly those 
based on electroencephalogram (EEG) signals. The BIS 
has emerged as a standard in this domain, providing 
a continuous assessment of the patient’s brain activity 
during anesthesia. However, the intricacies involved in 
interpreting EEG signals, combined with the limited sen-
sitivity of BIS to specific anesthetic agents, present sig-
nificant challenges that may undermine the accuracy and 
reliability of DoA evaluations [12]. Furthermore, the high 
costs associated with advanced EEG monitoring tech-
nologies limit their accessibility, particularly in resource-
constrained settings, underscoring the necessity for more 
affordable and effective solutions [12]. The application 
of machine learning (ML) techniques has been explored 
in modeling DoA and propofol dosage, yet many stud-
ies have overlooked the effects of adjunctive agents such 
as remifentanil. This oversight may lead to incomplete 
models that fail to capture the full pharmacodynamic 
interactions occurring during anesthesia [13]. Recent 
advancements in deep learning have shown promise in 
predicting DoA based on EEG signals and fluid admin-
istration history. For instance, studies by Zhou et al. [14] 
and Abel et al. [15] have developed deep learning mod-
els that aim to enhance the accuracy of DoA predictions. 
However, these models have encountered difficulties, 
particularly during the anesthesia induction and recovery 
stages, where physiological responses can vary signifi-
cantly among patients.

The incorporation of deep learning techniques into 
DoA monitoring marks a substantial leap forward com-
pared to conventional methods. By utilizing extensive 
datasets and sophisticated algorithms, these models hold 
the potential to deliver more accurate DoA predictions, 
effectively addressing the diverse responses patients 
exhibit to anesthetic agents. For example, Chen et al.’s 
work on a deep learning framework for anesthesia depth 
prediction emphasizes the challenges posed by individual 
physiological differences, which can lead to inconsistent 
pharmacodynamic responses during anesthesia [16]. 
Moreover, the exploration of EEG features through ML 
techniques has been shown to classify unconsciousness 
effectively, providing a more nuanced understanding of 
the relationship between drug administration and brain 
activity [15].

Despite these advancements, the field still faces chal-
lenges, particularly in ensuring the generalizability of ML 
models across diverse patient populations and clinical 
scenarios. The need for robust validation of these models 
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is crucial, as the consequences of inaccurate DoA predic-
tions can be severe, including the risk of awareness dur-
ing surgery or inadequate anesthesia leading to patient 
distress [17]. Furthermore, the interaction between dif-
ferent anesthetic agents, such as propofol and remifen-
tanil, necessitates a comprehensive understanding of 
their combined effects on brain activity, which current 
models may not fully address [13, 17]. To overcome these 
limitations, in this paper, we propose a computational 
framework that integrates the Long Short-Term Mem-
ory (LSTM) networks, Transformer architectures, and 
Kolmogorov-Arnold Networks (KAN). This hybrid AI 
approach, combining diverse machine learning models 
and deep learning architectures, has demonstrated prom-
ising outcomes across diverse applications in healthcare 
and biomedicine [18–20].

The LSTM networks [21] are particularly well-suited 
for handling sequential data, as they are designed to 
remember information over extended periods. In the 
context of drug infusion history, where the timing and 
dosage of medications can significantly influence patient 
outcomes, LSTMs are highly effective at capturing tem-
poral dependencies. By retaining critical information 
about previous drug administrations, they enable the 
model to make informed predictions about the cur-
rent depth of anesthesia. This capability is crucial, as the 
effects of anesthesia drugs can be.

Transformers [22], renowned for their proficiency in 
capturing data relationships via attention mechanisms, 
augment LSTM by strengthening the model’s ability 
to interpret the context of drug infusion histories. The 
attention mechanism allows the model to focus on the 
most relevant parts of the input sequence, such as key 
drug doses or timing intervals, which are vital for assess-
ing the depth of anesthesia. By utilizing the Transform-
er’s capability to manage long-range dependencies, we 
can enhance the model’s ability to comprehend intricate 
interactions among multiple drugs administered over 
extended periods.

KAN [23] introduces a layer of flexibility in model-
ing nonlinear relationships inherent in biological sys-
tems. Anesthesia depth is influenced by various factors, 
including patient-specific variables and drug interac-
tions, which may not follow linear patterns. KAN’s abil-
ity to approximate complex functions allows for a more 
nuanced understanding of how different drug infusion 
histories translate into varying depths of anesthesia. This 
feature is especially beneficial in medical settings, where 
personalized patient reactions can differ substantially.

By combining LSTM, Transformer, and KAN, our pro-
posed model creates a robust framework that optimizes 
predictive performance while providing deeper insights 
into the underlying dynamics of anesthesia depth. LSTM 
captures the sequential nature of drug administration, 

the Transformer enhances contextual understanding 
through attention mechanisms, and KAN addresses the 
nonlinearities present in patient responses. This com-
bined method not only enhances prediction precision but 
also enables a more thorough examination of the factors 
affecting anesthesia depth. Ultimately, this model aims to 
enhance patient safety and outcomes by providing anes-
thesiologists with reliable predictions based on detailed 
drug infusion histories.

Related work
Traditional methods for assessing DoA, such as the 
pharmacokinetic-pharmacodynamic (PK-PD) model, 
primarily utilize propofol doses to predict the effect-site 
concentration of the drug by Shalbaf et al. (2014) [24]. 
However, Huang et al. (2023) [25] highlighted the limita-
tions of relying solely on propofol kinetics, arguing that a 
more comprehensive approach is necessary for accurate 
DoA assessment.

In recent years, the incorporation of machine learning 
and deep learning into anesthesia prediction models has 
transformed the field, enabling more accurate and per-
sonalized patient care. Taylor et al. (2016) [26] developed 
a hybrid approach integrating clustering and regression 
methods, employing electromyography (EMG) signals 
in conjunction with propofol infusion rates to forecast 
bispectral index (BIS) signals. This innovative approach 
demonstrates the potential of ML to enhance the accu-
racy of DoA predictions. Similarly, Zhou and Srinivasan 
(2021) [27] employed reinforcement learning to design a 
closed-loop anesthesia control system that uses BIS as a 
control parameter, while also incorporating mean arterial 
pressure (MAP) into the model. This dual consideration 
allows for more precise regulation of propofol infusion 
rates, ensuring that both BIS and MAP values remain 
within desired ranges. The advancements in ML have 
also led to the development of adaptive models that aim 
to improve the accuracy of anesthesia predictions. Mizu-
guchi and Sawamura (2023) [28] proposed a fuzzy logic-
based adaptive model enhanced by a genetic algorithm, 
which seeks to provide more reliable predictions of DoA. 
Recently, Peng (2024) [29] focused on identifying opti-
mal EEG features to classify DoA stages using an adap-
tive neuro-fuzzy inference system. Despite the promise 
of this method, earlier studies in this area were often 
constrained by limited experimental settings and small 
sample sizes, which may not adequately reflect the com-
plexities of drug effects on DoA or the diversity of patient 
physiology. This concern is further underscored by Lee 
et al. [30], who developed a deep learning model that 
leverages infusion histories of propofol and remifentanil, 
along with patient characteristics, to predict BIS signals. 
Their model, trained on a substantial cohort of 231 sub-
jects, offers a more robust framework for DoA prediction 
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compared to previous methodologies. Additionally, the 
integration of AI into clinical decision-making processes 
has been shown to improve outcomes in anesthesia, as 
highlighted by Hashimoto et al. [31]. Their review iden-
tified six key themes of AI applications in anesthesiol-
ogy, including depth of anesthesia monitoring and event 
prediction. The potential of machine learning to enhance 
predictive analytics in anesthesia is further supported by 
studies such as those conducted by Kang et al. [32], who 
developed a prediction model for hypotension following 
anesthesia induction. Their results indicate that machine 
learning can substantially enhance prediction accu-
racy when compared to conventional logistic regression 
approaches. This is particularly relevant in the context of 
intraoperative management, where timely and accurate 
predictions can mitigate risks associated with anesthesia. 
In 2021, Kim et al. (2021) [33] made significant progress 
by integrating convolutional neural networks (CNNs), 
LSTM networks, and attention mechanisms to develop 
an innovative framework for predicting DoA using EEG 
signals. This comprehensive methodology highlights the 
promise of deep learning in improving the precision and 
dependability of DoA evaluations in clinical settings. 
However, it is important to note that anesthesiologists 
traditionally manage DoA based on the pharmacologi-
cal effects of anesthetic agents, which may not always 
align with the predictions generated by these advanced 
models.

Material and method
Dataset
Dataset description
The dataset utilized in the experiments is the VitalDB 
database [34], accessed on January 1, 2022. This publicly 
available dataset is curated and managed by the Depart-
ment of Anesthesiology and Pain Medicine at Seoul 
National University Hospital, affiliated with Seoul Metro-
politan Medical College, located in Seoul, South Korea. 
It encompasses comprehensive information from 6,388 
surgical patients, including demographic details such as 
height, weight, sex, and age. Additionally, it features over 
60 clinical indicators related to operating room equip-
ment, including patient monitors, anesthesia machines, 
BIS monitors, target-controlled infusion pumps, cardiac 
output monitors, and local oximeters. The dataset also 
includes BIS values and signal quality indices collected 
by BIS VISTA at one-second intervals, along with cumu-
lative infusion volumes, effect-site concentrations (Ce), 
and plasma concentrations (Cp) of propofol and remi-
fentanil, measured at the same one-second intervals by 
target-controlled infusion pumps.

In this study, we selected BIS as the measurement 
to calculate DoA, as described in Fig.  1. In the VitalDB 
public dataset, BIS is the exclusive measure of anesthe-
sia depth. In addition, when compared to other DoA-
type metrics (such as the Narcotrend index and Patient 
State index), BIS offers several significant benefits. It 
is the most prevalent indicator of anesthesia depth and 
has received FDA approval for use as a monitoring 
device for anesthetic effects on the brain. Moreover, BIS 

Fig. 1  Visualization of BIS for CaseID 1210
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demonstrates a strong correlation with the sedative prop-
erties of various anesthetic agents, effectively reflecting 
their sedation levels, especially for frequently used drugs 
like propofol and sevoflurane.

Data processing
The data processing begins with initializing lists to store 
the doses of propofol and remifentanil, as well as patient 
demographic information (age, gender, height, weight), 
case identifiers (c), and the output BIS values (y). Data 
loading occurs for each case ID, extracting vital signs 
every 10 seconds. Missing values are filled using forward 
fill methods, and any initial missing data is replaced with 
zeros. Cases that do not involve drug infusion or where 
BIS values are absent are excluded from further analysis. 
The starting points for drug infusion are identified and 
previous data points are discarded. The volume of drug 
infusion is converted to a rate, ensuring that any negative 
values are set to zero, with additional conditions to inval-
idate rates exceeding 10 mL per 10 seconds.

Subsequent filtering steps exclude cases where the first 
BIS value is less than 80 and where the last BIS value 
drops below 70. For valid cases, the data is padded with 
zeros for the timepoints leading up to drug infusion. 
Patient demographics information are extracted and 
associated with the respective case IDs. Finally, input 
values for propofol and remifentanil doses are appended 
to the datasets with a time window of 180 timepoints, 
equivalent to 1800 seconds, alongside the normalized BIS 
values. Subsequently, we randomly selected 100 patients 
and divided them into training, validation, and testing 
datasets, comprising 91, 9, and 10 cases, respectively. The 
characteristics of these three datasets are presented in 
Table 1.

Methodology
Long short-term memory
The LSTM network [21] is an advanced variant of the 
Recurrent Neural Network (RNN), characterized by 
recurrent connections within its hidden layers. Its archi-
tecture incorporates a feedback mechanism across 

multiple layers, allowing it to effectively capture nonlin-
ear temporal dependencies in time series data. LSTMs 
were specifically designed to address the vanishing and 
exploding gradient problems inherent in traditional 
RNNs. This is achieved through an external feedback 
loop that integrates the hidden state from the previous 
time step into the network's inputs, influencing subse-
quent predictions.

At the core of the LSTM is the memory cell, a funda-
mental component of its internal feedback loop. This cell 
serves as an independent storage unit, preserving tem-
poral information over extended periods and mitigating 
gradient-related issues faced by standard RNNs.

A typical LSTM unit consists of a memory cell and 
three key control gates: the input gate, output gate, and 
forget gate. Let xt and ht represent the input and hidden 
state at time t, respectively. The gates are defined as ft 
(forget gate), it (input gate), and ot (output gate), while 
H̃t represents the candidate information to be stored. 
The input gate regulates how much new information is 
retained, and the transformations governing these gates, 
as well as the cell state and hidden state, are described by 
the following equations:

	 ft = σ(Wf · [ht−1, xt] + bf ),� (1)

	 it = σ(Wi · [ht−1, xt] + bi),� (2)

	 ot = σ(Wo · [ht−1, xt] + bo),� (3)

	 H̃t = tanh(WH · [ht−1, xt] + bH),� (4)

	 Ht = ft · Ht−1 + it · H̃t,� (5)

	 ht = ot · tanh(Ht).� (6)

Transformer
Unlike conventional architectures that depend on RNNs, 
the Transformer [22] utilizes a self-attention mecha-
nism, removing the need for sequential data processing. 
This advancement enables the model to process input 
data in parallel, significantly boosting its efficiency and 
allowing it to capture global dependencies within the 
dataset. The Transformer is structured with multiple 
encoder and decoder components. The encoder, made 
up of several stacked layers, converts raw input data into 
a structured representation. The decoder then uses this 
encoded information to produce the desired output. A 
key feature of the encoder is its multi-head self-attention 
mechanism, which enables the model to identify and uti-
lize dependencies across both short-term and long-term 
metrics. By simultaneously focusing on different parts of 
the input sequence, the model extracts and emphasizes 

Table 1  Description of patien characteristics, mean ± standard 
deviation (min-max)
Characteristics Training Dataset Validation 

Dataset
Test 
Dataset

Number of Cases 91 9 10
Number of Samples 95189 11082 13040
Age (yr) 61.7 ± 11.2 (33–81) 56.0 ± 12.3 

(33–72)
64.3 ± 6.3 
(54–75)

Sex (male/female) 35/46 6/3 4/6
Weight (kg) 63.8 ± 11.2 (39–98) 61.4 ± 11.8 

(42–76)
58.3 ± 9.3 
(45–73)

Height (cm) 163.1 ± 8.3 
(145–186)

159.7 ± 8.4 
(148–177)

160.3 ± 8.2 
(149–175)
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critical features, enhancing its ability to understand com-
plex patterns.

The self-attention mechanism operates using three 
core matrices: Q (query), K  (key) and V  (value). These 
matrices interact to calculate the relationships between 
elements in the sequence. The dimensionality of the key 
vector is represented as dK , and the relationships are 
mathematically defined as follows:

	
Attention(Q, K, V ) = softmax

(
QKT

√
dK

)
V.� (7)

The Transformer excels at contextual comprehension, 
equipping it with distinctive capabilities for tackling tem-
poral data forecasting challenges.

Kolmogorov-Arnold network
KAN, as described by Liu et al. (2024) [23], consists of 
two distinct types of functions: the inner functions ϕq,p 
and the outer functions Φq . The inner functions, which 
operate on individual input variables xp, serve as the ini-
tial layer of the network. They take single-variable inputs 
and convert them into intermediate representations, pro-
cessing each feature independently. Conversely, the outer 
functions aggregate the outputs generated by the inner 
functions. This second layer synthesizes the intermediate 
values through a weighted summation of the inner func-
tion outputs, ultimately producing the final predictions.

In mathematical terms, a multivariate continuous func-
tion f  is represented as follows:

	
f(x) =

∑
q

Φq

(∑
p

ϕq,p(xp)

)
,� (8)

where ϕq,p denotes the inner functions, while Φq  repre-
sents the outer functions that utilize the processed infor-
mation from the inner layer.

Proposed model
In this research, we present an advanced model for 
predicting DoA, leveraging a combination of LSTM, 
Transformer and KAN, as shown in Fig.  2. The model 
integrates three input sources: Propofol Dose (feature 
size 180), Remifentanil Dose (feature size 180), and 
AGWH (Age, Gender, Weight, Height) (feature size 4).

Initially, the Propofol Dose and Remifentanil Dose 
inputs are processed through their respective LSTM lay-
ers to effectively capture temporal dependencies and 
patterns over time. Each LSTM layer is configured as fol-
lows: Input layer (180, 1), LSTM layer (activation = Tanh, 
recurrent_activation = Sigmoid, return_sequences = true). 
Both LSTM layers are designed to enhance the model’s 
robustness against noise and missing data, with a drop-
out layer (0.1) applied to prevent overfitting.

Simultaneously, the AGWH input undergoes a normal-
ization layer to ensure consistent scaling and distribution 
of the features. This normalization layer is configured 
with epsilon is 1 × 10−6 and is set to scale = true, ensuring 
that the AGWH features are appropriately prepared for 
integration.

Fig. 2  Overview of the model architechture
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The outputs from the three processing paths (the two 
LSTM networks and the normalized AGWH input) are 
then concatenated to form a combined feature vector of 
size 260. This concatenated vector is subsequently passed 
through a Transformer layer, which transforms the fea-
ture representation into a new vector of size 128. The 
self-attention mechanism in the Transformer enables the 
model to concentrate on the most significant elements of 
the feature sequence, improving its capacity to identify 
and interpret contextual relationships within the input 
data.

Finally, the output vector of size 128 is fed into KAN, 
which captures complex nonlinear relationships to pre-
dict the DoA.

Experiments
Setup
In the experiments, our proposed model is implemented 
using PyTorch 2.0.0, running on a 12 GB NVIDIA RTX 
3060 GPU. The network is trained with the Adam opti-
mizer, starting with an initial learning rate of 0.001, and 
undergoes 100 epochs of training. A consistent batch 
size of 256 is employed throughout the training, valida-
tion, and testing phases. The complete training process is 
completed in under 15 minutes, with a batch size of 256.

Evaluation metrics
To assess the effectiveness of the models, we employed 
various evaluation metrics including Mean Squared Error 
(MSE), Mean Directional Percentage Error (MDPE (%)), 
Mean Absolute Error (MAE), Root Mean Square Devia-
tion (RMSE). Their mathematical formulas are described 
as:

	
MSE = 1

n

n∑
i=1

(yi − ŷi)2,� (9)

	
MDPE(% ) = 1

n

n∑
i=1

yi − ŷi

yi
× 100,� (10)

	
MAE = 1

n

n∑
i=1

|yi − ŷi|,� (11)

	
RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2
.� (12)

Baselines and benchmarking models
In this section, we conduct experiments to measure the 
performance of models, we initially compare our model’s 
performance with several widely-used machine learning 
(ML) techniques considered as baseline models includ-
ing Random Forest (RF) [35], Logistic Regression (LR) 
[36], Naive Bayes (NB) [37], and AdaBoost (ADB) [38], 
Gradient Boosting (GB) [39], and XGBoost (XGB) [40]. 
To ensure competitive comparison results, we conducted 
parameter tuning for these machine learning models. 
The relevant parameters for each model are described in 
Table 2.

In addition, to comprehensive performance evaluation, 
we compared our proposed model against several cut-
ting-edge deep learning techniques considered as bench-
marking models. We aim to highlight the effectiveness of 
our architecture and its potential benefits in predicting 
DoA through a systematic comparison with these mod-
els. These methods we examined include:

 	• LSTM [21]: LSTM networks are a specialized form 
of recurrent neural network engineered to model 
long-range dependencies in sequential data. LSTMs 
utilize memory cells and gating mechanisms to 
regulate information flow, enabling them to preserve 
context across lengthy sequences. This feature 
makes LSTMs highly effective for applications such 
as time series forecasting, speech recognition, and 
natural language processing. In our experiments, we 
additionally implemented an LSTM model enhanced 
with the Attention mechanism.

 	• GRU [41]: Gated Recurrent Unit (GRU) networks 
are a variant of LSTM that simplifies the architecture 
while retaining similar performance. GRU combines 
the forget and input gates into a single update 
gate, which streamlines the model and reduces 
computational complexity. This efficiency makes 
GRUs a popular choice for sequence modeling tasks, 
offering robust performance in various applications.

 	• AdaRNN [42]: AdaRNN is an adaptive recurrent 
neural network that learns a dynamic model 
through two key modules: Temporal Distribution 

Table 2  Hyperparameters in machine learning algorithms
Model Hyperparameters
Random Forest (RF) Number of estimators: [100, 200, 300]

Max features: [1, 10, ‘log2’, ‘sqrt’]
Criterion: squared error

Logistic Regression (LR) Regularization: [L1, L2]
C: [0.01, 0.1, 1, 10]

Naive Bayes (NB) Model: [Gaussian, Multinomial]
Laplace smoothing: [True, False]

AdaBoost (ADB) Number of estimators: [100, 200, 300]
Gradient Boosting (GB) Number of estimators: [100, 200, 300]

Learning rate: [0.01, 0.1, 0.2]
Max depth: [3, 5, 7]

XGBoost (XGB) Number of estimators: [100, 200, 300]
Learning rate: [0.01, 0.1, 0.2]
Max depth: [3, 5, 7]
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Characterization (TDC) and Temporal Distribution 
Matching (TDM). TDC segments the training data 
into diverse periods with significant distribution 
gaps, enhancing the understanding of temporal 
dynamics. Following this, TDM utilizes an RNN-
based approach to minimize distribution divergence, 
resulting in improved time series forecasting 
capabilities.

 	• Transformer [22]: The Transformer architecture 
revolutionizes sequence modeling by employing 
self-attention mechanisms to process input data in 
parallel rather than sequentially. This design enables 
the model to capture complex dependencies across 
different parts of the input, making it highly effective 
for tasks in natural language processing, computer 
vision, and more. The Transformer’s ability to scale 
and learn contextual representations has led to state-
of-the-art performance in various applications.

 	• FEDformer [43]: FEDformer, or Frequency 
Enhanced Decomposed Transformer, combines 
seasonal-trend decomposition with the Transformer 
architecture to improve long-term time series 
forecasting. By breaking down time series into 
seasonal and trend components, FEDformer captures 
the overall global profile while utilizing Transformers 
to analyze detailed structures. This approach 
demonstrates enhanced efficiency and performance, 
achieving notable reductions in prediction error 
compared to conventional models.

 	• Crossformer [44]: Crossformer is a Transformer-
based model specifically designed for multivariate 
time series forecasting. It emphasizes cross-
dimension dependency by employing a Dimension-
Segment-Wise (DSW) embedding to preserve both 
time and dimension information. The model utilizes 
a Two-Stage Attention (TSA) mechanism to capture 
dependencies across time and dimensions efficiently. 
Crossformer’s architecture allows it to leverage 
hierarchical information, resulting in superior 
forecasting performance on various datasets.

Ablation study
In this section, we systematically evaluate the contribu-
tion of each component in our proposed hybrid model, 
which integrates LSTM, Transformer, and KAN. We 
perform a series of experiments where we individually 
remove each component from the model and assess the 
resulting performance metrics. First, we eliminate the 
LSTM layer and analyze how the absence of sequential 
data processing affects the overall accuracy and robust-
ness of the model. Next, we exclude the Transformer 
component, which is responsible for capturing long-
range dependencies, to understand its impact on the 
model’s performance in handling complex relationships 
within the data. Finally, we remove the KAN compo-
nent, which is designed to enhance the model’s capacity 
for learning intricate patterns, allowing us to evaluate its 
significance in improving predictive capabilities. By com-
paring the performance of these ablated models against 
the full model, we aim to provide insights into the effec-
tiveness of each component and their synergistic contri-
butions to the overall performance.

Results and discussion
Performance of baseline models
Our results, as summarized in Table  3, demonstrate a 
marked improvement over traditional machine learning 
models in terms of various error metrics.

The MAE for our proposed model is 0.0620, signifi-
cantly lower than that of the baseline models, such as 
RF at 0.0735 and GB at 0.0714. This reduction in MAE 
illustrates the enhanced capability of our architecture 
to accurately predict anesthesia depth, which is critical 
in clinical settings to ensure patient safety and optimal 
outcomes.

Furthermore, our model achieved a MSE of 0.0065 
and an RMSE of 0.0808, outperforming all other models 
assessed in this study. The MSE and RMSE metrics are 
particularly relevant as they penalize larger errors more 
significantly, indicating that our model not only mini-
mizes average error but also improves reliability in pre-
dicting depth fluctuations during anesthesia.

One of the most compelling aspects of our findings is 
the percentage of MDPE, which stands at 0.6254% for our 
model. This strong performance shows that our design 
keeps errors relatively low, which is important for tasks 
that need high accuracy. In contrast, the best-performing 
baseline model, XGB, recorded an MDPE of 1.5293%, 
underscoring the advantages of our approach.

The integration of LSTM and Transformer components 
within our architecture allows for the effective handling 
of sequential data and the capturing of long-range depen-
dencies within the anesthesia monitoring signals. The 
KAN further enhances our model’s ability to approxi-
mate complex non-linear relationships, contributing to 

Table 3  Performance results of the baseline models on the test 
dataset
Model MAE MSE RMSE MDPE (%)
Random Forest (RF) 0.0735 0.0090 0.0950 6.2435
Logistic Regression (LR) 0.0769 0.0100 0.0998 2.2953
Naive Bayes (NB) 0.0766 0.0099 0.0996 3.4667
AdaBoost (ADB) 0.0749 0.0094 0.0970 2.3463
Gradient Boosting (GB) 0.0714 0.0085 0.0923 3.1513
XGBoost (XGB) 0.0741 0.0091 0.0955 1.5293
Ours 0.0620 0.0065 0.0808 0.6254
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its superior performance. While traditional models such 
as RF, LR, and ADB achieved respectable results, they 
fell short of the accuracy and robustness demonstrated 
by our proposed method. The limitations of these mod-
els often stem from their reliance on handcrafted features 
and their inability to capture temporal dynamics inherent 
in the anesthesia data.

Overall, our findings advocate for the adoption of 
advanced hybrid models like the LSTM-Trans-KAN 
architecture in predicting anesthesia depth. Future 
research should explore the potential of this model in 
diverse clinical environments and consider its scalabil-
ity across different patient demographics and anesthesia 
types. This exploration will not only validate the model’s 
effectiveness but also contribute to the ongoing advance-
ments in anesthesia monitoring technology, ultimately 
enhancing patient safety and care quality.

Performance of deep learning models
The results summarized in Table 4 highlight the superior 
performance of our proposed LSTM-Transformer-KAN 
model in predicting DoA compared to several estab-
lished models. Notably, our model achieved a MAE of 
0.0620, which is the lowest among all models evaluated. 
This significant reduction in MAE indicates a high level 
of accuracy in the model’s predictions, suggesting that 
our architecture effectively captures the intricate patterns 
inherent in anesthesia depth data.

In terms of MSE, our model recorded 0.0065, again 
outperforming all competitors. This reduction in MSE 
demonstrates the robustness of our methodology and 
reinforces the model’s capability to minimize predic-
tion errors. The RMSE achieved by our model is 0.0808, 
which is the lowest among those tested. This metric is 
particularly important as it penalizes larger errors more 
harshly, further confirming the reliability of our approach 
in producing accurate depth predictions. Such precision 
is crucial in anesthesia management, where even minor 
discrepancies can have significant consequences.

Additionally, our model’s MDPE of 0.6254% under-
scores its effectiveness in maintaining close alignment 
with actual depth values during predictions. This metric 

indicates that the model consistently provides estimates 
that are not only accurate but also reliable for practi-
cal applications in real-time monitoring. Comparing 
our results to other models such as Crossformer (MAE: 
0.0653, MSE: 0.0071, RMSE: 0.0843, MDPE: 1.6298) and 
FEDformer (MAE: 0.0658, MSE: 0.0072, RMSE: 0.0849, 
MDPE: 2.1030), it is evident that our LSTM-Transformer-
KAN model consistently outperforms these alternatives 
across all metrics. This highlights the enhanced capabil-
ity of our architecture to leverage temporal dependencies 
and contextual information effectively.

To visualize the results, we visualize the outcomes of 
our proposed model and benchmarking models in pre-
dicting the BIS for case IDs 1210 and 1392 in Fig. 3. The 
results show that our model provides predictions that are 
closer to the actual BIS values compared to other models.

The demonstrated performance of our model not only 
emphasizes its potential for practical implementation in 
anesthesia monitoring systems but also suggests avenues 
for further research into hybrid modeling approaches 
that can enhance predictive accuracy in dynamic clinical 
environments.

Impact of time window length on model performance
The results indicate that the 1800-second time window 
(180 timepoints) provides the best performance for the 
proposed model, achieving the lowest errors across all 
metrics (MAE = 0.0620, MSE = 0.0065, RMSE = 0.0808, 
MDPE = 0.6254). When using a shorter time window 
of 900  seconds, performance declines (MAE = 0.0652, 
RMSE = 0.0837), likely due to insufficient historical 
data to capture the full effects of drug infusion, lead-
ing to increased sensitivity to short-term fluctuations. 
Conversely, extending the time window to 3600  sec-
onds slightly worsens performance (MAE = 0.0637, 
RMSE = 0.0824), potentially due to redundant informa-
tion and increased noise, which may reduce model effi-
ciency. The 1800-second window strikes an optimal 
balance, providing enough historical context to capture 
meaningful patterns while avoiding excess complex-
ity. These findings suggest that selecting an appropriate 
time window is crucial for predictive accuracy, and future 
work could explore adaptive approaches to dynamically 
adjust time windows based on patient-specific responses.

Findings from the ablation study
In our discussion of the results presented in Fig.  4 for 
predicting the depth of anesthesia, we observe notable 
differences in performance across the various model con-
figurations. The model excluding the LSTM component 
recorded a MAE of 0.0725 and an RMSE of 0.0929. This 
indicates that the lack of LSTM, which is adept at captur-
ing temporal dependencies in sequential data, adversely 

Table 4  Performance results of benchmarking models on the 
test dataset
Model MAE MSE RMSE MDPE (%)
LSTM 0.0707 0.0084 0.0916 2.7481
GRU 0.0703 0.0082 0.0906 3.0585
AdaRNN 0.0674 0.0075 0.0865 1.4002
LSTM with Attention 0.0665 0.0073 0.0855 1.9850
Transformer 0.0700 0.0082 0.0908 4.1341
FEDformer 0.0658 0.0072 0.0849 2.1030
Crossformer 0.0653 0.0071 0.0843 1.6298
Ours 0.0620 0.0065 0.0808 0.6254
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affects the model’s ability to accurately predict anesthesia 
depth.

When we removed the Transformer component, the 
model’s performance further declined, resulting in a 
MAE of 0.0735 and an RMSE of 0.0950. This outcome 
emphasizes the importance of the Transformer’s capabil-
ity to manage long-range dependencies, which is crucial 
in understanding the complex interactions of physiologi-
cal signals over time. In addition, the model without the 
KAN component performed slightly better, achieving a 
MAE of 0.0682 and an RMSE of 0.0872. This suggests that 
while KAN contributes to the model’s learning capacity, 

its absence does not lead to a significant degradation 
in performance compared to the other configurations. 
In contrast, our proposed model, integrating LSTM, 
Transformer, and KAN, achieved the best results, with 
a MAE of 0.0620, MSE of 0.0065, and RMSE of 0.0808. 
The MDPE of 0.6254 further illustrates the model perfor-
mance in accurately predicting the depth of anesthesia.

These findings highlight the complementary roles of 
each component in our hybrid model, reinforcing the 
notion that the combination of LSTM, Transformer, 
and KAN is essential for effectively addressing the com-
plexities involved in anesthesia depth prediction. This 

Fig. 3  Visualization of benchmarking models and our architecture for predicting the BIS for two cases with IDs of 1210 and 1392
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comprehensive approach not only enhances predictive 
accuracy but also demonstrates the model’s robustness in 
clinical settings.

Limitations and future work
While the proposed hybrid model leveraging LSTM, 
Transformer, and KAN demonstrates significant 
advancements in predicting anesthesia depth, it is not 
without limitations. One primary concern is the model’s 
reliance on the quality and comprehensiveness of the 
input data. Although our dataset encompasses diverse 
patient scenarios, it may not fully represent the wide 
range of individual responses to anesthesia across dif-
ferent demographics and clinical conditions. This could 
introduce biases that affect the model’s predictive accu-
racy in real-world applications.

Moreover, the complexity of the model, stemming from 
the integration of LSTM, Transformer, and KAN, raises 
practical challenges. The computational demands during 
training and inference may limit accessibility for health-
care institutions with constrained resources. To address 
this, future work could explore optimization strategies 
such as model pruning or quantization, which would 
enhance efficiency without significantly compromising 
performance.

Another limitation involves the interpretability of the 
model’s predictions. As with many deep learning archi-
tectures, understanding the decision-making process 
remains a challenge. Enhancing model explainability 
through techniques like attention visualization could 
provide anesthesiologists with insights into how various 
factors contribute to predictions, thereby fostering trust 
and facilitating informed clinical decisions.

Looking ahead, several promising directions can be 
pursued to enhance the proposed framework. First, 
incorporating additional contextual variables–such 
as patient comorbidities and real-time physiological 
data–could significantly improve prediction accuracy 
and better adapt to the dynamic demands of anesthesia 
management. Second, adopting a multi-modal approach 
that integrates diverse data sources, including electronic 
health records and continuous monitoring systems, 
would offer a more comprehensive understanding of 
the factors influencing anesthesia depth. Third, future 
research should prioritize validating the model across a 
wide range of clinical environments and patient popula-
tions to ensure its robustness and generalizability. Finally, 
engaging with anesthesiology practitioners to gather 
insights and feedback could drive iterative refinements, 

Fig. 4  Performance visualization on the test dataset in ablation study
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ultimately resulting in a model that more effectively 
addresses real-world clinical challenges.

Conclusion
This study introduces a comprehensive predictive model 
for assessing anesthesia depth based on drug infusion 
histories by integrating LSTM, Transformer, and KAN 
architectures. The results demonstrate that this hybrid 
approach not only significantly improves prediction 
accuracy but also offers valuable insights into the multi-
faceted factors that influence anesthesia depth. By pro-
viding anesthesiologists with reliable predictions, this 
model aims to enhance patient safety and outcomes, ulti-
mately contributing to more informed decision-making 
in clinical settings. The advancement of such integra-
tive frameworks underscores the potential of modern 
machine learning techniques in optimizing anesthesia 
management and improving overall patient care.
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