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Abstract
Background  Spontaneous intracerebral hemorrhage (SICH) is a devastating condition that significantly contributes 
to high mortality rates. This study aims to construct a mortality prediction model for patients with SICH using four 
various artificial intelligence (AI) machine learning algorithms.

Method  A retrospective analysis was conducted on electronic medical records of SICH patients aged 20 and above, 
admitted to Chi Mei Medical Center’s intensive care unit between January 2016 and December 2021. The study 
utilized 37 features related to mortality. Predictive models were developed using logistic regression, Random forest, 
LightGBM, XGBoost, and Multi-layer Perceptron (MLP), with assessments of feature importance, and Area under the 
curve (AUC).

Results  A total of 1451 SICH patients were enrolled. Factors associated with mortality included lower initial 
GCS scores (p < 0.001), pupillary changes (P < 0.001), kidney disease (p < 0.001), and respiratory failure requiring 
intubation (p < 0.001). Negative correlations were observed between mortality and pupil light reflexes, as well as 
GCS components E(r=-0.4602), V (r=-0.4132), M(r=-0.4082). Positive correlations were identified with vasopressors 
(r = 0.4464), FiO2 (r = 0.3901), and sedative-hypnotic drugs (r = 0.1178). XGBoost demonstrated the best predictive 
performance (AUC = 0.913), outperforming LR (0.899), RF (0.905), LightGBM (0.909), and MLP (0.892). The XGBoost 
model, utilizing both 18 and 36 features, continues to outperform both the Acute Physiology and Chronic Health 
Evaluation (APACHE II) (p < 0.001) and Sequential Organ Failure Assessment (SOFA) scoring systems (p < 0.001).
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Introduction
Spontaneous intracerebral hemorrhage (SICH) is a dev-
astating condition, with early-term mortality ranging 
from 30 to 40%, and there has been minimal improve-
ment over recent years [1]. Stroke is a leading cause of 
long-term disability in the United States, with approxi-
mately 10% of the 795,000 strokes per year being SICH 
[2]. 26% of individuals remain disabled in basic activities 
of daily living, and 50% experience reduced mobility due 
to hemiparesis [3].

Consequently, SICH remains a significant public health 
concern, affecting not only the well-being of patients but 
also imposing a substantial burden on social, economic, 
and healthcare resources [3].3 Therefore, developing an 
accurate method for predicting prognosis can be genu-
inely beneficial in clinical practice. This information can 
assist physicians in deciding whether to pursue conserva-
tive or aggressive treatment for the patient.

Several prognostic tools for predicting mortality in 
SICH have been proposed, encompassing factors such as 
age [4, 5], gender [6], blood pressure [7], initial Glasgow 
Coma Scale (GCS) [8, 9], pupillary changes [9, 10], 
mechanical ventilation requirement [11], and underly-
ing comorbidities such as cardiovascular and cerebrovas-
cular diseases [12]. Moreover, the Acute Physiology and 
Chronic Health Evaluation II (APACHE II) system [13, 
14] and the Sequential Organ Failure Assessment (SOFA) 
score [15] are widely utilized disease classification sys-
tems for predicting mortality and severity of failed organs 
the Intensive Care Unit (ICU). The consideration of 
whether there are new predictive models that can assist 
or potentially replace these existing tools is of significant 
importance.

Machine learning, a form of artificial intelligence 
(AI) that learns patterns and rules from given informa-
tion, offers advantages in detecting possible interactions 
among many attributes, making it useful in clinical pre-
diction and identifying novel prognostic markers [16, 17]. 
Recent studies have applied machine learning to severity 
or outcome prediction models for neurological disorders, 
such as ischemic stroke [18], aneurysmal subarachnoid 
hemorrhage [19], and traumatic brain injury [20]. How-
ever, its application in predicting mortality after sponta-
neous ICH is still relatively rare [21–23]. Therefore, the 
development of new AI prognostic prediction models is 
worth pursuing.

Machine learning delivers precise predictions in com-
plex scenarios [24]. Nevertheless, the “black-box” nature 

of AI, marked by a lack of explanation, remains a primary 
hindrance to its widespread clinical application. Explana-
tory AI (XAI), such as SHAP (SHapley Additive exPlana-
tions), proves vital in comprehending essential clinical 
features for predicting diseases or patient outcomes [25]. 
As the most widely used XAI technique, SHAP is crucial 
for interpreting AI models.

Hospitals have recently started applying statistical and 
AI models with various algorithms, including logistic 
regression (LR) [26], random forest [27], Light Gradient 
Boosting Machine (LightGBM) [28], Extreme Gradient 
Boosting (XGBoost) [29], and Multi-layer Perceptron 
(MLP) [30]. Logistic Regression serves as a baseline 
model with high interpretability, while advanced machine 
learning methods like Random Forest, XGBoost, and 
LightGBM, based on ensemble decision tree algorithms, 
effectively capture non-linear relationships and inter-
actions, often achieving superior performance in high-
dimensional and imbalanced clinical datasets. MLP 
introduces a neural network perspective, capable of mod-
eling complex patterns within the data.

Integrating big-data-driven approaches and machine 
learning into our hospital information system (HIS), a 
real-time prediction system was developed for patients 
with traumatic brain injuries to prognosticate early mor-
tality risk [31]. However, AI algorithms prediction in 
spontaneous ICH has not well established.

In this study, we hypothesize initial clinical parame-
ters for predicting outcomes in SICU-admitted patients, 
using easily obtainable data. To achieve this, we employ 
machine-learning algorithms to analyze a vast amount 
of SICU data, predicting mortality risk after spontane-
ous ICH. Additionally, we compare four machine learn-
ing models with the existing APACHE II and SOFA 
scores. Furthermore, we utilize the SHAP technique to 
explain which clinical features are crucial for predicting 
mortality.

Method
Ethics
The Chi Mei Medical Center’s Institutional Review Board 
granted ethics approval (11107-012) for this study. All 
procedures were conducted by the authors in compli-
ance with applicable laws and regulations. Due to the 
retrospective nature of the study, the ethics committee 
decided to waive the requirement for informed consent.

Conclusion  This study successfully developed an AI mortality prediction model for SICH patients, with XGBoost 
exhibiting superior performance. The model, incorporating 18 key features, has been integrated into clinical practice 
assisting clinicians in treatment decisions and communication with patients’ families.

Keywords  Artificial intelligence, Spontaneous intracrebral hemorrhage, Mortality, Intensive care unit
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Flow chart and the prediction device content of the current 
study
Our investigation adhered to the TRIPOD (Transparent 
Reporting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis) guidelines (Supplemental 
Table 1). Figure  1 depicts the flowchart illustrating the 
integration of the AI prediction model for SICH patients 
in the ICU, utilizing 36 feature variables for training. 
Various models, including logistic regression (LR), ran-
dom forest (RF), LightGBM, XGBoost, and Multi-layer 
Perceptron (MLP) were trained on 70% of the data and 
validated on a 30% test set through random splitting. To 
mitigate concerns of overfitting that might arise from a 
small dataset, we employed the 5-fold cross-validation 
technique to build the models.

To address the imbalance in the dataset, character-
ized by more negative cases (survival) than positive cases 
(mortality), we applied the Synthetic Minority Overs-
ampling Technique (SMOTE) [32] to achieve equal rep-
resentation during the final model training with each 
algorithm. Figure  2 illustrates our AI prediction device 
for SICH in the ICU, providing insight into the system’s 
architecture and modules.

Patient selection
This study retrospectively enrolled 1451 patients aged 
20 and above with spontaneous SICH. These patients 
were admitted to the ICU at Chi Mei Medical Center in 
Tainan, Taiwan, between January 2016 and December 

2021. The electronic medical records were screened, and 
those containing the following diagnostic codes were 
included: [ICD-9] ICD-10, ICD-9: 431*, 432.9*; ICD-10: 
I61.0 - I62.9, indicating SICH, unspecified. Due to low 
missing rates (< 30%) for features, data with missing or 
ambiguous values were excluded.

Features selection and model building
The initial 36 features were selected by experts’ opinions 
based on their knowledge of the subject matter, previ-
ous research findings, and clinical relevance [4–16]. 
These 36 features were collected from medical records at 
the time of patient admission to the intensive care unit, 
with the endpoint being the discharge status. These fea-
tures include age, gender, height, weight, systolic blood 
pressure (SBP), diastolic blood pressure (DBP), body 
temperature (BT), pulse, and respiratory rate (RR). Neu-
rological indicators consisted of Glasgow Coma Scale 
(GCS) components—eyes open, verbal response, and 
motor response—along with pupil reflex and size (right 
and left) and muscle power of all four extremities (Muscle 
LUE, Muscle LEE, Muscle RUE, Muscle RLE). Additional 
features encompassed the Inspired Fraction of Oxygen 
(FiO2), presence of an endotracheal tube (Endo), external 
ventricular drain (EVD), and intracranial pressure (ICP). 
Medical histories, including hypertension, diabetes mel-
litus, heart disease, cerebrovascular disease, gastrointes-
tinal disease, liver disease, kidney disease, and cancer, 
were also included. Furthermore, variables related to 

Fig. 1  Schematic diagram of the study’s workflow. ICU, intensive care unit; SICH, intracerebral hemorrhage; SMOTE, Synthetic Minority Oversampling 
Technique; HIS, hospital information system
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interventions or treatments, such as vasopressors, seda-
tive/hypnotic drugs, and nicardipine, were considered. 
We excluded patients with missing or obviously errone-
ous values for these feature variables.

To identify the correlation between 36 features and 
mortality, we use the Spearman’s correlation coefficient 
methods [33] alongside SHAP (SHapley Additive Expla-
nations) analysis.

Model performance measurement
In this study, we assessed the performance of the 
machine learning models using accuracy [34], sensitiv-
ity, and specificity [35], F1-score [36], as well as the Area 
under the Curve (AUC) of the Receiver Operating Char-
acteristic curve (ROC) [37] and the DeLong test [38]. A 
higher AUC value indicates a better-performing model, 
reflecting its ability to distinguish between the two 
classes across various threshold levels. The DeLong test 
specifically compares the areas under two or more cor-
related ROC curves to indicate a significant difference in 
performance between the models.

To enhance our understanding of how each feature 
contributes to the associated outcome, we employ SHAP 
(SHapley Additive explanations) analysis [39], the most 
widely used technique for explaining the importance of 
clinical features in predicting various diseases or patient 
prognosis.

Statistical analysis
We conducted significant testing using the t-test for 
numerical variables and the Chi-square test for cat-
egorical variables. Additionally, Spearman’s correla-
tion method was employed to assess the strength of the 

correlation between each feature and mortality. The ROC 
and the AUC were utilized to estimate the cutoff value 
for variables and their reliability in prognosis. For this 
analysis, we used commercial statistical software (SPSS 
for Windows, Version 15, SPSS Inc., Chicago, IL, USA). 
P-values less than 0.05 were considered statistically 
significant.

Machine learning analyses, including data prepro-
cessing, model training, hyperparameter tuning, and 
visualization, were conducted using Python 3.11.5. The 
following libraries and their versions were used: numpy 
(1.25.2), pandas (2.0.3), imbalanced-learn (0.11.0), light-
gbm (4.1.0), xgboost (1.7.3), matplotlib (3.7.3), scikit-
learn (1.3.2), and shap (0.43.0). These tools ensured 
robust and reproducible analyses.”

Result
Demographics and clinical profiles in patients with SICH
The present study comprised 1,451 patients, including 
966 males and 485 females, with an average age of 64.54 
years (mean ± SD: 14.50). Among them, 285 patients suc-
cumbed to the condition, resulting in a total mortality 
rate of 19.6% (285 out of 1,451). Comparative analysis 
between the group experiencing mortality and the non-
mortality group revealed lower blood pressure control, 
lower initial GCS scores, pupillary changes, the need 
for intubation due to respiratory failure, and comorbidi-
ties with kidney and DM diseases. The model training 
process incorporated 36 variable features, with 26 dem-
onstrating significant differences related to mortality 
(p-value < 0.05). Comprehensive characteristics and the 
significance of these features in traumatic brain injury 
patients are presented in Table 1. Additionally, both the 

Fig. 2  Artificial intelligence prediction device of SICH in the intensive care unit. GCS, Glascow Coma Scale
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Feature Overall Mortality P-Value
No Yes

N = 1451 N = 1166 N = 285
Gender 0.463
Female, n (%) 485 (33.43) 384 (32.93) 101 (35.44)
Male, n (%) 966 (66.57) 782 (67.07) 184 (64.56)
Age, mean (SD) 64.54 (14.50) 63.97 (14.49) 66.88 (14.34) 0.002
Height, mean (SD) 163.04 (9.25) 163.01 (9.23) 163.19 (9.33) 0.772
Weight, mean (SD) 64.99 (15.77) 65.83 (16.12) 61.55 (13.74) < 0.001
Systolic blood pressure (SBP), mean (SD) 157.97 (35.10) 160.28 (33.87) 148.53 (38.40) < 0.001
Diastolic blood pressure (DBP), mean (SD) 83.33 (18.67) 84.74 (18.23) 77.55 (19.35) < 0.001
Body temperature (BT), mean (SD) 36.57 (0.71) 36.56 (0.60) 36.63 (1.06) 0.238
Pulse, mean (SD) 85.14 (18.28) 84.12 (16.46) 89.31 (23.94) 0.001
Respiratory rate (RR), mean (SD) 17.49 (4.34) 17.52 (4.18) 17.37 (4.95) 0.648
Glasgow Coma Scale - eye opening
(GCS_E), mean (SD)

2.73 (1.39) 3.05 (1.28) 1.38 (0.94) < 0.001

Glasgow Coma Scale - verbal response (GCS_V), mean (SD) 2.81 (1.82) 3.18 (1.79) 1.27 (0.91) < 0.001
Glasgow Coma Scale - motor response (GCS_M), mean (SD) 4.42 (1.99) 4.76 (1.91) 3.06 (1.70) < 0.001
Left Pupil
Pupil reflex (-), n (%) 298 (20.54) 120 (10.29) 178 (62.46) < 0.001
Pupil reflex (+), n (%) 1153 (79.46) 1046 (89.71) 107 (37.54)
Pupil size(L), mean (SD) 3.13 (1.00) 2.97 (0.72) 3.76 (1.57) < 0.001
Right Pupil
Pupil reflex (-), n (%) 298 (20.54) 119 (10.21) 179 (62.81) < 0.001
Pupil reflex (+), n (%) 1153 (79.46) 1047 (89.79) 106 (37.19)
Pupil size(R), mean (SD) 3.11 (0.97) 2.97 (0.71) 3.66 (1.54) < 0.001
Muscle power - left upper extremity
(Muscle LUE), mean (SD)

2.33 (1.80) 2.65 (1.78) 1.04 (1.20) < 0.001

Muscle power - left lower extremity
(Muscle LEE), mean (SD)

2.34 (1.77) 2.65 (1.75) 1.06 (1.17) < 0.001

Muscle power - right upper extremity (Muscle RUE), mean (SD) 2.36 (1.85) 2.68 (1.84) 1.06 (1.26) < 0.001
Muscle power - right lower extremity (Muscle RLE), mean (SD) 2.36 (1.81) 2.69 (1.80) 1.03 (1.14) < 0.001
Inspired fraction of oxygen (FiO2), mean (SD) 29.59 (12.59) 27.43 (9.94) 38.41 (17.53) < 0.001
Endotracheal tube (Endo)
No, n (%) 621 (42.80) 565 (48.46) 56 (19.65) < 0.001
Yes, n (%) 830 (57.20) 601 (51.54) 229 (80.35)
External ventricular drain (EVD)
No, n (%) 1159 (79.88) 927 (79.50) 232 (81.40) 0.525
Yes, n (%) 292 (20.12) 239 (20.50) 53 (18.60)
Intracranial pressure (ICP), n (%)
No, n (%) 1216 (83.80) 978 (83.88) 238 (83.51) 0.951
Yes, n (%) 235 (16.20) 188 (16.12) 47 (16.49)
Surgery, n (%) 221 (15.23) 184 (15.78) 37 (12.98) 0.277
Medication used
Vasopressors, n (%) 200 (13.78) 72 (6.17) 128 (44.91) < 0.001
Sedative/ Hypnotic, n (%) 811 (55.89) 618 (53.00) 193 (67.72) < 0.001
Nicardipine, n (%) 800 (55.13) 645 (55.32) 155 (54.39) 0.828
Systemic disease
Hypertension, n (%) 878 (60.51) 694 (59.52) 184 (64.56) 0.135
Diabetes mellitus, n (%) 336 (23.16) 251 (21.53) 85 (29.82) 0.004
Heart disease, n (%) 223 (15.37) 162 (13.89) 61 (21.40) 0.002
Cerebrovascular disease, n (%) 258 (17.78) 194 (16.64) 64 (22.46) 0.027
Gastrointestinal disease, n (%) 104 (7.17) 73 (6.26) 31 (10.88) 0.01
Liver Disease, n (%) 116 (7.99) 83 (7.12) 33 (11.58) 0.018
Kidney disease, n (%) 101 (6.96) 61 (5.23) 40 (14.04) < 0.001

Table 1  Demographics and significances in SICH patients
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APACHE II score and SOFA score exhibited high signifi-
cance in predicting the in-hospital mortality rate of SICH 
patients in the intensive care unit.

Correlation between features and mortality (Spearman 
correlation coefficient)
Both right and left pupil light reflexes exhibited a note-
worthy negative correlation with mortality, featuring 
correlation coefficients of -0.517 and − 0.513, respec-
tively, suggesting that higher values of these features are 
associated with reduced mortality rates. Similarly, attri-
butes related to GCS E, V, and M components displayed 
negative correlations with mortality, indicating that an 
increase in these features is associated with lower mor-
tality. Conversely, vasopressors, FiO2, kidney disease, and 
sedative-hypnotic drugs demonstrated positive correla-
tions with mortality, featuring higher correlation coef-
ficients, suggesting that an increase in these features is 
associated with elevated mortality rates. It’s crucial to 
note that vasopressors exhibited a relatively strong cor-
relation coefficient of 0.446, signifying a significant asso-
ciation with higher mortality. Additionally, some other 
features like muscle status, cancer, and ICP also displayed 
a positive correlation with mortality, although these cor-
relations were weaker (Table 2).

SHAP analysis of feature importance in XGBoost with 36 
variables
Figure 3 demonstrates the feature importance in the best-
performing predictive model, XGBoost, using 36 vari-
ables for post-ICH outcomes. The analysis utilizes SHAP 
values to evaluate each feature’s contribution to the mod-
el’s predictions, aiding in identifying and ranking relevant 
attributes. The SHAP summary plot (left) illustrates the 
direction and magnitude of the feature impacts on the 
predictions, while the mean absolute SHAP values (right) 
rank features based on their overall influence. Key vari-
ables such as pupil light reflex, GCS scores, vasopressors, 
and muscle status exhibit the highest impact, indicating 
their critical roles in predicting mortality. These findings 
underscore the importance of neurological and physi-
ological parameters in constructing accurate and reliable 
predictive models for post-ICH outcomes.

Mortality prediction models in five different AI algorithms
Through ROC analysis and AUC calculations, we iden-
tified models for mortality risk prediction using 36 fea-
ture variables. The XGBoost-based model demonstrated 
the best predictive performance with an AUC of 0.913, 
followed by LightGBM (AUC = 0.909), Random Forest 
(AUC = 0.905), Logistic Regression (AUC = 0.899), and 
MLP (AUC = 0.892) (Fig.  4). Additionally, the XGBoost-
based model exhibited the highest accuracy (0.833) for 

Table 2  Spearman correlation coefficient (r) between features and mortality, sorted by absolute values. Bold text: absolute value 
greater than 0.2; Italic text: absolute value greater than 0.1

Feature Overall Mortality P-Value
No Yes

N = 1451 N = 1166 N = 285
Cancer, n (%) 60 (4.14) 44 (3.77) 16 (5.61) 0.218
APACHE II, mean (SD) 15.04 (7.28) 13.25 (6.19) 22.35 (6.83) < 0.001
Sequential Organ Failure Assessment (SOFA score), mean (SD) 3.60 (2.61) 3.00 (2.18) 6.06 (2.80) < 0.001

Table 1  (continued) 
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mortality risk prediction, with a sensitivity of 0.826 and 
specificity of 0.834, as detailed in Table 3. The details of 
the 5-fold cross-validation results are shown in Supple-
mental Table 2, while the hyperparameter ranges used 
during the grid search are provided in Supplemental 
Table 3.

Performance and feature importance of the XGBoost 
model using the top 18 feature variables
Since the XGBoost-based model demonstrated the best 
predictive performance using 36 features, we proceeded 
to select the top 18 features, ranging from vasopressors 
to the left pupil size, in the XGBoost 36-feature model 
(Fig.  3) to create a new predictive model. This stream-
lined model achieved impressive performance metrics, 
including an AUC of 0.913, an accuracy of 0.828, sensitiv-
ity of 0.826, specificity of 0.829, and an F1-score of 0.654, 
demonstrating its ability to maintain strong predictive 
power while reducing the number of features.

To identify these top features, we performed SHAP 
(SHapley Additive explanations) analysis [37], which pro-
vides a deeper understanding of how each feature con-
tributes to the predicted outcomes. In Fig. 5(a), the color 
of the SHAP plot represents the original feature values, 
with red indicating higher values and blue indicating 

lower values. A broader spread of SHAP values suggests a 
stronger influence on the outcome. For example, patients 
using vasopressors (represented by red dots) are associ-
ated with an increased risk of death (indicated by posi-
tive SHAP values), whereas higher values of GCS_E and 
left pupil light reflex are associated with a reduced risk of 
mortality.

Figure 5(b) ranks the influence of features on the out-
come based on their mean absolute SHAP values. The 
top seven influential features include vasopressors, 
GCS_E, left pupil light reflex, right pupil light reflex, 
FiO2, Muscle_LUE, and EVD. These findings highlight 
the significance of these variables in accurately predicting 
post-ICH outcomes and demonstrate the effectiveness of 
the 18-feature XGBoost model in providing reliable and 
interpretable predictions.

The DeLong test compares XGBoost-based models with 
different feature combinations and conventional tools 
(APACHE II and SOFA scores) in predicting mortality
In terms of sensitivity, the 18-feature model performs 
slightly better with a sensitivity of 0.826, while the 36-fea-
ture model achieves a sensitivity of 0.802. This suggests 
that the 18-feature model is marginally better at cor-
rectly identifying positive results, but the difference is 

Fig. 3  SHAP summary plot (a) and mean absolute SHAP values (b) for the best model (XGBoost) with 36 Features
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not statistically significant. In the DeLong test com-
parison between the 18-feature and 36-feature models, 
the p-value of 1 indicates that there is no statistically 
significant difference in AUC between the two mod-
els. Therefore, the two models exhibit similar predictive 
capabilities, and neither significantly outperforms the 
other. The AI model, utilizing both 18 and 36 features, 
continues to outperform both the APACHE II and SOFA 
scoring systems in all performance metrics, including 
accuracy, sensitivity, specificity, and AUC. This under-
scores the superior predictive performance of the AI 

model for patient mortality and its enhanced ability to 
accurately identify high-risk patients compared to tradi-
tional scoring systems (Table 4).

Interface presentation of AI in real-world clinical 
application within the Chi Mei hospital healthcare system
After a series of analyses, we have concluded that the 
XGBoost-based model, using a combination of 18 fea-
tures, is more lightweight. As a result, we have inte-
grated it into the hospital system to aid clinical doctors 
and nurses in treatment and to facilitate communication 
with patients’ families. The “Original” column represents 
data for the current status, displaying information from 
the time of admission to the ICU. The “Adjust” column 
allows the observer to modify the values of each feature 
to understand the effect of each feature on the risk of 
mortality, serving as a reference for treatment (see Fig. 6).

The model, developed in Python using scikit-learn, 
outputs files in Pickle format (PKL). The user interface, 
built with Visual Studio® using Visual Basic (version 
17.7), retrieves patient feature values through web APIs 

Table 3  Model performance with 36 feature variables
Algorithm Accuracy Sensitivity Specificity F1-

score
AUC

Logistic 
Regression

0.787 0.779 0.789 0.590 0.899

Random 
Forest

0.839 0.779 0.854 0.657 0.905

LightGBM 0.849 0.756 0.871 0.663 0.909
XGBoost 0.844 0.756 0.866 0.657 0.913
MLP 0.846 0.756 0.869 0.660 0.892

Fig. 4  Analysis of receiver operating characteristic curves (ROC), area under the curve (AUC), plotting sensitivity versus 1-specificity for, logistic regression 
(LR) (orange), random forest (black), LightGBM (green), XGBoost (pink dashed line) and MLP (blue dashed line) using the 36 feature variables
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(application interfaces) connected to the HIS, calls the 
PKL model file, and returns risk probabilities. Develop-
ers can customize the interface using tools such as Visual 
Studio, PyCharm, or Jupyter Notebook, based on their 
preferences. (The model PKL file and interface source 
codes can be requested from the corresponding author).

A comparison with related studies
Table  5 demonstrates several strengths that enhance 
its value in the field of mortality prediction, including a 
larger sample size, diverse feature variables, high predic-
tive performance, real-world applicability, and a compre-
hensive approach.

Discussion
Summary and novelty of current study
This is the first study to combine feature variables to pre-
dict the risk of ICU mortality in patients with SICH using 
an AI model. The XGBoost-based model was found to be 
superior to traditional scoring systems, such as APACHE 
II and SOFA. Moreover, this approach has been imple-
mented in a clinical system and aids in clinical deci-
sion-making, planning by the medical team, and shared 

decision-making with patients. These results underscore 
the potential of using machine learning models, par-
ticularly lightweight implementations like the 18-feature 
XGBoost model, in assisting clinical decision-making. 
Such models can enhance the identification of high-risk 
ICH patients, streamline resource allocation, and ulti-
mately improve patient outcomes.

Strategies for addressing data imbalance
To address data imbalance, we applied SMOTE during 
training, ensuring robust model training and validation. 
The 5-fold cross-validation results (Supplemental Table 
2) further confirmed the stability of our approach. Addi-
tionally, we mitigated overfitting by analyzing learning 
curves (Supplemental Fig. 1), which showed convergence 
between training and validation performances, demon-
strating the reliability of the models.

The XGBoost model with 36 features achieved an 
AUC of 0.981 ± 0.027, while the 18-feature XGBoost 
model achieved a similarly high AUC of 0.977 ± 0.029. 
These results highlight the stability and robustness of the 
XGBoost model across different feature sets, even with 
the application of SMOTE.

Table 4  P-values from DeLong’s test for AUC comparisons between XGBoost models (36 vs. 18 features) and scoring systems APACHE 
II and SOFA
Model Accuracy Sensitivity Specificity F1-score AUC P-value (vs. XGBoost 36) * P-value (vs. XGBoost 18) **
XGBoost (36 features) 0.844 0.756 0.866 0.657 0.913 - 1
XGBoost (18 features) 0.828 0.826 0.829 0.654 0.913 1 -
APACHE II 0.725 0.733 0.723 0.490 0.826 < 0.001 < 0.001
SOFA 0.727 0.698 0.734 0.520 0.788 < 0.001 < 0.001
Note: *P-value (vs. XGBoost 36): DeLong’s test comparing AUC with XGBoost (36 features). **P-value (vs. XGBoost 18): DeLong’s test comparing AUC with XGBoost 
(18 features)

Fig. 5  (a) SHAP global explanation on the 18-feature model (XGBoost model) (b) SHAP absolute value of each feature on the 18-feature model (XGBoost 
model)
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To further address concerns about overfitting, we 
plotted the learning curves for both the 36-feature and 
18-feature XGBoost models (Supplemental Fig.  1). The 
learning curves showed a clear convergence between 
training and validation performances, indicating that the 

models-maintained robustness and did not overfitting, 
even with the use of SMOTE for data balancing.

Demographics and clinical picture
In the current study, hypertension is diagnosed based 
on past medical history and records. It represents a 
long-term risk factor, potentially increasing stroke risk 
through mechanisms such as atherosclerosis and vascu-
lar narrowing [40]. Post-stroke elevated SBP results from 
acute physiological changes, possibly due to autonomic 
nervous system regulation or acute stress responses [41].

Our data suggests an unexpected finding: post-stroke 
higher systolic blood pressure (SBP) is associated with a 
lower mortality rate in patients with spontaneous intra-
cerebral events; contrary to the common belief that 
hypertension is a stroke risk factor [7]. The relationship 
between blood pressure and mortality is complex, involv-
ing various interacting factors rather than a straightfor-
ward linear association. This phenomenon is consistent 
to previous studies that high blood pressure has lower 
mortality in different situation [42, 43].

In the current study, we found that patients with a his-
tory of hypertension had higher SBP in both survival and 
mortality cases compared to those without hyperten-
sion. In clinical practice, patients with higher blood pres-
sure often take antihypertensive drugs to manage their 

Table 5  Comparison with recent studies
Study This Study Nie et al., 

2021 [21]
Lim et al., 
2021 [22]

Guo et al., 
2022 [23]

Setting Intensive 
care unit

Intensive 
care unit

In hospital 
patient

Emergency 
room

Patient 
number

1451 760 297 751

Study method 5 ML 
method
+ 2 scoring 
system

6 ML 
method
+ 1 scoring 
system

2 ML 
method
+ 1 scoring 
system

6 ML 
method
+ 1 scoring 
system

Feature 
variables

36 feature 
variables

72 feature 
variables

15 feature 
variables

3–19 feature 
variables

Outcome Mortality Mortality Mortality Mortality
Testing results 
(AUC)

0.913 0.819 0.900 0.844

Best predicting 
model

XGBoost Random 
forest

Support Vec-
tor Machine

Logistic 
regression

Real world 
application

Yes No No Yes

ML: Machine learning

Fig. 6  Interface presentation of AI in practical application within the Chi Mei Hospital healthcare system
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condition, which can result in this variable being influ-
enced by external intervention, making it less objective. 
Consequently, blood pressure was not included among 
the 18 features in the final model.

Comorbidities have been mortality risk factors in ICH 
[12]. In current study, the observed associations between 
mortality and factors such as DM (p = 0.004), kidney 
diseases (p < 0.001), and heart disease (p = 0.002) sug-
gest that these variables serve as crucial early indicators 
of patient outcomes. This emphasizes the importance of 
timely interventions to effectively manage these factors in 
ICH patients.

Elevated APACHE II and SOFA scores are associated 
with a higher likelihood of mortality. Our results reveal 
the significant predictive power of APACHE II and SOFA 
scores in in-hospital mortality [14, 15], emphasizing the 
potential of these scoring systems as valuable tools in risk 
assessment. This finding supports their continued use 
in intensive care units, potentially leading to improved 
patient care and resource allocation.

Correlation between features and mortality
The strong negative correlation between pupil light 
reflexes and GCS components, signifying an increased 
mortality risk with a decrease in these features, is consis-
tent with prior studies [13, 44]. This highlights the reli-
ability of assessing neurological function, particularly 
pupils and GCS, as predictors of patient outcomes. These 
findings underscore the potential use of these physiologi-
cal indicators as predictive markers for adverse outcomes 
in critically ill patients, aiding clinicians in prioritizing 
interventions, especially in ICH cases.

Consistent with previous research [44], positive corre-
lations, particularly the strong association of vasopressor 
use, increased FiO2, and endotracheal intubation with 
higher mortality, draw attention to modifiable risk fac-
tors that clinicians should monitor closely. For example, 
the use of vasopressors, elevated FiO2, and endotracheal 
intubation indicate complex treatment strategies, com-
promised physiological states, potential delays in initiat-
ing appropriate treatment, or responses to deteriorating 
conditions. The need for these interventions suggests 
a higher severity of illness, contributing to an increased 
risk of mortality.

Feature importance in the best model (XGBoost) with 36 
features
Figure 3 illustrates the SHAP analysis of feature impor-
tance in the best-performing predictive model, XGBoost, 
using 36 features for post-ICH outcomes. The SHAP 
summary plot (Fig. 3a) visualizes the direction and mag-
nitude of each feature’s impact on the model’s predic-
tions, while the mean absolute SHAP values (Fig.  3b) 

rank features based on their overall contribution to the 
model.

Key variables, such as pupil light reflex, GCS compo-
nents, vasopressors, and muscle status, emerge as the 
most impactful factors in predicting mortality. These 
findings highlight the critical importance of neurological 
and physiological parameters in developing accurate and 
reliable predictive models. Additionally, the consistent 
prominence of these features underscores their potential 
as robust indicators for clinical decision support tools 
and further model refinement.

AUC for mortality prediction in five different AI algorithms
Table 3 showcases robust AUC values ranging from 0.892 
to 0.913 for all five AI-based models, with the XGBoost-
based model notably leading with an AUC of 0.913. This 
highlights the potential of machine learning algorithms 
in clinical outcome predictions for SSICH patients.

The reasons why XGBoost is considered the best mor-
tality model can be attributed to several factors. (1) The 
larger sample size (1451 patients) favors XGBoost’s stabil-
ity and generalization. With training on 36 features, the 
model captures intricate relationships crucial for mor-
tality prediction. (2) XGBoost’s proficiency in handling 
non-linear relationships aligns well with the challenges in 
mortality prediction, especially in addressing non-linear-
ities in the top influential feature variables [45].

Feature importance in the best model (XGBoost) with 18 
features
Based on the simpler yet effective model is advanta-
geous in real-world clinical settings, we selected the top 
18 features from the XGBoost 36 feature model (Fig. 3d). 
To boost the practical use of AI in clinical settings, we 
employed the widely used SHAP (SHapley Additive 
exPlanations) technique for explaining clinical feature 
significance in predicting diseases or patient prognosis 
[25]. Notably, the leading seven features most influen-
tial features—vasopressors, GCS_M, GCS_V, GCS_E, 
Muscle_LUE, Muscle_RLE are all risk factors for mor-
tality. This choice emphasizes the importance of model 
interpretability and practicality. Further research could 
explore the ideal balance between model complexity and 
performance, crucial for practical clinical applications.

Considering features selection in the final model
At our hospital, we primarily use the APACHE II [13] and 
SOFA [15] assessment tools for clinical decision-making 
in ICU. APACHE II estimates ICU mortality based on 
laboratory values and patient age and signs, considering 
both acute and chronic diseases. The SOFA score quan-
tifies six distinct scores, one for each of the severity of 
failed organs, encompassing respiratory, coagulation, 
liver, cardiovascular, renal, and central nervous system 
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functions. These tools assist in predicting patient mortal-
ity, identifying high-risk patients, and effectively commu-
nicating with patients and their families to explain their 
medical condition in the ICU.

To compare the AI models with APACHE II and 
SOFA scores, we employed the DeLong test. The results 
revealed that the ML models generally outperformed the 
traditional tools. Therefore, the AI models remain valu-
able tools for clinical practice, offering improved predic-
tive performance and more accurate risk assessment.

In clinical application, the choice between the 18-fea-
ture and 36-feature models may depend on practical 
considerations, such as model complexity and resource 
requirements. Whether combining APACHE II, SOFA, 
and our AI model to establish a new predictive model is 
worth evaluating in the future remains to be seen.

Real-world application
The integration of the 18-feature based XGBoost model 
into the hospital system marks a significant advance 
toward practical clinical implementation. Its simplicity 
and efficiency make it suitable for daily application. This 
software improves the capability to engage with predic-
tion functions, permitting manual adjustment of parame-
ter values to reassess outcomes. For example, it can show 
how a decrease in FiO2 increases risk. This enhances the 
contribution of our research.

Strengths and limitations of the current study
Our study possesses several strengths. Firstly, it had a 
larger sample size of 1451 patients, enhancing the sta-
tistical power and generalizability of findings. A larger 
sample size often renders study results more reliable. 
Secondly, we employed both a comprehensive set of 36 
features and a more concise set of 18 features, providing 
flexibility in model development and practical applica-
tion. This demonstrates the adaptability of our approach. 
Thirdly, the high AUC values obtained (0.913 for the 36 
features and 0.913 for the 18 features) reflect the efficacy 
of the predictive models in differentiating mortality risk. 
Such robust predictive performance can significantly aid 
in clinical decision-making. Fourthly, our study explicitly 
states that integration of the XGBoost-based model into 
the healthcare system in a real-world context, suggesting 
its potential clinical utility and relevance in healthcare 
settings.

However, several limitations in the current study 
should be acknowledged. First, as a retrospective obser-
vational study, there is the possibility of miscoded fea-
ture variables. Researchers have limited control over the 
data collection process, which may introduce biases or 
confounding factors. Second, imaging parameters such 
as size of intra-cerebral hemorrhage, midline shift and 
the presence/absence of brain ventricles have not been 

quantitatively incorporated into our ML model. There-
fore, the potential confounding effects of the numerous 
features utilized require further exploration. Third, our 
study relied on data from a single intensive care unit, lim-
iting the generalizability of findings to other healthcare 
contexts with different patient populations and treat-
ment protocols. Therefore, establishing a multi-center 
data sharing platform will enhance the usability of data 
by allowing artificial intelligence machines to engage in 
federated learning [46]. Fourth, while SMOTE effectively 
addressed data imbalance in the training set, it carries 
the potential risk of overfitting due to the generation of 
synthetic samples. However, the learning curves and 
cross-validation results confirmed that our XGBoost 
models maintained robust performance without overfit-
ting. Future work may explore alternative data balancing 
methods or hybrid approaches to further optimize model 
training. Finally, most importantly, someone should have 
knowledge not only on mortality risk but on functional 
outcome as well and at a specified follow-up check. This 
is what can alter decision making. Consequently, there 
is a need for larger prospective studies with more com-
prehensive data collection and the inclusion of additional 
variables to be considered in the future.

Conclusion
Our study developed a mortality prediction model for 
spontaneous ICH patients using machine learning, high-
lighting XGBoost’s superior performance. The integrated 
15-feature model is now part of clinical practice at Chi 
Mei Hospital, aiding treatment decisions. It’s important 
to note that our AI predictive tool is a clinical aid, not a 
replacement for a doctor’s judgment. Before implement-
ing AI-based policies, thorough evaluations on ethics and 
societal impact, including privacy and fairness consider-
ations, are crucial.

Abbreviations
SICH	� Spontaneous intracerebral hemorrhage
AI	� Artificial intelligence
AUC	� Area under curve
APACHE II	� Acute Physiology and Chronic Health Evaluation II
SOFA	� Sequential Organ Failure Assessment
GCS	� Glascow Coma Scale
ICU	� Intensive care unit
XAI	� Explanatory artificial intelligence
SHAP	� SHapley Additive exPlanations
HIS	� Hospital information system
TRIPOD	� Transparent Reporting of a Multivariable Prediction Model for 

Individual Prognosis or Diagnosis
RF	� Random forest
LR	� Logistic Regression
LightGBM	� Light Gradient Boosting Machine
XGBoost	� Extreme Gradient Boosting
MLP	� Multi-layer Perceptron
SMOTE	� Synthetic Minority Oversampling Technique
HR	� Heart rate; RR: respiratory rate
SBP	� Systolic blood pressure
DBP	� Diastolic blood pressure
FiO2	� Inspired fraction of oxygen



Page 13 of 14Yap et al. BMC Medical Informatics and Decision Making          (2025) 25:149 

EVD	� External ventricular drainage
ICP	� Intracranial pressure
ROC	� Receiver operating characteristic
PKL	� Pickle format
APIs	� Application interfaces

Supplementary Information
The online version contains supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​1​8​6​​/​s​​1​2​9​1​1​-​0​2​5​-​0​2​9​8​4​-​y.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Acknowledgments
The authors would like to thank all of the researchers, especially Yu-Ting Shen 
who extended their unwavering support in this study.

Author contributions
Kuan-Chi Tu, Ching-Lung Kuo and Nai-Ching Chen conceived and designed 
the experiments. Chia-Jung Chen, and Chung-Feng Liu performed the 
experiments, Ching-Lung Kuo and Tee-Tau Eric Nyam analyzed the data, Che-
Chuan Wang and Nai-Ching Chen contributed reagents/materials/analysis 
tools, and Ching-Lung Kuo, Xiao-Han Vivian Yap and Tee-Tau Eric Nyam wrote 
the paper. All authors have read and agreed to the published version of the 
manuscript.

Funding
This research received CMFHR11091grant from Chi-Mei Medical Center.

Data availability
Due to patient privacy concerns within the Chi Mei Medical Center’s Health 
Information Network, the primary data supporting this article cannot be 
shared publicly. Nonetheless, de-identified data will be made available upon 
reasonable request to the corresponding author.

Declarations

Ethics approval and consent to participate
Ethics Approval and Consent to Participate This study was approved by the 
Institutional Review Board of Chi Mei Medical Center (approval number: 
11107-012). The requirement for informed consent was waived by the ethics 
committee due to the study’s retrospective nature. All procedures were 
conducted in accordance with relevant laws, regulations, and the principles 
outlined in the Declaration of Helsinki (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​​w​m​​a​​.​n​​e​​t​/​p​​o​l​​i​c​i​​​e​s​-​​p​​o​s​​t​/​​​w​
m​a​​-​d​e​​c​l​a​r​​a​​​t​i​o​​n​-​o​f​-​h​e​l​s​i​n​k​i​/).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Department of Neurosurgery, Chi Mei Medical Center, Tainan  
710402, Taiwan
2Department of Nursing, Chi Mei Medical Center, Tainan 710402, Taiwan
3Department of Information Systems, Chi Mei Medical Center,  
Tainan 710402, Taiwan
4Department of Medical Research, Chi Mei Medical Center, Tainan  
710402, Taiwan
5Center of General Education, Chia Nan University of Pharmacy and 
Science, Tainan 717301, Taiwan
6School of Medicine, College of Medicine, National Sun Yat-Sen University, 
Kaohsiung, Taiwan

Received: 17 October 2024 / Accepted: 21 March 2025

References
1.	 Hankey GJ, Stroke. Lancet. 2017;389:641–54.
2.	 Greenberg SM, Ziai WC, Cordonnier C, et al. 2022 guideline for the manage-

ment of patients with spontaneous intracerebral hemorrhage: A guideline 
from the American heart association/american stroke association. Stroke. 
2022;53(7):e282–361.

3.	 Katan M, Luft A. Global burden of stroke. Semin Neurol. 2018;38(2):208–11.
4.	 Camacho E, LoPresti MA, Bruce S, et al. The role of age in intracerebral hemor-

rhages. J Clin Neurosci. 2015;22(12):1867–70.
5.	 Pasi M, Casolla B, Kyheng M, et al. Long-term mortality in survivors of sponta-

neous intracerebral hemorrhage. Int J Stroke. 2021;16(4):448–55.
6.	 Ganti L, Shameem M, Houck J, et al. Gender disparity in Stoke: women have 

higher ICH scores than men at initial ED presentation for intracerebral hemor-
rhage. J Natl Med Assoc. 2023;115(2):186–90.

7.	 Francoeur CL, Mayer SA, VISTA-ICH Collaborators. Acute blood pressure and 
outcome after intracerebral hemorrhage: the VISTA-ICH cohort. J Stroke 
Cerebrovasc Dis. 2021;30(1):105456.

8.	 Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH 
score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 
2001;32(4):891–7.

9.	 Kalita J, Misra UK, Vajpeyee A, Phadke RV, Handique A, Salwani V. Brain 
herniations in patients with intracerebral hemorrhage. Acta Neurol Scand. 
2009;119(4):254–60.

10.	 Chen JW, Gombart ZJ, Rogers S, Gardiner SK, Cecil S, Bullock RM. Pupillary 
reactivity as an early indicator of increased intracranial pressure: the introduc-
tion of the neurological pupil index. Surg Neurol Int. 2011;2:82.

11.	 Wankhade BB, Kumar A, Mudassir S, Ranjan A. Clinicoradiological and 
biochemical predictors of mortality in hospitalized patients of spontaneous 
intracerebral hemorrhage. J Neuroanaesthesiol Crit Care. 2023;10:46–50.

12.	 Faghih-Jouybari M, Raof MT, Abdollahzade S, et al. Mortality and morbidity in 
patients with spontaneous intracerebral hemorrhage: A single-center experi-
ence. Curr J Neurol. 2021;20(1):32–6.

13.	 Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of 
disease classification system. Crit Care Med. 1985;13(10):818–29.

14.	 Huang Y, Chen J, Zhong S, Yuan J. Role of APACHE II scoring system in the 
prediction of severity and outcome of acute intracerebral hemorrhage. Int J 
Neurosci. 2016;126(11):1020–4.

15.	 Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related organ failure 
Assessment) score to describe organ dysfunction/failure. On behalf of the 
working group on Sepsis-Related problems of the European society of inten-
sive care medicine. Intensive Care Med. 1996;22(7):707–10.

16.	 Trentino KM, Schwarzbauer K, Mitterecker A, et al. Machine Learning-Based 
mortality prediction of patients at risk during hospital admission. J Patient 
Saf. 2022;18(5):494–8.

17.	 Seki T, Kawazoe Y, Ohe K. Machine learning-based prediction of in-hospital 
mortality using admission laboratory data: A retrospective, single-site study 
using electronic health record data. PLoS ONE. 2021;16(2):e0246640.

18.	 Jabal MS, Joly O, Kallmes D, et al. Interpretable machine learning modeling 
for ischemic stroke outcome prediction. Front Neurol. 2022;13:884693.

19.	 de Jong G, Aquarius R, Sanaan B, et al. Prediction models in aneurysmal 
subarachnoid hemorrhage: forecasting clinical outcome with artificial intel-
ligence. Neurosurgery. 2021;88(5):E427–34.

20.	 Matsuo K, Aihara H, Nakai T, Morishita A, Tohma Y, Kohmura E. Machine learn-
ing to predict In-Hospital morbidity and mortality after traumatic brain injury. 
J Neurotrauma. 2020;37(1):202–10.

21.	 Nie X, Cai Y, Liu J, et al. Mortality prediction in cerebral hemorrhage patients 
using machine learning algorithms in intensive care units. Front Neurol. 
2021;11:610531.

22.	 Lim MJR, Quek RHC, Ng KJ, et al. Machine learning models prognosticate 
functional outcomes better than clinical scores in spontaneous intracerebral 
haemorrhage. J Stroke Cerebrovasc Dis. 2022;31(2):106234.

23.	 Guo R, Zhang R, Liu R, et al. Machine Learning-Based approaches for 
prediction of patients’ functional outcome and mortality after spontaneous 
intracerebral hemorrhage. J Pers Med. 2022;12(1):112.

24.	 Ley C, Martin RK, Pareek A, Groll A, Seil R, Tischer T. Machine learning and 
conventional statistics: making sense of the differences. Knee Surg Sports 
Traumatol Arthrosc. 2022;30(3):753–7.

https://doi.org/10.1186/s12911-025-02984-y
https://doi.org/10.1186/s12911-025-02984-y
https://www.wma.net/policies-post/wma-declaration-of-helsinki/
https://www.wma.net/policies-post/wma-declaration-of-helsinki/


Page 14 of 14Yap et al. BMC Medical Informatics and Decision Making          (2025) 25:149 

25.	 Loh HW, Ooi CP, Seoni S, Barua PD, Molinari F, Acharya UR. Application 
of explainable artificial intelligence for healthcare: A systematic review 
of the last decade (2011–2022). Comput Methods Programs Biomed. 
2022;226:107161.

26.	 Meurer WJ, Tolles J. Logistic regression diagnostics: Understanding how well a 
model predicts outcomes. JAMA. 2017;317(10):1068–9.

27.	 Breiman L. Random forests. Mach Learn. 2001;45:5–32.
28.	 Ke GL, Meng Q, Finley T, Wang TF, Chen W, Ma WD et al. LightGBM: A highly 

efficient gradient boosting decision tree. Neural Inform Process Syst. 2017.
29.	 Wang X, Zhu T, Xia M, et al. Predicting the prognosis of patients in the 

coronary care unit: A novel Multi-Category machine learning model using 
XGBoost. Front Cardiovasc Med. 2022;9:764629.

30.	 Rahman A, Debnath T, Kundu D, Khan SI, Aishi AA, Sazzad S, Sayduzzaman 
M, Band SS. Machine learning and deep learning-based approach in smart 
healthcare: recent advances, applications, challenges and opportunities. 
AIMS Public Health. 2024;11:58–109.

31.	 Tu KC, Eric Nyam TT, Wang CC, et al. A Computer-Assisted system for early 
mortality risk prediction in patients with traumatic brain injury using artificial 
intelligence algorithms in emergency room triage. Brain Sci. 2022;12(5):612.

32.	 Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority 
over-sampling technique. J Artif Intell Res. 2002;16:321–57.

33.	 Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 
2018;18(3):91–3.

34.	 Swets JA. Measuring the accuracy of diagnostic systems. Science. 
1988;240(4857):1285–93.

35.	 Parikh R, Mathai A, Parikh S, Chandra Sekhar G, Thomas R. Understanding 
and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 
2008;56(1):45–50.

36.	 Sokolova M, Japkowicz N, Szpakowicz S. (2006, December). Beyond accuracy, 
F-score and ROC: a family of discriminant measures for performance evalua-
tion. In Australasian joint conference on artificial intelligence (pp. 1015–1021). 
Berlin, Heidelberg: Springer Berlin Heidelberg.

37.	 Jin H, Lin CX. Using AUC and accuracy in evaluating learning algorithms. IEEE 
Trans Knowl Data Eng. 2005;17:299–310.

38.	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two 
or more correlated receiver operating characteristic curves: a nonparametric 
approach. Biometrics. 1988;44(3):837–45.

39.	 Lundberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions. 
In Proceedings of the 31st International Conference on Neural Information 
Processing Systems (NIPS’17). Curran Associates Inc. 2017:4768–4777.

40.	 Johansson BB. Hypertension mechanisms causing stroke. Clin Exp Pharmacol 
Physiol. 1999;26(7):563–5.

41.	 Al-Qudah ZA, Yacoub HA, Souayah N. Disorders of the autonomic nervous 
system after hemispheric cerebrovascular disorders: an update. J Vasc Interv 
Neurol. 2015;8(4):43–52.

42.	 Liao JC, Ho CH, Liang FW, et al. One-year mortality associations in Hemodi-
alysis patients after traumatic brain injury -- an eight-year population-based 
study. PLoS ONE. 2014;9(4):e93956.

43.	 Cheng CY, Ho CH, Wang CC, Liang FW, Wang JJ, Chio CC, Chang CH, Kuo JR. 
One-Year mortality after traumatic brain injury in liver cirrhosis Patients–A 
Ten-Year Population-Based study. Med (Baltim). 2015;94:e1468.

44.	 Vo HK, Nguyen CH, Vo HL. High In-Hospital mortality incidence rate and its 
predictors in patients with intracranial hemorrhage undergoing endotra-
cheal intubation. Neurol Int. 2021;13(4):671–81.

45.	 Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In Proceedings 
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining, San Francisco, CA, USA. 2016;13–17,785–794.

46.	 Tajabadi M, Grabenhenrich L, Ribeiro A, Leyer M, Heider D. Sharing data 
with shared benefits: artificial intelligence perspective. J Med Internet Res. 
2023;25:e47540.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿Developing a high-performance AI model for spontaneous intracerebral hemorrhage mortality prediction using machine learning in ICU settings
	﻿Abstract
	﻿Introduction
	﻿Method
	﻿Ethics
	﻿Flow chart and the prediction device content of the current study
	﻿Patient selection
	﻿Features selection and model building
	﻿Model performance measurement
	﻿Statistical analysis

	﻿Result
	﻿Demographics and clinical profiles in patients with SICH
	﻿Correlation between features and mortality (Spearman correlation coefficient)
	﻿SHAP analysis of feature importance in XGBoost with 36 variables
	﻿Mortality prediction models in five different AI algorithms
	﻿Performance and feature importance of the XGBoost model using the top 18 feature variables
	﻿The DeLong test compares XGBoost-based models with different feature combinations and conventional tools (APACHE II and SOFA scores) in predicting mortality
	﻿Interface presentation of AI in real-world clinical application within the Chi Mei hospital healthcare system
	﻿A comparison with related studies

	﻿Discussion
	﻿Summary and novelty of current study
	﻿Strategies for addressing data imbalance
	﻿Demographics and clinical picture
	﻿Correlation between features and mortality
	﻿Feature importance in the best model (XGBoost) with 36 features


	﻿AUC for mortality prediction in five different AI algorithms
	﻿Feature importance in the best model (XGBoost) with 18 features
	﻿Considering features selection in the final model

	﻿Real-world application
	﻿Strengths and limitations of the current study
	﻿Conclusion
	﻿References


