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Abstract
Background  Mortality prediction is critical in clinical care, particularly in intensive care units (ICUs), where 
early identification of high-risk patients can inform treatment decisions. While deep learning (DL) models have 
demonstrated significant potential in this task, most suffer from limited generalizability, which hinders their 
widespread clinical application. Additionally, the class imbalance in electronic health records (EHRs) complicates 
model training. This study aims to develop a causally-informed prediction model that incorporates underlying causal 
relationships to mitigate class imbalance, enabling more stable mortality predictions.

Methods  This study introduces the CRISP model (Causal Relationship Informed Superior Prediction), which leverages 
native counterfactuals to augment the minority class and constructs patient representations by incorporating causal 
structures to enhance mortality prediction. Patient data were obtained from the public MIMIC-III and MIMIC-IV 
databases, as well as an additional dataset from the West China Hospital of Sichuan University (WCHSU).

Results  A total of 69,190 ICU cases were included, with 30,844 cases from MIMIC-III, 27,362 cases from MIMIC-IV, and 
10,984 cases from WCHSU. The CRISP model demonstrated stable performance in mortality prediction across the 3 
datasets, achieving AUROC (0.9042–0.9480) and AUPRC (0.4771–0.7611). CRISP’s data augmentation module showed 
predictive performance comparable to commonly used interpolation-based oversampling techniques.

Conclusion  CRISP achieves better generalizability across different patient groups, compared to various baseline 
algorithms, thereby enhancing the practical application of DL in clinical decision support.

Trial registration:  Trial registration information for the WCHSU data is available on the Chinese Clinical Trial Registry 
website (http://www.chictr.org.cn), with the registration number ChiCTR1900025160. The recruitment period for the 
data was from August 5, 2019, to August 31, 2021.
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Introduction
The intensive care units (ICUs) are specialized facilities 
that provide comprehensive care to the most severely 
ill patients, offering intensive medical and nursing ser-
vices with advanced monitoring capabilities [1, 2]. Glob-
ally, ICU prognosis, particularly regarding mortality 
decision making, remains a prominent focus of clini-
cal research [3]. In the United States, mortality rates in 
various ICUs ranged from 11.3% to 12.6% between 2001 
and 2012 [4]. Additionally, in many countries, the aver-
age age of ICU patients now exceeds 65  years [5–7]. A 
global audit conducted in 2014 reported ICU mortality 
rates ranging from 9.3% to 26.2% [8], and a 2021 review 
of 129 studies focusing on elderly ICU patients revealed 
an even broader range, with mortality rates ranging from 
1% to 51% [9]. In this clinical context, precise prediction 
of mortality for ICU patients is essential for timely risk 
assessment, which directly impacts patient outcomes, 
allocation of resources, and satisfaction with care.

Several traditional scoring systems have been employed 
to predict mortality in various patient groups, with mod-
erate accuracy (AUROC ranging from approximately 0.65 
to 0.85) [10–15]. These include systems such as the Acute 
Physiology and Chronic Health Evaluation (APACHE) 
II and III [16, 17], the Simplifed Acute Physiology Score 
(SAPS) II and III [18, 19], and the Sequential Oran Fail-
ure Assessment (SOFA) [20]. However, these tools have 
several limitations. First, factors such as increased life 
expectancy, shifts in public health conditions, and the 
emergence of new diseases can lead to a decline in their 
predictive accuracy over time [21]. For example, systems 
like APACHE, SOFA, and SAPS may experience calibra-
tion issues as patient populations and medical treatments 
evolve [22, 23]. Second, some existing scoring systems 
are static, largely relying on data collected only during 
the first day of ICU admission. This can compel clinicians 
to rely on subjective judgment, which is prone to bias [24, 
25]. Third, when validated across different countries, the 
performance of these scoring systems tends to be incon-
sistent [21, 26]. This suggests that inadequate consider-
ation of diverse patient cohorts may also contribute to 
performance discrepancies.

The limitations of traditional scoring systems have 
prompted a surge in research exploring Machine Learn-
ing (ML) and Deep Learning (DL) techniques for diag-
nosis and prognosis prediction in various medical fields 
[27–29]. The widespread adoption of automated elec-
tronic health records (EHRs) has enabled the extraction 
of vast amounts of clinical data, allowing models to be 
continuously updated and improved based on real-time 
clinical information. Early DL applications for mortality 
prediction primarily utilized simple feed-forward archi-
tectures, which showed comparable performance to 
traditional scoring systems [30]. Recent advancements 

have led to the development of more advanced DL mod-
els, which can be broadly categorized into 3 approaches 
based on the type of input data used: (1) Time series-
based models, which leverage clinical time series data, 
such as vital signs and laboratory results, to predict 
patient outcomes [24, 31–34]; (2) Text-based models, 
which extract prognostic insights from clinical notes 
containing critical semantic information [35–37]; and (3) 
Hybrid models, which combine multimodal data, offer-
ing a more comprehensive approach to mortality predic-
tion [38–40]. Recent studies using the publicly accessible 
MIMIC-III database for ICU mortality prediction have 
reported Area Under the Receiver Operating Charac-
teristic (AUROC) values between approximately 0.8 and 
0.9, and Area Under the Precision-Recall Curve (AUPRC) 
values ranging approximately from 0.3 to 0.7 [41–43].

While DL models have largely focused on improving 
predictive performance, the health sciences have often 
emphasized generalizability and the interpretation of 
domain-specific knowledge [44, 45]. Recent studies have 
underscored the need for enhanced capabilities to extract 
underlying causal structures that support clinical deci-
sion-making [46–48]. These causal structures [49] can 
facilitate interventions by evaluating counterfactual sce-
narios—for example, “Would the patient have survived if 
they had not developed a specific condition upon admis-
sion?” By analyzing the effects of alternative scenarios, 
referred to as counterfactuals [50], such models can pro-
vide actionable insights. However, manually constructing 
these complex and interdependent causal relationships 
is challenging. Recent advancements in causal discovery 
algorithms [51, 52] have made it possible to build causal 
models that can further support downstream tasks, such 
as guiding prognostic models [53]. Moreover, many DL 
models rely on high-dimensional features and are highly 
sensitive to input data variability [54], which presents sig-
nificant challenges in identifying robust causal relation-
ships that are generalizable across diverse datasets.

In addition to the concerns mentioned above regard-
ing models, addressing class imbalance presents another 
significant challenge in clinical research. While mortality 
represents the most severe outcome, mortality rates in 
commonly available datasets typically range from 5.5% to 
9.9% [55]. Although these rates are high from a human 
perspective, they may seem relatively low from a statisti-
cal viewpoint in the context of DL studies. Furthermore, 
strict privacy and ethical considerations limit the avail-
ability of mortality data. However, DL models rely on 
large volumes of data for effective training. Various tech-
niques for handling imbalanced data have been explored, 
with benchmark oversampling methods such as the Syn-
thetic Minority Oversampling Technique (SMOTE) [56] 
and its variants being widely employed in this context. 
Recent studies have shown that incorporating causal 
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knowledge can help mitigate data biases and improve 
generalization [47, 57]. There is potential in leverag-
ing causal relationships to enhance data augmentation 
strategies [58]. Generating counterfactual instances for 
data augmentation [59, 60] is a promising approach, as 
counterfactuals offer a causal perspective on how alterna-
tive outcomes could arise. Existing research on synthetic 
counterfactual generation [59] can be broadly catego-
rized into 2 types: endogenous counterfactuals, which 
are generated from naturally occurring feature values; 
and exogenous counterfactuals, which may not rely on 
actual feature values. Endogenous counterfactual meth-
ods adapt “native” counterfactuals to create plausible 
contrastive explanations. These native counterfactuals 
are derived directly from existing instances in the data-
set, often represented by the nearest unlike neighbors of 
a target instance [61]. There is considerable potential for 
exploring class balancing methods based on native coun-
terfactuals, as they ensure that the generated instances 
are both realistic and aligned with the underlying data 
distribution.

To address the aforementioned challenges and enhance 
in-hospital mortality prediction, this paper introduces 
CRISP, a deep learning framework that integrates the 
universal approximation capabilities of neural networks 
with causal relationships. Specifically, CRISP incorpo-
rates causality into 2 key aspects: data augmentation 
and the prediction model. We hypothesized that, with 
domain knowledge outlining a cause–effect pathway and 
sufficient data encompassing the causal path, it is possi-
ble to approximate causal effects. Additionally, to manage 
the complexity of causal graphs and address variability 
across datasets, we propose distilling the graph into a 
high-level version to reduce its complexity. This approach 
is inspired by the observation that, in complex systems, 
a small number of causal modules often dominate and 
substantially influence a significant portion of the causal 
pathways [62, 63].

This study utilized the MIMIC-III (Version 1.4) data-
set [64] to develop the CRISP model. MIMIC-III is a 
widely recognized benchmark for ICU mortality predic-
tion, comprising de-identified data from patients admit-
ted to the emergency department or intensive care unit 
(ICU) at Beth Israel Deaconess Medical Center in Bos-
ton, USA. To externally validate the model, we used the 
publicly available MIMIC-IV (Version 3.1) dataset [65]. 
Given the elevated mortality risk among elderly ICU 
patients, we also trained and validated the model on a 
dataset from the West China Hospital of Sichuan Uni-
versity (WCHSU), China, focusing specifically on this 
demographic. The experiments demonstrated the mod-
el’s strong performance across all 3 datasets. Below, the 
key contributions of this study are summarized: 

 	• Augmenting Data through Counterfactual 
Strategy: This study presents a data augmentation 
strategy based on causal graphs to generate 
minority data by adapting native counterfactuals. 
By leveraging native counterfactuals as templates to 
create new minority class instances, our approach 
demonstrates competitive predictive performance 
compared to traditional interpolation-based 
oversampling techniques.

 	• Enhancing Mortality Prediction Performance: By 
incorporating causal graph to process feature groups 
alongside basic patient information, the proposed 
CRISP model demonstrates competitive performance 
in mortality prediction across 3 datasets.

 	• Assessing Model Performance across Different 
Data Distributions: This study evaluates the CRISP 
on the WCHSU dataset, which features distinct 
patient demographics, primarily consisting of older 
and Asian populations, compared to the MIMIC-
III and MIMIC-IV datasets. Additionally, within 
the MIMIC-III dataset, the study tests CRISP’s 
performance in predicting acute kidney injury, 
further demonstrating the model’s generalizability to 
new datasets and tasks.

Preliminaries
This section outlines the core problem setting addressed 
in this study. For definitions related to causal theory, 
please refer to the Supplementary Material.

In our task, we define D = {(Xi, Yi)|i = 1, 2, . . . , N} 
as a dataset containing N patient cases, where each 
case i consists of a single outcome value Yi. Each 
case, denoted as Xi, can be represented as a sequence 
Xi = [XD

i , XP
i , XM

i , XI
i , XB

i ], where XD
i , XP

i , XM
i

, XI
i  and XB

i  represent sets of diagnoses, procedures, 
medications, ICU indicators (such as vital signs and lab 
measurements) and basic demographic information, 
respectively. Let X represent the patient characteristics, 
and Y denote the mortality outcomes.

Problem 1: Insufficient minority class problem. In 
the datasets used in this study, instances with Y = 1 (rep-
resenting mortality) are less frequent than those with 
Y = 0. How to leverage endogenous counterfactual meth-
ods, based on clear causal relationships, to enhance the 
minority class instances using native counterfactuals?

Problem 2: Incorporating Causal Structure into 
Deep Learning Model. The goal is to estimate the prob-
ability of mortality Ŷ  (a binary classification problem) for 
ICU patients prior to hospital discharge. The challenge 
lies in effectively integrating stable causal relationships 
and causal effects into deep learning models, thereby 
improving the robustness of predictions across datasets 
with varying distributions.
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Methods
Identify the general causal structure
We assume a stable causal Directed Acyclic Graph (DAG 
1) G = (V, E), where V is the set of nodes representing X 
and Y, and E is the set of directed edges. However, iden-
tifying robust causal relationships across diverse data-
sets presents significant challenges. First, collaboration 
with healthcare professionals to ensure that the result-
ing causal graphs are clinically meaningful is resource-
intensive. Furthermore, the variable sets observed across 
multiple sources or domains are not entirely identical. 
While existing studies [66] have proposed methods to 
combine learned structures from multiple domains and 
obtain final structures over an integrated set of variables, 
we believe that this approach has inherent limitations 
(as explained in the Supplementary Material SFigure 1), 
such as the potential for missing or misidentified causal 
relationships.

In this study, rather than combining causal relation-
ships derived from multiple databases, the focus is on 
investigating global causal relationships. Specifically, for 
the mortality outcome Y, a large number of both direct 
and indirect causal pathways are expected. Targeting only 
a small subset of these causal factors or pathways may 
lead to ineffective interventions [63]. Therefore, prioritiz-
ing the relationships between higher-level groups, where 
features are grouped based on their real-world signifi-
cance, may offer an effective approach to addressing the 
problem. This strategy aligns with prior works, such as 
that by [62], which explains the final pathological pheno-
type by defining the network interactions between modu-
lar elements and identifies potential regulatory modules 
that could modify the phenotype. Similarly [67], intro-
duced the concept of ‘‘think globally, act locally,’’ which 
highlights that generating local interventions to cure 
a particular disease requires understanding the global 
organization. Building on these ideas, this study leverages 
this opportunity to distill global causal relations among 
distinct groups X = [XD, XP , XM ] and Y. This system-
atic categorization not only enables us to incorporate a 
comprehensive set of features but also simplifies the 
exploration of overarching causal pathways within spe-
cific feature groups. For these distinct feature groups, the 
underlying logic of clinical outcomes is already evident 
based on the available information. Nevertheless, we 
seek to confirm these causal relationships using available 
causal discovery methods.

We employed a gradient-based algorithm known as the 
Graphical Autoencoder (GAE) [68], which builds casual 
DAG through graph convolutional neural networks. 
GAE is an extension of NOTEARS [69], which is widely 
regarded as the first approach to recast the combinatorial 

1 Definition is provided in the Supplementary Material.

graph search problem as a continuous optimization prob-
lem for structure learning. This allows for the modeling 
of non-linear structural relationships and vector-valued 
variables. The function is defined as: 

	 f(Xj , A) = f2(AT f1(Xj))� (1)

where A is the adjacency matrix of the graph, f1 and f2 
are multilayer perceptrons (MLPs) [68]. Demonstrated 
that GAE outperforms NOTEARS, particularly as the 
number of vertices in the graph increases, and they also 
noted that GAE requires much shorter training times. 
Given the flexibility of the GAE framework, we feed our 
feature groups into MLPs to obtain input to GAE. The 
acyclicity constraint in GAE is: 

	 h(A) = tr(eAA) − d = 0� (2)

where d is the number of vertices in the graph, tr denotes 
the trace operator, and eA represents the element-wise 
exponential of the adjacency matrix A. In practice, h(A) 
may be small but non-zero, and edges with small weights 
require a thresholding operation to filter out less signifi-
cant connections. In this study, edges with weights below 
0.5 are considered weak and are set to 0.

Figure 1 presents the causal graph, which illustrate the 
directional dependencies between variables and denote 
causal relationships. Patients with more severe condi-
tions are likely to receive a more severe diagnosis. We 
aim to estimate the causal effect of the treatment variable 
D on the outcome variable Y. In the graph, D influences 
Y indirectly through P and M. We treat P and M as medi-
ating variables. There are no backdoor paths from D to 
mediating variables, so no additional confounding adjust-
ments are required. There are no other backdoor paths 
from mediating variables to Y. Therefore, the Front-door 
criterion2 is satisfied, and the frontdoor adjustment can 
be applied to estimate the causal effect of D on Y, which 
can be formulated as: 

	
P (y|do(d)) =

∑
p

∑
m

P (p|d)P (m|d, p)
∑

d′

P (y|d′, p, m)P (d′)� (3)

Building on this analysis, we now turn our attention to 
our approach for oversampling and the development of 
our mortality prediction model.

2 Definition is provided in the Supplementary Material.
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Counterfactual minority generation module
In this section, the aim is to address the insufficient 
minority sample problem. In MIMIC III, the minority 
class consists of 3,265 records, while the majority class 
contains 27,579 records, resulting in a minority-to-
majority ratio of approximately 1 to 10. In the validation 
set, MIMIC IV, there are 3,179 records with a mortality 
label of 1 and 24,183 records with a mortality label of 0, 
yielding a minority-to-majority ratio of approximately 
1 to 10. Similarly, the WCHSU dataset exhibits extreme 
class imbalance, with only 99 records available in the 
minority class. The proportion of positive samples in 
WCHSU dataset is only approximately 0.90%. To address 
this imbalance, this study employed oversampling to pre-
serve important information in the dataset while retain-
ing all training data.

Previous studies have proposed methods for generat-
ing counterfactual instances. The seminal work of [70] 
proposed a method for generating counterfactual pairs 
by perturbing features until a shift in the target label is 
observed. Similar counterfactual generation methods 
[58–60] often leverage K-Nearest Neighbors (KNN) algo-
rithms to identify the nearest counterfactual candidates 
across distinct subsets of the target variable, and imple-
ment strategies to enhance counterfactual coverage and 
similarity. Different from previous methods, this study 
introduces a novel Counterfactual Minority Generation 
Module (CMG) that integrates causal graphs into the 
counterfactual generation framework. The primary 
objective of CMG is to generate counterfactual instances 

for majority class observations, thereby ensuring class 
balance between the target groups. Specifically, during 
the counterfactual pair search process, CMG utilizes 
propensity scores3 to match instances where the target 
class differs. The propensity score encapsulates multiple 
features into a single probability that reflects the likeli-
hood of an individual belonging to the target class. Sub-
sequently, for unmatched majority class instances, new 
counterfactual instances (new minority instances) are 
generated through causal pathways. In this study’s causal 
graph, Diagnosis directly influences Procedures, Medica-
tions, and target outcome. The data generation process 
within CMG adheres to the causal ordering specified by 
the graph. The procedural steps for implementing CMG 
are outlined as follows (Fig. 2):

1.	 Divide the dataset: Let 
D = {(Xi, Yi)|i = 1, 2, . . . , N} be the 
dataset consisting of N instances. Divide 
D into 2 subsets: the majority class subset 
Dmajority = {(Xi, Yi = 0)|i = 1, 2, . . . , n}, 
and the minority class subset 
Dmin ority = {(Xi, Yi = 1)|i = 1, 2, . . . , N − n}.

2.	 Estimate propensity scores: Based on the causal 
graph, the intervention T corresponds to the 
diagnosis features in this study. The propensity 
score e(X) = P (Y = 1|T, B), where B represents 
basic demographic information, is estimated. Apply 
Logistic Regression model to the data to compute the 
propensity scores e(X).

3 Definition is provided in the Supplementary Material.

Fig. 1  Cohort Inclusion Process and Model Overview: This study includes 3 datasets, using MIMIC-III as the development dataset, MIMIC-IV as the external 
validation dataset, and WCHSU as a different source dataset to evaluate the model’s performance. The causal graph guides data augmentation and input 
representation, forming the foundation for the primary prediction task. In the figure, “MLP” refers to basic Multi-layer Perceptrons, consisting of 2 fully 
connected layer with ReLU activation functions
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nearest unpaired majority instance to form new 
minority instances. The new minority instances are 
constructed as follows:

	 X∗
i = [XT

iminority* , Xjunpaired_majority ]� (4)

The procedure of the proposed module is outlined in 
Algorithm 1. We compared CMG with the benchmark 
oversampling methods in the class-imbalance task: 
SMOTE, ADASYN, SMOTE-Tomek and SOMTE-ENN 
[71]. The performance results of CMG are provided in 
Fig. 3.

Enhanced predictions through joint causal discovery and 
deep learning
CRISP is designed with a Transformer-based architec-
ture comprising 2 main components: a prediction mod-
ule for generating outputs based on transformed feature 

Algorithm 1 Counterfactual Minority Generation Module

 1: Input: Dataset D = {(Xi, Yi)|i = 1, 2, . . . , N}, intervention features T , basic covariant features B
 2: Output: Generated minority instances X∗

i

 3: Step 1: Divide the dataset into majority and minority subsets
 4: Dmajority ← {(Xi, Yi)|Yi = 0}
 5: Dmin ority ← {(Xi, Yi)|Yi = 1}
 6: Step 2: Estimate the propensity scores using Logistic Regression
 7: for each (Xi, Yi) ∈ Dmajority ∪ Dmin ority

 8: XT,B
i ← Xi[T ∪ B]

 9: Fit a Logistic Regression model on (XT,B
i , Yi) to estimate the propensity score e(Xi) = P (Yi = 1|T, B)

 10: end for
 11: Step 3: Construct counterfactual pairs using 1-Nearest Neighbor based on propensity scores
 12: for each (Xi, Yi) ∈ Dmin oritydo
 13: Find the nearest majority instance Xj  such that the absolute difference in propensity scores |e(Xi) − e(Xj)| is 
minimized
 14: end for
 15: Form counterfactual pairs {(Xi, Xj)} where i ∈ Dmin ority  and j ∈ Dmajority

 16: Step 4: Randomly upsample minority instances based on featuresT
 17: for each (Xi, Yi) ∈ Dmin ority ∪ Dunpairedmajoritydo
 18: Generate new minority instances Xmin ority∗

i  by randomly upsampling based on features T

 19: end for
 20: Step 5: Generate new minority instances by transferring features from majority instances
 21: for each Xmin ority∗

i  do

 22: Find the nearest unpaired majority instance X
unpaired_majority
j

 23: Transfer features from the T → Y  causal path of Xunpaired_majority
j  to form the new minority instance 

X∗
i = [Xmin ority∗

i [T ], X
unpaired_majority
j ]

 24: end for
 25: Return: Generated minority instances X∗

i

3.	 Construct counterfactual pairs: Use the estimated 
propensity scores e(X) to create counterfactual pairs 
between the majority and minority class instances 
using a 1-nearest neighbors(1-NN) approach, 
minimizing the difference in propensity scores. For 
each minority instance, a corresponding majority 
instance is paired. For unpaired majority instances, 
new minority instances will be generated.

4.	 Randomly upsample minority instances: 
Randomly upsample the minority instances based on 
the T features to generate new instances XT

imin ority∗ . 
For each newly generated minority instance 
XT

imin ority∗ , calculate its propensity score and 
match it to the nearest unpaired majority instance 
XT

junpaired_majority .

5.	 Generate new minority instances: Transfer 
the features along the T–to–Y causal path of the 
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representations, and a treatment effect estimation mod-
ule. Our input data comprised a combination of tabular 
and text-based information, encompassing diagnoses, 
procedures, medications, demographics, and ICU obser-
vational indicators. Procedures refer to the interventions 
or operations performed during the ICU stay, while med-
ications indicate the drug treatments administered after 
ICU discharge. For diagnoses, procedures, and medi-
cations, both categorical and textual data were utilized. 
First, tabular categorical data was used to represent these 
features. For each patient, if a specific diagnoses, proce-
dure or medication was administered, the corresponding 
feature is assigned a value of 1; otherwise, if no record 
is available, it is assigned a value of 0. Textual data for 
diagnoses and procedures were tokenized using Clini-
cal BERT [72], a language model fine-tuned on extensive 
medical text corpora. For medication-related data, we 
employed tokenization of SMILES (Simplified Molecu-
lar-Input Line-Entry System) strings using a dual-view 
molecule pretraining model [73]. Patient text represen-
tations for diagnoses, procedures, and medications were 
encoded through Transformer encoders. The embedding 
information was processed according to the identified 
causal graph structure. In this graph, XD

i  (diagnosis) is 
considered the intervention variable, while Yi (mortal-
ity) serves as the outcome variable. Both procedures and 
medications are positioned within the path from diagno-
sis to outcome. Each of these features (procedures and 
medications) was concatenated with the nodes in their 
respective causal paths. The concatenated representa-
tions for procedures and medications were then passed 
through separate MLPs. Subsequently, these outputs 
were combined with the diagnosis representation, yield-
ing the final representation, which is used as part of the 
patient representation. For ICU observational indicators, 
we included the minimum and maximum values [74, 75] 
recorded during the first 48  h of ICU admission. These 
multimodal features were integrated to form the final 
input for model analysis.

In the prediction module, the input sequence x is first 
processed by a multi-head self-attention mechanism, 
which projects x into query Q, key K, and value V ten-
sors. Following the self-attention layer, a Feedforward 
Neural Network (FFN) is applied. The FFN consists of 2 
fully connected layers, where the first layer projects the 
input to a higher-dimensional intermediate space, fol-
lowed by a non-linear activation using the Gated Linear 
Unit with GELU activation (GEGLU) function [76]. The 
GEGLU function modifies the standard GLU by applying 
the Gaussian Error Linear Unit (GELU) activation to the 
gating mechanism. GEGLU enhances the non-linearity of 
the model by splitting the input into 2 parts, x1 and x2, 
and applying the GELU activation to x2 while multiplying 

it with x1x = [x1, x2]. The functions are defined as 
follows: 

	
GELU(x) = 0.5x

(
1 + tanh

(√
2
π

·
(
x + 0.044715x3)))

� (5)

	 GEGLU(x) = x1 · GELU(x2)� (6)

Following this, the output is further processed through 
a series of linear layers with ReLU activations and 
dropout regularization, ultimately leading to a binary 
classification.

In the treatment effect estimation module, CRISP 
utilze Average Treatment Effect 4 (ATE) [77–79] to evalu-
ate the overall average effect of the intervention across 
the entire population, as shown in Eq. 3. Each patient has 
2 potential outcomes: survival or death. If both potential 
outcomes could be fully observed for each patient, causal 
inference would be straightforward. However, we can 
never observe the outcomes for both states of the same 
patient simultaneously. During training, predictions are 
classified into positive and negative cases based on the 
ground truth. The ATE for positive cases is estimated 
as Y ′

d=1 − Y ′
d=0, where d indicates the treatment status. 

CRISP integrates the ATE into the loss function. Previ-
ous research has explored incorporating causal inference 
into deep learning loss design to penalize the difference 
between the treated and untreated populations. For 
example [80, 81], took individual covariates as input 
to predict treatment assignment (control or treatment 
group). Their models were trained using a joint loss func-
tion, which combines binary cross-entropy (BCE) loss 
with a bias loss term that computes the mean squared 
error between inverse probability weight weighted means 
of treatment and control covariates. In this study, CRISP 
also uses BCE loss and ATE loss to penalize the model 
based on how accurately it predicts the difference in out-
comes between counterfactual groups. This approach 
gives more weight to instances where the true outcome 
is near the decision boundary and where the difference 
in predicted probabilities is more pronounced. The over-
all training loss is defined as the combination of the BCE 
loss and the ATE loss, with α as the hyperparameter 
determining the weight of the ATE loss. This ensures that 
the model not only predicts mortality accurately but also 
learns to align with the causal relationships represented 
in the data. We select the value of α that maximizes the 
model’s performance on the validation set, balancing the 
importance of accurately predicting mortality with cap-
turing the causal relationships represented in the data. 
The overall loss function is given by: 

4 Definition is provided in the Supplementary Material.
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LAll = α · (− (y · log(y′) + (1 − y) · log(1 − y′)))

+(1 − α) · (− log(σ(y′
d=1 − y′

d=0))) � (7)

Here, LAll is the total loss, α is the hyperparameter 
weight, σ(·) is the sigmoid function, y is the true label(0 
or 1), and y′ is the predicted probability.

Baselines
This study evaluated CRISP using 3 dataset and com-
pared its performance against several baseline methods. 
(1) SAPS-II [18], a scoring system designed for predict-
ing mortality in critically ill patients, considers 12 physi-
ological features within the first 24 h of ICU admission, 
calculates score by summing the points for each feature, 
and then uses Eq. 8 to convert the score into a probability 
of mortality; (2) GRU-D (Deep learning model based on 
Gated Recurrent Unit) [82], a deep learning model that 
utilizes recurrent neural networks for analyzing multivar-
iate time series data; (3) IPNET (Interpolation-Prediction 
NETworks) [83], a novel deep learning architecture based 
on the use of a semiparametric interpolation network; (4) 
MC (multitask channel-wise LSTM) [31], an enhance-
ment of LSTM networks that capitalizes on channel-wise 
LSTMs to predict multiple tasks simultaneously with a 
single neural model; (5) MTRNN [34], a multi-task recur-
rent neural network with attention mechanisms specifi-
cally designed to predict hospital mortality; (6) IHM-AS 
[84], a deep learning model using Natural language pro-
cessing (NLP) techniques to predict in-hospital mortal-
ity; (7) MultiModal-1DCNN [38], a deep neural network 
architecture that combines recurrent neural networks 
for processing time-series data with convolutional neu-
ral networks for analyzing clinical notes; (8) Vital + Enti-
tyEmb [85], a multimodal neural network that jointly 
trains time series signals and unstructured clinical text 
representations to predict the in-hospital mortality risk 
for ICU patients; (9) DECAF [25], a general deep cascad-
ing framework to predict the potential risks of all physi-
ological functions at each clinical stage; (10) GAN (c-med 
GAN) [86], a variant of Generative Adversarial Network 
(GAN) called conditional medical GAN used to predict 
mortality among ICU inpatients; (11) MMDL (Multi-
Modal Deep Learning) [87], a multimodal deep learning 
model composed of an ensemble of Feedforward Neu-
ral Networks and Gated Recurrent Unit networks; (12) 
conventional machine learning models including logistic 
regression (LR), Support Vector Machine (SVM), random 
forest (RF) and eXtreme Gradient Boosting (XGBoost) 
based on tabular features, respectively. 

	 Mortality = 1
1 + e7.7631−0.07372×SAP S−0.9971×ln(SAP S+1) � (8)

Implementation details
The proposed model was implemented using Python 
3.8 and PyTorch 1.12, and trained on NVIDIA Titan XP 
GPUs. Data instances, grouped by unique ICU stays, 
were split into training, validation, and testing sets with 
a ratio of 6:1:3. For the traditional ML models (LR, SVM, 
RF and XGBoost), default parameters were utilized, as 
extensive grid search revealed minimal performance vari-
ation with fine-tuning of base algorithms using different 
parameter settings. This setting aligns with related works 
such as [87, 88], where mortality prediction models also 
relied on default parameters to achieve their results.

For CRISP, hyperparameter tuning was performed on 
the validation set using Optuna [89], with the search 
range for each parameter as follows: the number of 
Transformer layers L was selected from [2, 4, 6, 8], the 
number of attention heads from [2, 4, 6, 8], the dropout 
rate from [0.1, 0.2, 0.3, 0.75, 0.9] and hidden embedding 
size from [[8, 16, 32, 64, 128`]. The α hyperparameter in 
loss Eq.  7 was chosen from [0.1, 1]. Training was con-
ducted with a learning rate of 0.0001, using the Adam 
optimizer. Model performance was evaluated on the 
test set using a comprehensive set of metrics. To esti-
mate 95% confidence intervals (CIs), bootstrapping was 
applied with 1,000 resamples, sampling with replacement 
on mortality prediction probabilities.

Metrics
Using a combination of metrics is essential for obtaining 
a comprehensive evaluation of the model’s performance. 
Metrics such as the Area Under the Receiver Operating 
Characteristic Curve (AUROC), Area Under the Preci-
sion-Recall Curve (AUPRC), and the Matthews Corre-
lation Coefficient (MCC) provide distinct insights into 
different aspects of the model’s effectiveness, ensuring a 
well-rounded assessment across multiple performance 
dimensions.

Statistical analysis
The study population was characterized using descriptive 
statistics to compare ICU patients who died in the hospi-
tal with those who survived. We ran univariate statistics 
for patient demographics and the predictors of interest. 
Frequency and percentage were used to describe the cat-
egorical variables, and the Chi-square test was used to 
identify differences between groups. All continuous vari-
ables were described using the median and interquartile 
range, and the Mann–Whitney U-test was used to deter-
mine differences between different groups.

Data source and data preprocessing
This study incorporated 3 datasets from 2 large-scale 
general hospitals. The model was developed using the 
MIMIC-III (V 1.4) dataset [64] from the Beth Israel 
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Deaconess Medical Center, covering the period from 
2001 to 2012, and validated using the MIMIC-IV dataset 
(V 3.1) [65], which includes patient data from the same 
center between 2014 and 2022. Both MIMIC-III and 
MIMIC-IV are publicly available critical care databases 
maintained by the Massachusetts Institute of Technology 
(MIT)’s Laboratory for Computational Physiology. As 
previously noted, with an aging population, the propor-
tion of older patients admitted to the ICU is expected to 
continue rising. To rigorously evaluate the model’s per-
formance across different patient distributions, a dataset 
focusing on older patients (age ≥ 65 year) was also used, 
sourced from the West China Hospital of Sichuan Uni-
versity, one of China’s largest and most prestigious medi-
cal centers, covering the period from 2019 to 2021. No 
sensitive information, such as patient identities or con-
tact details, was included. Patient anonymization was 
performed prior to data extraction and analysis.

Cohort selection
For multiple admissions or ICU admissions of the same 
patient, only data from the first admission and ICU 
admission were included, to preserve the independence 
assumption of the dataset instances. For the MIMIC 
III and IV cohorts, this study focuses on adult patients 
admitted to ICU for any reason [31], adhering to the 
exclusion criteria detailed in Fig. 1. In the MIMIC-III 
dataset, 30,844 cases were included, with a median age of 
66 years, a median ICU stay of 2.50 days (Q1–Q3: 1.59–
4.71), 57.34% male patients, and an in-hospital mortality 
rate of 10.59%. The MIMIC-IV dataset included 27,362 
cases, with a median age of 66 years, a median ICU stay of 
2.55 days (Q1–Q3: 1.59–4.86), 58.18% male patients, and 
a mortality rate of 11.62%. Table 1 shows further details. 
For the external cohort WCHSU, cases lacking postop-
erative follow-up information were excluded as the true 
value of patients’ postoperative death outcome could not 
be obtained. Following the exclusion criteria depicted in 
the Fig. 1, 10,984 unique cases were included in the vali-
dation cohort. The median age of this cohort was 71.98, 
with a median LOS in the ICU of 3.28 days. The patient 
characteristics of the WCHSU cohort are provided in the 
Supplementary Materials STable 1. Approximately 56% of 
these cases were male, and the in-hospital mortality rate 
was around 0.90%.

Feature extraction
This study delved into patients’ clinical records, captur-
ing a wide array of information such as demographics, 
diagnoses, vital signs, laboratory measurements, proce-
dures, medications, and mortality indicators. All data-
sets underwent feature selection based on frequency of 
occurrence and missing rates. We focused on the most 
commonly encountered diagnoses, procedures, and 

medications. The retained diagnoses, procedures, and 
medications features are listed in Supplementary STa-
ble 2. To ensure consistency and international compara-
bility, we used the International Classification of Diseases 
(ICD) codes. Additionally, we expanded the dataset by 
incorporating textual descriptions for diagnoses and pro-
cedures, derived from the corresponding ICD codes in 
the dictionary tables. The use of the first 48-h time series 
data is well-supported in the literature, with several 
studies demonstrating its effectiveness [32]. This study 
extracted 31 features related to vital signs and laboratory 
measurements from the ICU observational data (Supple-
mentary STable 3).

Multiple pre-processing steps were undertaken to 
enhance the quality of the data extracted from both data-
sets. Inconsistencies in the recording, including units of 
certain variables, were addressed following [87]. Outlier 
detection and correction were conducted to ensure data 
accuracy, involving the identification of physician input 
errors based on medical common sense and the imple-
mentation of corrective measures. Outliers were detected 
by establishing acceptable ranges for each feature, with 
values outside these ranges removed (Supplementary 
STable 3). To normalize continuous features, we applied 
min-max normalization using the sklearn.preprocessing.
MinMaxScaler [90]. Categorical features were encoded 
using label encoding with the sklearn.preprocessing.
LabelEncoder [90], transforming target labels into val-
ues ranging from 0 to n_classes-1. For handling missing 
data, we employed the last observation carried forward 
method for time series data, while other missing values 
were imputed using the median.

Experiments and results

Performance on data sampling
Highly imbalanced data poses a significant challenge to 
obtaining reliable results, often leading to classifier bias 
in favor of the majority class. To address this, we con-
ducted a thorough comparison of multiple data sampling 
methods on 3 datasets in Fig. 3. To compare the model’s 
performance in class balance, 2 evaluation metrics were 
used: AUPRC and MCC. AUPRC evaluates the model’s 
ability to distinguish between classes by considering both 
precision and recall, offering a comprehensive view of its 
performance, especially in identifying the minority class. 
MCC provides a balanced measure of classification accu-
racy, accounting for true positives, true negatives, false 
positives, and false negatives, and is particularly useful 
for imbalanced datasets.

Figure 3 shows the performance of models trained on 
MIMIC-IIItrain and tested on MIMIC-IIItest. The models’ 
performance on the original data ranges from an AUPRC 
of 0.613 (LR) to 0.751 (CRISP), with MCC scores between 



Page 10 of 17Wang et al. BMC Medical Informatics and Decision Making          (2025) 25:165 

Table 1  Baseline characteristics of the included patients from MIMIC III and IV. Descriptive statistics of the patient cohort in the 
experimental set are provided. Part of ICU observational data variables are expressed as Median (InterQuartile Range Q1–Q3), and 
binary or categorical variables are shown as Count (%). Specifically, ‘Length of Stay’ is abbreviated as ‘LOS’, ‘Heart Rate’ is abbreviated 
as ‘HR’, ‘Respiratory rate’ as ‘RR’, ‘Temperature’ as ‘Temp’, ‘Bicarbonate’ as ‘HCO3’, ‘Blood urea nitrogen’ as ‘BUN’, as ‘BPm’, ‘Diastolic blood 
pressure’ as ‘DBP’, ‘Systolic blood pressure’ as ‘SBP’, ‘Glascow coma scale tota’ as ‘GCS’, ‘Red Cell Distribution Width’ as ‘RDW’, and ‘White 
blood cell count’ as ‘WBC’

MIMIC III MIMIC IV
Dead at hospital Alive at hospital Dead at hospital Alive at hospital

ICUSTAY 3265 27579 3179 24183
LOS 4.23 (2.16–8.48) 2.32 (1.53–4.20) 4.02 (2.08–8.45) 2.40 (1.54–4.42)
Age 74.00 (60.00–82.00) 65.00 (52.00–76.00) 71.0 (59.00–81.00) 66.0 (55.00–76.00)
Gender
Female 1519 (46.52%) 11638 (42.20%) 1409 (44.32%) 10033 (41.49%)
Male 1746 (53.48%) 15941 (57.80%) 1770 (55.68%) 14150 (58.51%)
Type
Emergency 3075 (94.18%) 21762 (78.91%) 1604 (50.46%) 9238 (38.20%)
Elective 132 (4.04%) 5318 (19.28%) 20 (0.63%) 1029 (4.26%)
Urgent 58 (1.78%) 499 (1.81%) 853 (26.83%) 4949 (20.46%)
Features
HR 89.09 (78.75–100.28) 83.73 (75.24–92.58) 88.5 (77.00–101.00) 81.0 (72.00–91.00)
RR 20.48 (17.69–23.43) 18.35 (16.34–20.69) 21.0 (18.00–24.00) 18.0 (16.00–20.00)
Temp 36.80 (36.31–37.25) 36.84 (36.55–37.17) 36.86 (36.61–37.11) 36.86 (36.72–37.06)
Albumin 3.10 (2.50–3.10) 3.10 (3.10–3.10) 3.10 (2.80–3.10) 3.10 (3.10–3.10)
Anion gap 15.0 (13.00–18.00) 13.0 (11.00–14.00) 15.0 (13.00–18.50) 13.0 (11.00–15.00)
HCO3 22.79 (19.20–25.11) 24.67 (22.69–26.58) 21.0 (18.00–24.00) 23.0 (21.00–25.00)
BUN 28.0 (17.50–46.00) 16.5 (12.00–25.00) 29.0 (18.00–46.25) 16.0 (12.00–24.00)
Calcium 8.2 (7.70–8.65) 8.3 (7.95–8.65) 8.3 (7.80–8.75) 8.4 (8.00–8.80)
Creatinine 1.2 (0.80–2.05) 0.92 (0.70–1.55) 1.3 (0.90–2.25) 0.9 (0.70–1.20)
DBP 57.43 (51.18–64.03) 61.07 (55.07–67.72) 63.0 (55.00–69.00) 65.0 (58.00–73.00)
SBP 113.60 (102.64–127.83) 120.29 (111.02–131.50) 112.0 (101.50–123.00) 116.0 (107.00–129.00)
GCS 13.0 (8.00–15.00) 15.0 (15.00–15.00) 9.0 (4.00–14.00) 15.0 (12.00–15.00)
Glucose 134.5 (113.00–162.00) 122.5 (105.50–143.00) 136.0 (114.50–170.25) 124.0 (107.00–145.00)
Sodium 139.26 (136.37–142.30) 138.73 (136.64–140.80) 139.0 (135.00–142.50) 138.0 (136.00–140.50)
pH 7.26 (7.10–7.37) 7.28 (7.10–7.39) 7.37 (7.30–7.39) 7.375 (7.36–7.39)
Platelets 184.0 (113.00–252.00) 191.0 (143.00–250.00) 163.0 (101.50–228.25) 175.0 (133.00–231.00)
RDW 15.3 (14.30–17.05) 14.3 (13.50–15.60) 15.4 (14.10–17.60) 14.0 (13.10–15.30)
MCHC 33.7 (32.50–34.50) 34.15 (33.25–35.05) 32.5 (31.45–33.45) 32.9 (32.00–33.80)
WBC 12.32 (9.31–16.92) 10.77 (8.21–13.70) 12.55 (9.22–17.67) 11.0 (8.30–14.35)

0.491 (RF) and 0.552 (CRISP). After applying SMOTE, 
ADASYN, SMOTE-ENN, and SMOTE-Tomek for class 
balancing, the models’ AUPRC ranged from 0.617 (LR 
with SMOTE-ENN) to 0.755 (CRISP with SMOTE), with 
MCC scores ranging from 0.459 (LR with SMOTE-ENN) 
to 0.664 (CRISP with SMOTE). All models trained on 
CMG-processed data outperformed the baseline, with 
MCC scores ranging from 0.528 (LR) to 0.668 (CRISP). 
Among the models, CRISP with CMG achieved the best 
overall performance, while SMOTE and ADASYN also 
delivered competitive results.

Figure 3 shows the performance of models trained on 
MIMIC-IIItrain and tested on MIMIC-IVtest. The models’ 
performance on the original data ranges from an AUPRC 
of 0.602 (LR) to 0.634 (CRISP). SOMTE outperforms 
other baseline algorithms in most scores, but it has not 

consistently surpassed the baseline scores. CMG’s scores 
exceed the baseline scores, particularly achieving an 
AUPRC of 0.668 and an MCC of 0.584 under the CRISP 
model. This experiment demonstrates the performance 
of both CMG and the CRISP model, with CRISP and 
CMG offering more stable results.

Figure 3 shows the performance of models trained on 
WCHSUtrain and tested on WCHSUtest. Due to the more 
severe class imbalance in the WCHSU dataset, all mod-
els performed poorly on AUPRC and MCC, with scores 
below 0.5. The performance of SMOTE, ADASYN, 
SMOTE-ENN, and SMOTE-Tomek was similar across 
LR, SVM, RF, and XGBoost models. CMG outper-
formed these methods on the MCC metric, achieving 
scores ranging from 0.206 (LR) to 0.429 (CRISP). This 
experiment highlights that, under conditions of label 



Page 11 of 17Wang et al. BMC Medical Informatics and Decision Making          (2025) 25:165 

imbalance, not all models benefit from label augmenta-
tion techniques.

Superior performance to traditional models
In this study, we conducted a comprehensive comparison 
of our model’s performance with well-established tradi-
tional ML algorithms for predicting predefined outcomes 
across three datasets. We specifically selected algorithms 
commonly used in clinical settings for their robustness 
and efficiency. The WCHSU dataset consisted of 10,984 
ICU cases from the West China Hospital of Sichuan Uni-
versity, with a median age of 71.98. While over 70% of the 

patients in MIMIC-III and MIMIC-IV are White, the 3 
datasets introduced variability in data distribution.

Across all 3 experiments, the CRISP model achieved 
competitive results on all datasets. Taking the predic-
tion on the CMG balanced datasets as an example, 
Table 2 illustrates the performance of each model. In the 
evaluation set MIMIC-IIItest, CRISP model achieved an 
AUROC score of 0.9480, along with an AUPRC score of 
0.7611 and MCC of 0.6678, surpassing those of XGBoost 
(AUROC: 0.9425, AUPRC: 0.7447, MCC: 0.6382). When 
validated on MIMIC-IVtest, all models achieve AUROC 
scores ranging from 0.9036 to 0.9171, with CRISP reach-
ing the highest AUROC of 0.9171, an AUPRC of 0.6683, 

Fig. 2  The framework of Counterfactual Minority Generation Module (CMG). The goal is to generate new minority instances for unpaired majority 
instances

 

Fig. 3  Comparison of data sampling methods. (a) Performance of multiple data sampling methods on the MIMIC-III internal validation dataset, with 
models trained on the MIMIC-III dataset. (b) Performance of multiple data sampling methods on the MIMIC-IV external validation dataset, with models 
trained on the MIMIC-III dataset. (c) Performance of multiple data sampling methods on the WCHSU validation dataset, with models trained on the 
WCHSU dataset
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and an MCC score of 0.5838. In the evaluation set WCH-
SUtest, CRISP model achieved an AUROC score of 0.9042, 
along with an AUPRC score of 0.4771 and MCC of 
0.4289, again outperforming XGBoost (AUROC: 0.8889, 
AUPRC:0.4487, MCC:0.4270). These findings demon-
strate the stability of our model in predicting mortality. 
The AUROC curves and AUPRC curves on MIMIC-IIItest 
and WCHSUtest are shown in Supplementary Material 
SFig.  2. Our model’s performance across datasets indi-
cates its potential for enhancing clinical decision-making 
and patient care.

Superior performance to deep learning models
This section compares the prediction results with recent 
works using the widely used public MIMIC-III data-
set. Table 3 presents the performance of various predic-
tion algorithms for the in-hospital mortality prediction 
task on the MIMIC-III dataset. SAPS II, as a traditional 

scoring system, performs the worst. Most models report 
AUROC scores below 0.9 and AUPRC scores below 0.7. 
CRISP and MMDL show a consistent advantage across 
both metrics. Notably, our proposed model achieves a 
slightly higher AUROC compared to all others. These 
results suggest that hybrid models, which integrate mul-
timodal data such as time-series data and clinical notes, 
deliver superior predictive performance. This trend high-
lights the strength of deep learning models in capturing 
complex patterns and extracting meaningful representa-
tions from heterogeneous data, thereby improving pre-
diction outcomes for in-hospital mortality benchmarks.

Although the improvements in the CRISP model are 
relatively subtle, the enhancement in AUPRC compared 
to most other models is notable. Achieving significant 
improvements in AUROC above 0.9 is challenging, and 
while the increase may be small, the true value of this 
study lies in the underlying concept of the CRISP model. 
By incorporating causal structures into patient data rep-
resentation, CRISP introduces a novel approach that pro-
vides fresh insights.

We conduct the ablation study for CRISP model, sys-
tematically comparing results across various feature 
inputs and assessing the impact of incorporating causal 
inference into the model. Table 4 demonstrates that mod-
els incorporating causal inference tend to perform better 
than those without, though the improvement is marginal. 
These results highlight the benefits of integrating causal 
relationships and diverse data types, which enhance the 
model’s ability to capture a broader range of patterns 

Table 2  Performance of models trained on CMG sampling sets is 
presented, with mean values of corresponding 95% confidence 
interval for each metric. The best value for each metric is 
highlighted in bold
Models Evaluation Set AUROC AUPRC MCC
MIMIC-III_LR MIMIC-IIItest 0.9249 0.7025 0.5281
MIMIC-III_SVM MIMIC-IIItest 0.9169 0.6973 0.5689
MIMIC-III_RF MIMIC-IIItest 0.9463 0.7335 0.6290
MIMIC-III_XGBoost MIMIC-IIItest 0.9425 0.7447 0.6382
MIMIC-III_CRISP MIMIC-IIItest 0.9480 0.7611 0.6678
MIMIC-III_LR MIMIC-IVtest 0.9036 0.6231 0.5176
MIMIC-III_SVM MIMIC-IVtest 0.9093 0.6376 0.4992
MIMIC-III_RF MIMIC-IVtest 0.9124 0.6400 0.5560
MIMIC-III_XGBoost MIMIC-IVtest 0.9127 0.6594 0.5666
MIMIC-III_CRISP MIMIC-IVtest 0.9171 0.6683 0.5838
WCHSU_LR WCHSUtest 0.8492 0.1500 0.2061
WCHSU_SVM WCHSUtest 0.8366 0.0920 0.2543
WCHSU_RF WCHSUtest 0.8930 0.4314 0.4211
WCHSU_XGBoost WCHSUtest 0.8889 0.4487 0.4270
WCHSU_CRISP WCHSUtest 0.9042 0.4771 0.4289

Table 3  Prediction results for the different models on MIMIC-
IIItest dataset, where the best AUROC and AUPRC are in bold
Type Models AUROC AUPRC
Score-based SAPS II 0.805 0.337
Time series GRU-D 0.835 0.359
Time series IPNET 0.853 0.418
Time series MC 0.870 0.533
Time series MTRNN 0.895 0.520
Text IHM-AS 0.918 0.625
Hybrid MultiModal - 1DCNN 0.865 0.525
Hybrid Vital + EntityEmb 0.874 0.529
Hybrid DECAF 0.893 -
Hybrid GAN (c-med GAN) 0.910 0.532
Hybrid MMDL 0.940 0.772
Hybrid CRISP 0.948 0.761

Table 4  Ablation study for CRISP on MIMIC III dataset. AUROC 
performance comparison over different feature sets. ‘Tabular’ 
denotes categorical variables and numerical variables. ‘Text’ 
denotes diagnoses, procedures, and medications texts. ‘CasualI’ 
indicates results with causal inference

AUROC AUPRC Recall F1
Tabular 0.9381 

(0.9377–0.9386)
0.7523 
(0.7516–
0.7531)

0.7185 
(0.7073–
0.7297)

0.6832 
(0.6821–
0.6844)

Tabula|CasualI 0.9390 
(0.9387–0.9393)

0.7570 
(0.7544–
0.7596)

0.7388 
(0.7124–
0.7652)

0.6911 
(0.6886–
0.6936)

Text 0.8963 
(0.8958–0.8968)

0.5783 
(0.5762–
0.5803)

0.6677 
(0.6514–
0.6839)

0.5594 
(0.5578–
0.5609)

Text|CasualI 0.8973 
(0.8972–0.8974)

0.5800 
(0.5772–
0.5828)

0.7033 
(0.6738–
0.7327)

0.5684 
(0.5619–
0.5748)

Tabular + Text 0.9484 
(0.9478–0.9490)

0.7597 
(0.7578–
0.7616)

0.7175 
(0.7093–
0.7256)

0.6928 
(0.6903–
0.6953)

Tabu-
lar + Text|CasualI

0.9480 
(0.9477–0.9483)

0.7611 
(0.7594–
0.7628)

0.7612 
(0.7154–
0.8069)

0.6939 
(0.6909–
0.6968)
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and relationships, ultimately leading to more reliable 
predictions.

Performance in other clinical outcome Scenario
Researchers are increasingly exploring the detection of 
risks related to severe medical conditions such as sepsis 
[91, 92], Acute Kidney Injury (AKI) [93, 94], and other 
clinical deterioration events [95]. Acute conditions are 
often reversible if detected and treated promptly. There-
fore, to validate our CRISP’s applicability in other sce-
narios, validating our prediction model on acute medical 
conditions is reasonable to check if it has the ability to 
recognize illness escalation to severe cases timely, reduc-
ing the risk of further damage and early mortality. In this 
study, we focused on AKI outcomes, as it is the most 
common and severe syndrome of renal failure [96], which 
is accompanied by high mortality and disease burden. 
Despite advancements in clinical treatment, the mortal-
ity rate linked with AKI remains concerning, especially in 
high-risk groups like sepsis patients, where it can reach 
as high as 41% [97]. It affects at least 30% of hospitalized 
patients [98] and is also associated with increased serious 
complications. The Kidney Disease: Improving Global 
Outcomes (KDIGO) criteria categorize AKI into 3 stages 
based on serum creatinine levels and urine output, offer-
ing a standardized approach for diagnosis and research 
[99]. Comparing to patients with AKI stage 1, patients 
with AKI stage 2 or 3 have higher in-hospital mortality 
and risk of progression to chronic kidney disease.

We implemented CRISP to predict AKI within the ini-
tial 48 h of ICU admission on MIMIC III dataset. We used 
the same group of patients from the MIMIC III dataset 
used for the mortality prediction task and adhered to the 
KDIGO’s AKI definition to classify AKI into 3 severity 
stages (AKI stage ≥1, ≥2, and ≥3). We carefully excluded 
individuals with pre-existing AKI, renal failure, and 
chronic kidney disease prior to their ICU admission. The 

exclusion of patients with prior kidney-related condi-
tions serves to minimize potential confounding factors 
influencing the escalation of AKI severity. This strate-
gic exclusion enhances the internal validity of our study, 
allowing us to focus our assessment on the predictive 
capabilities of our models within a population devoid of 
pre-existing kidney disorders. Our finalized dataset com-
prises a total of 24,661 ICU stays (13,796 cases developed 
AKI stage ≥1, 9,519 cases developed AKI stage ≥2, 1,794 
cases developed AKI stage ≥3).

As shown in Fig. 4, our prediction model achieved 
AUROCs ranging from 0.7557 to 0.7899 and AUPRCs 
ranging from 0.4061 to 0.7877. In comparison, a recent 
study on this dataset reported an AUROC of 0.7798 
[100]. CRISP’s AUROCs exhibited more stable perfor-
mance with class imbalance. It emphasizes the impor-
tance of continuously evaluating and adapting the model 
to keep pace with evolving clinical landscapes.

Discussion
Numerous medical facilities are already utilizing EHR 
systems. Compared to traditional manual scoring sys-
tems, ML can offer superior predictive performance and 
can even automate clinical decision-making by leverag-
ing the extensive data collected from EHRs [13]. Recent 
research highlights causal ML as a pivotal intersection 
between AI and statistics, marking a transition from 
mere prediction to a deeper understanding. This shift 
bridges the gap between traditional statistical inference 
and advanced predictive capabilities [101].

In this study, we not only proposed a novel causality 
based mortality prediction model but also demonstrated 
the effectiveness of various conventional ML algorithms 
in predicting in-hospital mortality among ICU patients. 
Causality is a new frontier in deep learning, capable of 
reducing data-driven errors by revealing hidden causal 
relationships within complex distributions. In this study, 

Fig. 4  The AUROC and AUPRC performance of CRISP on prediction of Acute Kidney Injury stages (1, 2, 3) within the initial 48 h of ICU admission
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CRISP’s transportability is validated under a defined 
causal structure for the external validation of interven-
tion models and counterfactual queries. By integrat-
ing causal structure, CRISP achieves enhanced stability 
across diverse settings. Clinicians and healthcare practi-
tioners can modify the causal DAG graph using domain-
specific knowledge to better guide the model’s learning. 
Unlike traditional approaches that establish causal rela-
tionships based on individual features, CRISP builds rela-
tionships based on feature categories. This reduces the 
reliance on specific features within categories, making it 
easier to adapt the model to different settings. This gen-
eralizability greatly contribute to the utility of the model 
in real-world medical applications. Other studies are 
also integrating ML into causal inference methods. For 
instance [102], demonstrated that RF combined with the 
potential outcomes approach can effectively detect and 
estimate heterogeneity of treatment effects across multi-
ple covariates considered simultaneously. Our work also 
demonstrates the potential of exploring the application of 
causal machine learning in clinical settings.

This study introduces the CMG Module, which inte-
grates causality into the counterfactual generation pro-
cess. Different from existing studies [58–60, 70], CMG 
incorporates propensity scores to guide the search for 
counterfactual pairs and generates new counterfac-
tual instances for unmatched majority class observa-
tions through causal pathways. The implementation of 
the CMG method further enhanced the performance of 
the prediction models in the experimental results of this 
study. However, it’s important to note CMG’s limitations, 
such as its inability to generate instances based on time 
series or text features. Generating new counterfactual 
samples relies on a limited number of minority samples, 
potentially introducing bias. We anticipate conducting 
additional experiments on diverse datasets to gain deeper 
insights and address these challenges.

In this study, we used patient data from hospitals in 2 
different countries to test the model’s applicability across 
diverse source datasets. In the MIMIC-III and IV datas-
ets, over 70% of the patients are white, while the WCHSU 
dataset comprises only Asian patients from the West 
China Hospital of Sichuan University. Our CRISP and 
CMG models demonstrate stable performance across 
these different datasets.

Interpretation. There are various methods for inter-
preting how a deep learning model works from different 
perspectives. One commonly used approach is feature 
importance estimation, which provides a straightforward 
understanding from the perspective of domain experts. 
This study uses Permutation Importance [103] to identify 
the features that contribute most to predictions, thereby 
enhancing interpretability (the top 15 most important 
features are ranked in Supplementary Material STable 4). 

This research includes a broad range of features predic-
tive of mortality in the ICU setting, such as patient demo-
graphics, diagnoses, procedures, medications, vital signs, 
and lab tests. Consistent with existing literature, our find-
ings highlight the importance of vital signs and laboratory 
tests in predicting ICU mortality [2]. For example, earlier 
studies have emphasized the critical role of parameters 
like blood pressure and oxygen saturation in assessing the 
risk of mortality in critically ill patients [104]. Procedures 
such as continuous invasive mechanical ventilation fur-
ther underscore the importance of managing respiratory 
failure in determining outcomes [105].

Limitations. Firstly, although DL approaches can 
achieve superior performance, they may face challenges 
in standardizing clinical predictive indicators. In contrast, 
conventional scoring systems like SAPS II, despite hav-
ing relatively lower predictive performance, excel in stan-
dardization and facilitate center-to-center comparisons. 
Therefore, using DL models alongside traditional scoring 
systems can provide more valuable insights for predicting 
the prognosis of critically ill patients and for comparing 
ICU performance. Secondly, future research should focus 
on exploring the causal relationships between temporal 
data during ICU stays, further enhancing the framework’s 
ability to identify causal factors. Lastly, incorporating cli-
nician feedback and investigating the design of more 
detailed causal graphs would help continually refine the 
model, improving its adaptability and resilience.

Implications To discuss the potential clinical use 
of our model and implications for future research, we 
applied our model for the comprehensive assessment 
of Acute Kidney Injury (AKI). Timely identification and 
proactive intervention in AKI are crucial, given its poten-
tial for prevention and reversibility within a relatively 
short timeframe, spanning from a few hours to several 
days [106]. Early detection plays a crucial role in miti-
gating the progression of AKI, leading to a reduction in 
elevated mortality rates among vulnerable ICU patients. 
Our prediction model achieved relatively good perfor-
mance. Our research underscores the importance of vigi-
lant monitoring of vital signs in ICU patients.

Conclusion
In conclusion, this study introduces CRISP, a causal deep 
neural network architecture that integrates causality into 
both data augmentation and the prediction model. The 
CMG module, which leverages causal graphs to generate 
new minority class instances through native counterfactu-
als, demonstrates predictive performance comparable to 
traditional oversampling techniques. CRISP, by incorpo-
rating causal graph with the processing of feature groups 
alongside basic patient information, shows competitive 
performance in mortality prediction. Its effectiveness is fur-
ther validated on the MIMIC-IV dataset and a dataset from 



Page 15 of 17Wang et al. BMC Medical Informatics and Decision Making          (2025) 25:165 

West China Hospital, showcasing the model’s generaliz-
ability across different data distributions, including diverse 
patient demographics and clinical outcomes. These find-
ings highlight the potential of causality-based approaches 
in real-world clinical applications, emphasizing their flex-
ibility and adaptability across various datasets and tasks.
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