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Abstract
Background  Cognitive impairment is common after a stroke, but it can often go undetected. In this study, we 
investigated whether using gait and dual tasks could help detect cognitive impairment after stroke.

Methods  We analyzed gait and neuropsychological data from 47 participants who were part of the Ontario 
Neurodegenerative Disease Research Initiative. Based on neuropsychological criteria, participants were categorized as 
impaired (n = 29) or cognitively normal (n = 18). Nested cross-validation was used for model training, hyperparameter 
tuning, and evaluation. Grid search with cross-validation was used to optimize the hyperparameters of a set of feature 
selectors and classifiers. Different gait tests were assessed separately.

Results  The best classification performance was achieved using a comprehensive set of gait metrics, measured by 
the electronic walkway, that included dual-task costs while performing subtractions by ones. Using a Support Vector 
Machine (SVM), we could achieve a sensitivity of 96.6%, and a specificity of 61.1%. An optimized threshold of 27 in 
the Montreal Cognitive Assessment (MoCA) revealed lower classification performance than the gait metrics, although 
differences in classification results were not significant. Combining the classifications provided by MoCA with those 
provided by gait metrics in a majority voting approach resulted in a higher specificity of 72.2%, and a high sensitivity 
of 93.1%.

Conclusions  Our results suggest that gait analysis can be a useful tool for detecting cognitive impairment in patients 
with cerebrovascular disease, serving as a suitable alternative or complement to MoCA in the screening for cognitive 
impairment.
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Background
Cognitive impairment (CI) due to cerebrovascular dis-
ease (CVD), also known as vascular cognitive impair-
ment (VCI) is common after stroke. It affects mostly 
attention and executive functions [1, 2], ranging from 
mild to major CI or dementia [1, 3, 4]. Vascular demen-
tia, which is the second most common cause of demen-
tia after Alzheimer’s disease [1, 5, 6], can significantly 
impact patients’ quality of life and independence [5, 7], 
being associated with increased mortality, disability, and 
institutionalization [8].

Despite significant progress in stroke care in recent 
decades, CI after stroke remains a common and underdi-
agnosed problem [7, 9, 10]. Studies estimate that 30–50% 
of stroke survivors experience CI [7], but recent system-
atic reviews suggest that the prevalence may be even 
higher, with more than half of stroke survivors experienc-
ing some degree of CI [11]. In the first year after a stroke, 
the prevalence of mild CI ranges from 17.5% to 54.9%, 
with a pooled prevalence of 38% [12]. As the population 
ages and the number of stroke survivors increases, effec-
tive management of post-stroke CI will become increas-
ingly important for both patients and caregivers [9].

The first step in the management of CI is diagnosis. The 
gold standard for diagnosis is a comprehensive neuropsy-
chological examination [9] that is not feasible at a popu-
lation level. In practice, a two-step approach is advised, 
starting with a primary screening test such as the Mon-
treal Cognitive Assessment (MoCA) [4, 8]. While MoCA 
is commonly used for this purpose, its low specificity, 
and moderate to good sensitivity for the diagnosis of 
post-stroke CI coupled with a lack of standardization still 
limit its use [6, 9].

Researchers have been exploring alternative meth-
ods to improve the screening of CI. Gait analysis, for 
instance, was shown to distinguish normal aging from 
mild CI in non-stroke patients [13]. Further research 
showed that gait performance is affected by cognitive 
load in people with CI due to cognitive-motor, or, dual-
task, interference [14, 15]. A recent meta-analysis showed 
that dual-task gait characteristics allow better differentia-
tion between groups, with an increased sensitivity for the 
detection of mild CI [13].

Because attention is often impaired, patients with 
VCI may struggle with multitasking [9]. Studies suggest 
that performance on dual tasks can be compromised 
in patients with VCI [16], and suggest that gait assess-
ment under dual-task conditions could be a useful tool 
for early detection of VCI [17]. Dual-task assessment 
is attractive because it is less influenced by educational 
level, is practical, fast, and easy to administer in clinical 
practice [18], and may be a good alternative to screening 
tests like MoCA.

Digital biomarker technologies, often combined with 
machine learning-based predictive models, are increas-
ingly explored for early detection of CI in community 
settings [19]. Support Vector Machines (SVMs) are often 
used for this purpose by analyzing gait characteristics 
[19]. For example, Boettcher et al. [20] used dual-task 
gait data collected from a computerized walkway to dif-
ferentiate subjects with mild CI from healthy individu-
als, achieving an accuracy of 77.2%. Aoki et al. [18] used 
the Microsoft Kinect sensor to capture dual-task gait, 
achieving an AUC of 74.7% in differentiating subjects 
with different levels of cognitive performance, as mea-
sured by the Mini-Mental State Examination (MMSE). 
Ghoraani et al. [21] employed an SVM in a one-vs-one 
manner with a majority vote to differentiate healthy sub-
jects, older adults with mild CI, and older adults with 
Alzheimer’s disease. An accuracy of 86.0% was achieved 
in the differentiation of cognitively impaired and healthy 
subjects using gait features extracted from an electronic 
walkway. Shahzad et al. [22] used an inertial sensor-based 
gait analysis and a machine learning framework to dis-
tinguish mild CI due to Alzheimer’s disease from healthy 
subjects, finding that dual-task walking provided a better 
distinction than single-task, with a classification accu-
racy of 70.0%. Finally, Jung et al. [23] used sequential gait 
characteristics extracted from inertial sensors coupled 
with a long short-term memory network to categorize 
community-dwelling older adults into three groups based 
on their scores of the MMSE; they achieved improved 
F1 scores of 97.4% using temporal gait features extracted 
from usual and fast pace walking trials. Taken together, 
these studies suggest that machine learning and gait 
assessments have the potential to be objective tools for 
cognitive screening that do not heavily rely on cognitive 
testing.

Although some research has investigated the use of 
gait characteristics to detect CI, it is unclear whether 
machine learning and gait assessments can effectively 
distinguish CI from cognitively normal in post-stroke 
patients. In this study, we aim to objectively evaluate 
the clinical utility of gait in classifying CI in post-stroke 
patients using a machine learning-based approach. We 
used as input data from different gait tests, including 
dual tasks and fast walking conditions. We also tested 
multiple machine learning classifiers and two different 
gait assessment technologies that provided varying levels 
of detail about gait metrics. Finally, we objectively com-
pared the classification results with those obtained using 
MoCA and proposed a majority voting approach to com-
bine MoCA with gait. We hypothesized that: i) machine 
learning models based on gait metrics differentiate VCI 
from healthy individuals with a performance comparable 
to MoCA; ii) the dual-tasks provide better classification 
results than the single-tasks; iii) a more comprehensive 
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analysis of gait allows better differentiation of the groups 
than simpler gait metrics; and iv) the combination of 
MoCA with gait metrics leads to better performances 
than using each modality alone.

Materials and methods
Dataset
The data used in this study were obtained from the 
Ontario Neurodegenerative Disease Research Initia-
tive (ONDRI) [24, 25]. ONDRI is a multi-site prospec-
tive cohort study investigating Alzheimer’s dementia 
and mild CI (AD and MCI), amyotrophic lateral sclerosis 
(ALS), frontotemporal lobar degeneration (FTD), Parkin-
son’s disease (PD), and cerebrovascular disease (CVD). 
The ONDRI protocol includes assessments for genom-
ics, neuroimaging, ocular function, gait and balance, and 
neuropsychological testing. In the present study, we have 
only used the baseline data from the cerebrovascular dis-
ease (CVD) cohort, including demographic, clinical, neu-
ropsychological, and gait data.

Participants in the CVD group experienced a mild to 
moderate ischemic (or silent) stroke event verified on 
neuroimaging 3 or more months before enrollment. They 
also met the following inclusion criteria: (a) age between 
55 and 85 years old, (b) proficient in speaking and under-
standing English, (c) 8 or more years of formal education, 
(d) mild-moderate stroke severity defined by scores 0–3 
in the modified Rankin scale, (e) a MoCA score of at least 
18. Exclusion criteria included vascular cause of symp-
toms, large cortical strokes, severe CI, aphasia, history 
of dementia prior to the stroke, inability to write, and/
or severe functional disability limiting ability to perform 
assessments [24, 26, 27].

The current study received approval from the Ethics 
Committee of the Faculty of Medicine of the Univer-
sity of Porto (51/CEFMUP/2022). Access to the ONDRI 
Foundational Study Data was granted after approval by 
Brain-CODE’s Data Access Committee [28].

Assessments
Demographic and clinical data
The dataset included demographic data, such as age, edu-
cation (reported in years), height, weight, and leg length. 
Additionally, it included a rate of depression, as assessed 
by the Quick Inventory of Depressive Symptomatology 
(QIDS) [29].

Study partners rated the participant’s ability to func-
tion independently across eight instrumental activi-
ties of daily living (iADLs; i.e., telephone use, shopping, 
food preparation, housekeeping, laundering, use of 
transportation, medication management, and financial 
management) and six basic ADLs (i.e., feeding, dress-
ing, grooming, ambulating, bathing, and toileting). The 

percent of independence on relevant items was provided 
for iADLs and ADLs.

MoCA
MoCA is a paper-and-pencil screening tool for CI [30]. It 
evaluates multiple cognitive domains, including, execu-
tive function, memory, language, visuospatial ability, 
orientation, attention, concentration, and working mem-
ory. The score of MoCA is corrected for low education 
(≤12 years) by adding an extra point, having a maximum 
score of 30 points [30]. With a high sensitivity of 83–97%, 
MoCA is currently the preferred tool for the screening of 
CI at primary care level [31]. The cutoff of <26 is com-
monly used to detect CI [8, 27, 30].

Neuropsychological assessment
The neuropsychological assessment consisted of a stan-
dardized battery administered to all participants in the 
ONDRI study. The ONDRI study followed standard 
quality assurance and quality control procedures, as 
described in [32], ensuring the rigor and accuracy of the 
data.

To characterize areas of CI in individual participants, 
the tests were categorized into five cognitive domains, as 
proposed by [33] after a consensus agreement among the 
ONDRI Clinical Neuropsychologists. In addition to raw 
scores from the neuropsychological tests, the ONDRI 
dataset provided standard scores (z-scores, t-scores, per-
cents, or scaled scores) based on published normative 
data (education- and/or age-adjusted). Normative values 
were not available in two of the considered tests (BDAE: 
Semantic probe and BVMT-R: Copy trial) and they were, 
thus, excluded from the analysis. The resulting cogni-
tive domains and associated test measures are shown in 
Table 1.

We categorized participants as impaired or as cogni-
tively normal using the comprehensive criteria proposed 
by [34]. According to this criteria, individuals were classi-
fied as cognitively normal if, at most, performance on one 
measure within one or two cognitive domains fell more 
than 1 SD below age/education-appropriate norms [34].

Before applying the comprehensive criteria, we filled 
in missing values using k-Nearest Neighbors (KNN). 
Missing neuropsychology data were imputed using the 
mean value from the 5 nearest neighbors weighted by the 
inverse of their Euclidean distance. Since KNN is based 
on distances, before imputation, we standardized the 
data, i.e. removed their mean and scaled to unit variance, 
to generate unbiased estimations of missing values [35]. 
After imputation, the values were transformed to the 
original scale.
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Gait
Quantitative gait parameters were assessed using wear-
able inertial sensors (Gulf Coast Inc.; Shimmer Inc.) 
worn bilaterally on the ankles and at the hip. In two study 
sites, gait performance was additionally assessed using 
electronic walkway systems (GAITRite® or PKMas®) [24, 
36]. To facilitate a comparison between inertial sensors 
and electronic walkway systems, we have only considered 
the participants who were assessed by the two systems.

Gait was assessed under three conditions, using the 
following order: (1) preferred walking speed, or single-
task walking (SS), (2) dual-task walking (DT), and (3) fast 
walking (F). The secondary tasks were administered in 
the following order: (1) subtracting serial ones from 100 
(DS1), (2) naming animals (DAn), and (3) subtracting 
serial sevens from 100 (DS7). The cognitive tasks were 
performed out loud, without any prioritization instruc-
tion. All participants walked along a 6-m path, starting 
and finishing 1 m away to ensure that only steady-state 
walking was captured [24, 36].

The preferred walking speed condition was repeated 
three times, and average values were calculated. Gait 
characteristics such as speed, cadence, and total num-
ber of steps were reported for the participants assessed 

with the accelerometer. The participants assessed using 
the electronic walkways had additional gait characteris-
tics, including, gait speed, stride velocity, step and stride 
time, step and stride length, double support time, swing 
time, step and stride width, cadence, and corresponding 
variabilities, calculated using the coefficient of variation, 
CoV, obtained from [(standard deviation/mean) ×100] 
[36].

Since some of the metrics extracted from the elec-
tronic walkway provide similar information (e.g., stride 
time and cadence, step and stride metrics), we excluded 
step metrics and cadence from the analysis. The metrics 
included were, thus, stride length, double support time, 
stride time, stride velocity, stride width, swing time, and 
their respective variabilities.

For all these metrics we calculated dual-task costs 
(DTC, in %) using the formula [(single-task metric—
dual-task metric)/single-task metric] ×100, which quanti-
fies the magnitude of the effect of cognitive load on gait 
performance [36]. We also calculated the capacity index 
comparing preferred speed with fast walking trials using 
the formula [(fast metric—single-task metric)/single-task 
metric] ×100.

Machine learning pipeline
We developed a machine learning pipeline for classify-
ing participants into normal or cognitively impaired 
using the metrics from gait tests. We assessed each gait 
test separately (i.e., SS, DAn, DS1, DS7, and F) to com-
pare each test’s ability to differentiate both groups. Addi-
tionally, we tested the combinations of dual-task tests 
(and fast-walking test) with SS, i.e., DAn + SS, DS1 + SS, 
DS7 + SS, and F + SS. To this purpose, we analyzed and 
reported the best-performing experiment from the fol-
lowing three possibilities: (a) using dual-task costs (or 
capacity indexes) alone, (b) combining dual-task costs 
(or capacity indexes) and SS metrics, and (c) combin-
ing dual-task costs (or capacity indexes) and dual-task 
(or fast-walking) test metrics. The five gait tests and the 
four combinations resulted in a total of nine reported 
experiments.

The experiments were performed using metrics pro-
vided by the accelerometer and repeated using the met-
rics provided by the electronic walkway. Since our goal 
was to compare the limited set of features provided in this 
study by the accelerometer with the more comprehensive 
set provided by the electronic walkway (described in the 
previous section), we have only included participants 
assessed by the two systems.

One participant in the cognitively normal group had no 
accelerometer data on DAn, DS7 and F tests and was, as 
such, excluded from experiments including these data. 
The same happened with one participant in the cogni-
tively impaired group that had no accelerometer data 

Table 1  Neuropsychological assessment
Cognitive domains Tests included
Attention and working 
memory

Symbol digit modality test (coding)
Trail making test–Part A (time)
WAIS-III: Digit span forward (longest span)
WAIS-III: Digit span backward (longest span)
WAIS-III: Digit span total
DKEFS: Color naming (time)
DKEFS: Word reading (time)

Executive function Trail making test–Part B (time)
DKEFS: Interference (time)
DKEFS: Inhibition/switching (time)
DKEFS: Letter fluency
DKEFS: Category fluency
WASI-II: Matrix

Language Boston naming – 15 item (pro-rated)
TAWF: Verb naming
BDAE: Semantic probe (excluded)
WASI-II: Vocabulary

Verbal memory RAVLT: Immediate
RAVLT: Long-delay
RAVLT: Recognition discrimination

Visuospatial awareness Judgement of line orientation
VOSP: Incomplete letters
BVMT-R: Copy trial (raw) (excluded)

BDAE: Boston Diagnostic Aphasia Examination; BVMT-R: Brief Visuospatial 
Memory Test-Revised; DKEFS: Delis-Kaplan Executive Function System; RAVLT: 
Rey Auditory Verbal Learning Test; TAWF: Test of Adolescent/Adult Word 
Finding; VOSP: Visual Object and Space Perception Battery; WAIS-III: Wechsler 
Adult Intelligence Scale–Third Edition; WASI-II: Wechsler Abbreviated Scale 
Intelligence–Second Edition
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on the DAn test. All the remaining variables were pres-
ent, yielding 29 participants in the impaired group (or 28 
when data were missing) and 18 in the cognitively normal 
group (or 17 when data were missing).

To avoid overly optimistic estimations and account for 
the limited number of participants in this study, we used 
a nested cross-validation (CV) approach [37], which con-
sists of an outer and inner CV loop, as shown in Fig. 1. 
Although leave-one-subject-out (LOSO) cross-validation 
is a common approach for small datasets, we opted for 
a k-fold split with k = 20 in nested CV to reduce compu-
tational load while maintaining sufficient training data 
and robust model evaluation. The dataset was, thus, first 
divided into 20 equally-sized outer folds, yielding 42–45 
participants’ data for hyperparameter tuning and model 
training (training sets) and 2–3 participants’ data for 
evaluation (test sets). In the inner loop, the outer training 
data were further divided into 5 folds, forming the inner 
training and validation folds. The inner loops were used 
for hyperparameter tuning in a grid search. When the 
best set of hyperparameters was found, the whole (outer) 
training set was used to retrain the model. The model 
was then used to classify the test set in the outer loop.

As illustrated in Fig.  1, the machine learning pipeline 
consists of: (1) preprocessing, (2) feature selection, (3) 
sampling, and (4) classification. The preprocessing step 
consisted of a z-score standardization that scaled the 
features to zero mean and unit standard deviation. For 
the feature selection, we tested different methods: we 
optimized the number of features to select (1, 2, 3, 5, 
or 8) using the highest-scored features (KBest) accord-
ing to their mutual information (or mutual dependence) 
with the target [38], or using recursive feature elimina-
tion (RFE) based on the feature ranking provided by a 

Support Vector Machine (SVM) with a linear kernel; we 
also tested feature selection based on feature importance 
as provided by Random Forest (RF) [39] with 50 estima-
tors, selecting all those features with importance above 
the mean. We also tested the pipeline without any feature 
selection. In the sampling step, we used the Synthetic 
Minority Oversampling Technique (SMOTE) algorithm 
[40]. Since the incidence of cognitively normal partici-
pants in the dataset was only 38.3%, SMOTE was used 
to create new synthetic examples of the minority class. 
According to [40] SMOTE provides better results when 
applied after feature selection. We also evaluated the 
performance of the classifiers without applying any resa-
mpling strategy, as all the classifiers tested in the subse-
quent stage were able to adjust for dataset imbalance by 
using class weighting. In the classification stage, we opti-
mized the following hyperparameters in three different 
classifiers: the regularization strength, C (0.001, 0.01, 0.1, 
1.0, 10, or 100) and kernel (linear or rbf ) of the Support 
Vector Machine (SVM); the number of estimators (10, 
50, or 100) of the Random Forest (RF); and the regular-
ization strength, C (0.001, 0.01, 0.1, 1.0, 10, or 100) of the 
Logistic Regression (LR) classifier.

The total number of true positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN) were 
obtained for all test partitions in the outer loop and used 
to calculate the global metrics of performance, where the 
cognitively impaired group was considered the positive 
class. To evaluate and compare the performance of the 
machine learning models, we calculated balanced accu-
racy, sensitivity, specificity, F1 score, and the area under 
the receiver operating characteristic (ROC) curve (AUC). 
Since we were dealing with imbalanced data, balanced 
accuracy was used as the scoring criteria to select the 

Fig. 1  Machine learning pipeline with nested cross-validation
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best set of hyperparameters in the grid search. Balanced 
accuracy was also used to compare multiple machine-
learning experiments.

Experiments were performed using Python 3 and the 
package scikit-learn v1.1.3 [41].

Classification using MoCA scores
We compared the performance of the machine learn-
ing experiments with MoCA. Two different experiments 
were conducted: (1) we used the classical threshold of 26 
to identify the groups and (2) we used a ROC analysis to 
determine the optimal MoCA cut-point that maximized 
sensitivity and specificity in the current dataset. The opti-
mal cut-point was considered the point of the ROC curve 
closest to the upper left corner (0,1), defined as that 
yielding the minimum value of (1–sensitivity)2 + (1–spec-
ificity)2 [42]. A third experiment combined the classifica-
tions obtained with MoCA with those obtained using gait 
metrics in two of the best-performing conditions. The 
classifications obtained by the three different approaches 
were combined using a majority voting scheme [43].

Statistical analysis
Demographic and medical characteristics were sum-
marized using either means and standard deviations, or 
frequencies and percentages, as appropriate, to char-
acterize both groups. The comparisons between groups 
were performed using the Independent Samples T-test or 
the Mann-Whitney U test for continuous variables, and 
Person’s chi-square test (χ2) for categorical variables. The 
Mann-Whitney U test was used when data were not nor-
mally distributed or when outliers were present outside 
±1.5 of the interquartile range. To test for normality, we 
used the Shapiro-Wilk test.

To compare the results of the machine learning experi-
ments, we used Paired Samples T-Tests or Wilcoxon 
signed-rank tests, that compared the average perfor-
mance of the validation sets in all inner cross-validation 
(CV) runs. Wilcoxon signed-rank tests were used when 
paired data differences were not normally distributed or 
when outliers were present. Bonferroni-adjusted p-values 
were reported for the multiple comparisons [44].

McNemar’s Test was used to compare the diagnosis 
provided by MoCA, and the classifications provided by 
machine learning experiments, as recommended in [45].

The statistical analysis was performed using Python 
3 and the statistical tools from SciPy v1.9.3, NumPy 
v1.23.5, and statsmodels v0.13.5 [46]. A p-value of less 
than 0.05 indicated statistical significance.

Results
Descriptive statistics
Of the 161 participants with CVD available in the 
ONDRI dataset, only 47 had gait features measured by 
both the accelerometer and the electronic walkway. Of 
the 47 participants, 29 (61.7%) met the criteria for CI, 
whereas 18 (38.3%) were classified as cognitively normal. 
The descriptive statistics of the two groups are provided 
in Table 2.

Significant differences between groups were obtained 
on MoCA scores and iADLs percent, indicating lower 
global cognitive performance in the impaired group and 
less independence on iADLs. The difference in ADLs 
was not significant, denoting that both groups were still 
equally capable of performing these tasks. Additionally, 
there were no significant differences in depression scores, 
age, and education between the two groups.

The group with CI had a slower gait speed, as indi-
cated by significant differences in multiple gait tests. 
The electronic walkway revealed significant differences 
in gait speed in more tests than the accelerometer. No 
significant differences between groups were obtained 
for gait speed while walking fast, as measured either by 
the accelerometer or the electronic walkway. Although 
the impaired group had significantly shorter height, 
leg length presented no significant differences between 

Table 2  Descriptive statistics (n = 47)
Characteristic Normal (n = 18) Impaired (n = 29) p-value
Age [years] 67.3 ± 5.1 69.6 ± 7.3 0.220
Height [cm] 174.7 ± 6.5 169.1 ± 10.7 0.033*
Leg length [cm] 93.1 ± 6.2 91.8 ± 8.1 0.571
Weight [Kg] 85.7 ± 12.5 81.8 ± 14.2 0.242
Female, n (%) 4 (22.2) 8 (27.6) 0.098
Education [years] 15.3 ± 2.9 15.4 ± 2.7 0.781
Clinical tests
QIDS score 4.0 ± 2.5 4.1 ± 3.0 0.833
iADLs [%] 95.9 ± 6.4 85.2 ± 18.1 0.036*
ADLs [%] 99.5 ± 1.3 99.3 ± 2.5 0.949
MoCA score 27.6 ± 2.0 24.3 ± 2.8 <0.001*
Gait using the accelerometer
SS speed [m/s] 1.18 ± 0.28 0.98 ± 0.27 0.024*
DAn speed [m/s] 1.05 ± 0.26 0.84 ± 0.26 0.012*
DS1 speed [m/s] 1.05 ± 0.29 0.91 ± 0.28 0.112
DS7 speed [m/s] 0.96 ± 0.32 0.79 ± 0.25 0.106
F speed [m/s] 1.73 ± 0.49 1.45 ± 0.45 0.060
Gait using the electronic walkway
SS speed [m/s] 1.25 ± 0.15 1.11 ± 0.20 0.021*
DAn speed [m/s] 1.10 ± 0.24 0.92 ± 0.21 0.007*
DS1 speed [m/s] 1.17 ± 0.21 1.02 ± 0.23 0.024*
DS7 Speed [m/s] 1.15 ± 0.32 0.86 ± 0.19 0.002*
F Speed [m/s] 1.67 ± 0.41 1.52 ± 0.27 0.088
Data are mean values ± standard deviation or the number of participants per 
category (absolute and relative frequency) when indicated. Group differences 
were evaluated using the Independent Samples T-test, Mann-Whitney U 
test, or Pearson’s chi-square. *p < 0.05, p-values are two-tailed significance 
and bold values indicate significance. QIDS: Quick Inventory of Depressive 
Symptomatology; iADLs: Percent of independence in instrumental activities 
of daily living; ADLs: Percent of independence in activities of daily living; SS: 
Single-task; DAn: Walking while naming animals; DS1: Serial subtraction by 1s; 
DS7: Serial subtraction by 7s; F: Walking Fast
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groups, which should not contribute to differences in gait 
performance [47].

Classification using accelerometer metrics
The best-performing classifiers, feature selectors, and 
sampling methods are shown in Table  3 for each tested 
gait condition using metrics from the accelerometer. 
The average number (and standard deviation) of features 
selected (within each outer training fold) are also shown 
in this table. Performance metrics are reported for the 
test set.

Balanced accuracy spanned from 60.4% (using F walk-
ing features) to 70.6% (using DS1 + SS walking features). 
The features extracted from the SS condition provided 
better performance than DAn, DS1, DS7, and F condi-
tions, with 72.4% of sensitivity, 66.7% of specificity, and 
66.3% of AUC. The performances of dual-task condi-
tions (and F) improved when dual-task costs (or capac-
ity indexes) were included (e.g., the performance of 
DAn + SS was higher than DAn alone). The best perform-
ing combination overall was with DS1 + SS, with a sen-
sitivity of 69.0%, a specificity of 72.2%, and an AUC of 
75.5% (Table 3).

The performance (balanced accuracy) on validation 
and test sets using gait metrics from the accelerometer 
is visually compared in Fig. 2a. Statistical results are pro-
vided in this figure comparing DS1 + SS with the other 
conditions.

From the analysis of Fig. 2a we verify that classification 
performance (measured on validation folds) of the best 
performing condition, DS1 + SS, although superior to the 
SS condition, does not differ significantly. All the remain-
ing conditions had a lower average performance, differing 
significantly from the DS1 + SS condition.

We note that in the SS condition only 3.0 ± 0.0 fea-
tures were included, whereas in the DS1 + SS condi-
tion an average of 4.6 ± 1.0 were included (Table 3). In 
the case of the accelerometer, as only three metrics were 
measured (i.e., number of steps, cadence, and speed), the 
maximum number of features selected was either three 
or six in the case of the experiments including dual-task 
costs. The features that were most commonly used in the 
DS1 + SS condition are shown in Fig. 2c. In this condi-
tion, the most relevant features were the cost in velocity, 
single-task velocity, single-task cadence, the cost in total 
steps, and the cost in cadence. The total number of steps 
in the single-task condition was the least relevant feature. 

Table 3  Performance on test sets using gait metrics from the accelerometer (in %)
Condition SS DAn DS1 DS7 F DAn + SSa) DS1 + SSb) DS7 + SSc) F + SSb)

Classifier LR LR SVM LR LR RF LR LR RF
Feature Sel. None RF None None None RFE RFE KBest KBest
Sampling None SMOTE SMOTE None None None None SMOTE None
# Features 3.0 ± 0.0 2.0±0.0 3.0±0.0 3.0±0.0 3.0±0.0 2.0±0.0 4.6±1.0 4.5±1.0 3.4±1.7
Bal. Acc. 69.5 64.5 62.6 61.2 60.4 66.9 70.6 68.1 66.1
Sensitivity 72.4 64.3 58.6 51.7 62.1 75.0 69.0 65.5 79.3
Specificity 66.7 64.7 66.7 70.6 58.8 58.8 72.2 70.6 52.9
F1 score 75.0 69.2 65.4 61.2 66.7 75.0 74.1 71.7 76.7
AUC 66.3 65.5 65.7 57.4 63.1 63.4 75.5 66.5 57.8
SS: Single-task; DAn: Walking while naming animals; DS1: Serial subtraction by 1s; DS7: Serial subtraction by 7s; F: Walking Fast; LR: Logistic Regression; RF: Random 
Forest; SVM: Support Vector Machine; RFE: Recursive feature elimination; AUC: Area under the curve. a) using dual-task costs; b) using dual-task costs (or capacity 
indexes) and SS metrics; c) using dual-task costs and dual-task metrics

Fig. 2  Performance using features extracted from the accelerometer. (a) Performance on validation and test sets, where vertical lines indicate standard 
deviation of the 20 inner CVs. The statistical analysis compares the best-performing experiment (DS1 + SS) with the results achieved in the other condi-
tions, using Paired Samples T-tests or Wilcoxon signed-rank tests with Bonferroni correction, where *p < 0.05, **p < 0.01, and ***p < 0.001 indicate statisti-
cal significance. (b) Confusion matrix of the DS1 + SS condition. (c) Feature selection frequency for the DS1 + SS condition

 



Page 8 of 14Guimarães et al. BMC Medical Informatics and Decision Making          (2025) 25:157 

Figure  2b shows the confusion matrix of the DS1 + SS 
condition.

Classification using walkway metrics
The results achieved using the metrics extracted from 
the electronic walkway are shown in Table  4. As with 
the accelerometer, the best performing condition was 
the combination DS1 + SS, with 78.8% of balanced accu-
racy, 96.6% of sensitivity, 61.1% of specificity, and 68.6% 
of AUC. When using features from the gait test alone, 
DS7 (with 77.5% of balanced accuracy) revealed the high-
est performance in comparison with SS, DAn, DS1, and 
F conditions. Balanced accuracies spanned from 60.5% 
(with F) to 78.8% (with DS1 + SS), being test scores higher 
than its equivalents with the accelerometer.

Although the electronic walkway provided an addi-
tional number of gait metrics than the accelerometer, the 
number of features used by machine learning models was 
not always higher. The SS condition, for instance, used 
only 2.0 ± 2.2 features, whereas in the case of the acceler-
ometer an average number of 3.0 ± 0.0 features were used 
in this condition. However, the features included were 
different. In the SS condition, for instance, double sup-
port time was selected for all the 20 outer training folds 

and stride width variability was selected 5 times (results 
not shown). Double support time was one of the most rel-
evant features of the electronic walkway in several condi-
tions where feature selection has been applied, including, 
SS, DAn, DS1, F, DS7 + SS, and F + SS. In the case of the 
DS1 + SS condition, the best balanced accuracy of 78.8% 
was achieved with 1.7 ± 2.1 features, being stride length 
cost one of the most relevant features, selected in all folds 
of the outer training loop (Fig. 3c). Only 1 participant in 
the impaired group was misclassified using DS1 + SS fea-
tures (Fig. 3b), leading to a very high sensitivity of 96.6%.

Compared to the DS1 + SS condition, only DS1, F, 
DAn + SS, and F + SS conditions revealed significantly 
lower performances (Fig. 3a). The performance of the 
DS1 + SS was superior to the SS in validation and test 
folds, although the differences in validation performances 
were not statistically significant.

A Paired Samples T-test revealed that the performance 
of the machine learning models in the DS1 + SS condition 
using walkway features was significantly higher than the 
performance of the DS1 + SS condition using the features 
extracted from the accelerometer (T = −4.446, p < 0.001).

Table 4  Performance on test sets using gait metrics from the electronic walkway (in %)
Condition SS DAn DS1 DS7 F DAn + SSa) DS1 + SSa) DS7 + SSb) F + SSb)

Classifier LR SVM LR SVM RF SVM SVM SVM LR
Feature Sel. RFE RFE RFE None RF None KBest RF RFE
Sampling SMOTE SMOTE None SMOTE None None None SMOTE SMOTE
# Features 2.0 ± 2.2 3.2 ± 2.2 2.2 ± 1.8 12.0 ± 0.0 6.0 ± 0.8 12.0 ± 0.0 1.7 ± 2.1 8.6 ± 1.3 2.8 ± 2.1
Bal. Acc. 76.8 75.1 71.6 77.5 60.5 74.0 78.8 75.1 69.5
Sensitivity 75.9 72.4 65.5 82.8 65.5 75.9 96.6 72.4 72.4
Specificity 77.8 77.8 77.8 72.2 55.6 72.2 61.1 77.8 66.7
F1 score 80.0 77.8 73.1 82.8 67.9 78.6 87.5 77.8 75.0
AUC 75.3 75.9 69.2 79.5 54.8 73.9 68.6 72.4 67.2
SS: Single-task; DAn: Walking while naming animals; DS1: Serial subtraction by 1s; DS7: Serial subtraction by 7s; F: Walking Fast; LR: Logistic Regression; RF: Random 
Forest; SVM: Support Vector Machine; RFE: Recursive feature elimination; AUC: Area under the curve. a) using dual-task costs; b) using dual-task costs (or capacity 
indexes) and SS metrics

Fig. 3  Performance using features extracted from the walkway. (a) Performance on validation and test sets, where vertical lines indicate standard devia-
tion of the 20 inner CVs. The statistical analysis compares the best-performing experiment (DS1 + SS) with the results achieved in the other conditions, 
using Paired Samples T-tests or Wilcoxon signed-rank tests with Bonferroni correction, where *p < 0.05, **p < 0.01, and ***p < 0.001 indicate statistical 
significance. (b) Confusion matrix of the DS1 + SS condition. (c) Feature selection frequency for the DS1 + SS condition
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Performance using MoCA
Table 5 and Fig. 4 summarize the results of the classifi-
cation when a single cut-point was employed to MoCA. 
Using the traditional cut-point of 26, the MoCA’s sen-
sitivity was 62.1% and the specificity was 77.8% in the 
present sample (Table 5). The ROC analysis (ROC curve 
shown in Fig. 4a) indicated that in the present sample the 
cutoff of 27 would optimize sensitivity and specificity, 
which was according to the results obtained in [27]. The 
cutoff of 27 yielded a sensitivity of 75.9%, a specificity of 
77.8%, and an AUC of 66.0%.

Since the DS1 + SS condition measured by the walkway 
yielded the best classification performance when using 
gait metrics (Table 4), and because the DS1 + SS condi-
tion requires a SS test in order to measure the dual-task 
costs, we combined the classification results using a 
majority voting approach that considered the classifica-
tions provided by the SS condition, the DS1 + SS condi-
tion and MoCA<27. The majority voting resulted in an 
improved balanced accuracy of 82.7%, a sensitivity of 
93.1%, and a specificity of 72.2%. The resulting confusion 
matrix is shown in Fig. 4b.

An exact McNemar’s Test showed that there were no 
statistically significant differences in the disagreements 
between the classifications provided by MoCA<27 and 
the classifications provided by the machine learning 
models using the best performing condition of DS1 + SS 

(walkway), with p = 0.549. The observed differences in 
classification results were also not statistically significant 
when the traditional threshold (<26) was employed, with 
p = 0.092. Although the majority voting scheme revealed 
the highest balanced accuracy overall, the observed dif-
ferences in classification results were not significantly 
different from DS1 + SS (p = 1.0), SS (p = 0.289), or 
MoCA<27 (p = 0.219), but differed significantly from 
MoCA<26 (p < 0.05).

Discussion
This study was the first to investigate the use of machine 
learning and gait characteristics for detecting CI in post-
stroke patients using a gold-standard neuropsychological 
battery as a reference. We used a nested cross-validation 
approach to evaluate the performance of multiple classi-
fiers and feature selection methods on different walking 
conditions, including single-task (SS), dual-task (DAn, 
DS1, and DS7), and fast walking (F). Moreover, we tested 
the inclusion of dual-task costs and capacity indexes 
resulting from the combination of SS with DAn, DS1, 
DS7, or F. In line with our initial hypothesis, gait char-
acteristics were able to distinguish between post-stroke 
individuals with and without CI. Moreover, a compre-
hensive set of gait metrics and dual-task costs allowed 
better differentiation between the two groups, with clas-
sification performances that were comparable to or even 
superior to those achieved with MoCA. Combining 
gait metrics with MoCA improved overall classification 
performance.

Performance using gait metrics
The machine learning experiment leading to the best 
classification overall was achieved using DS1 + SS gait 
metrics extracted from the electronic walkway. Although 

Table 5  Performance using MoCA and a combination with gait
Classifier MoCA <26 MoCA <27 Majority voting
Bal. accuracy 69.9 76.8 82.7
Sensitivity 62.1 75.9 93.1
Specificity 77.8 77.8 72.2
F1 score 70.6 80.0 88.5
MoCA: Montreal Cognitive Assessment

Fig. 4  Classification performance using MoCA and a majority voting approach. (a) ROC analysis used to determine the optimal MoCA cut-point and (b) 
Confusion matrix resulting from the majority voting approach, which combined the SS condition, the DS1 + SS condition (walkway) and MoCA<27. AUC: 
Area under the curve; ROC: receiver operating characteristic
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disagreements in classification results were not signifi-
cantly different from MoCA (using cutoffs of <26 or <27), 
the balanced accuracy achieved with gait metrics was 
higher (78.8% versus 69.9% or 76.8%, respectively), which 
is a positive indication that gait analysis can be a useful 
tool for the screening of CI in post-stroke patients. Com-
pared to MoCA, gait tests are simpler and allow more 
objective and faster evaluations, which justifies their rel-
evance in the context of cognitive screening [18].

The DS1 + SS condition was consistently identified as 
the best-performing condition, either using the accel-
erometer or the walkway. However, in both cases, the 
differences between the DS1 + SS condition and the SS 
condition were not statistically significant. This suggests 
that even a simple single-task gait analysis could provide 
acceptable classification results, without the need for par-
ticipants to complete additional tests. Despite this, the 
sensitivity obtained in the DS1 + SS condition using the 
electronic walkway was much higher at 96.6%. This sug-
gests that the DS1 + SS condition should be a preferred 
choice for cognitive screening, where the main goal is to 
detect all potential cases for further assessment [8].

The lower classification performances obtained with 
the accelerometer may be in part due to the lower level 
of detail it provided compared to the electronic walkway. 
While the accelerometer could only provide general gait 
parameters, like, velocity, cadence, and total steps, the 
electronic walkway provided additional spatio-temporal 
metrics that characterized the strides (e.g., length, speed, 
width) and gait phases (e.g. swing and double support 
time). We should note that the limitations of the acceler-
ometer in this regard are not due to the device itself, but 
rather to the algorithms used to process its data [48–50]. 
It’s also worth noting that in the analysis of the descrip-
tive statistics, the electronic walkway detected signifi-
cant differences in gait speeds between the two groups 
in more tests than the accelerometer (Table 2). This may 
suggest that there are differences in the performance of 
the two technologies. In fact, different algorithms can be 
used to process data from inertial sensors, and the inclu-
sion of a gyroscope can often lead to improved results 
[48–50]. Therefore, the choice of algorithm and sensors 
used may have an impact on the results obtained. Thus, 
a possible lack of instrument accuracy (and/or precision) 
could partially justify the obtained results. Yet, including 
more detailed evaluations of gait seems to be beneficial, 
which is according to previous results on the detection 
of CI. According to previous studies, gait speed may be 
associated with several adverse health outcomes [51, 52], 
and therefore, it is not specific for the detection of CI 
[53, 54]. Since no other pathologies were included in our 
study, these results could not be confirmed.

Previous studies showed that different cognitive tasks 
can impact walking in different ways. In general, more 

cognitively demanding tasks tend to lead to greater inter-
ference effects, although the results are not always consis-
tent [13]. The serial subtraction by sevens is particularly 
cognitively demanding and has been shown to be the 
most sensitive in distinguishing patients with CI in non-
stroke populations [13]. In this study, the classification 
performance achieved with the DS7 and DS7 + SS condi-
tions was significantly lower than the DS1 + SS condition 
when using the accelerometer (Fig. 2a), but did not dif-
fer from the DS1 + SS condition when using the walkway 
(Fig. 3a). However, the DS1 + SS condition led to higher 
performances in both cases, indicating better discrimi-
nation ability. It’s worth noting that post-stroke patients 
often have other disabilities, particularly physical ones 
[9], and the mechanisms underlying motor-cognitive 
interferences may be different in this population com-
pared to patients with other neurocognitive disorders 
such as Alzheimer’s disease. Therefore, further research 
is needed to understand the effects of different cognitive 
tasks on post-stroke patients.

Previous research has also shown that combining mul-
tiple gait metrics can provide better discrimination abil-
ity than using a single gait metric [47, 55]. However, some 
gait metrics may be highly related and their simultaneous 
inclusion may not provide additional discrimination abil-
ity [56]. In this study, we used feature selection methods 
to identify the most relevant features based on different 
criteria. In the best-performing condition (DS1 + SS using 
the walkway), features were selected based on feature 
importance as provided by the Random Forest. In this 
experiment, only dual-task costs were selected for clas-
sification. According to previous studies, dual-task costs 
represent only the effect of adding the cognitive task and 
are not influenced by individual baseline characteris-
tics (e.g., leg length) that could otherwise be considered 
covariates [14, 57]. For this reason, dual-task costs con-
stitute an interesting evaluation metric for the detection 
of cognitive disorders.

The performances achieved in this study are at the 
level of the performances reported in the literature for 
the detection of CI in non-stroke patients. For instance, 
using dual-task gait data from an electronic walkway, 
Boettcher et al. [20] reported sensitivities of 82.0% and 
specificities of 67.7% on the detection of mild CI. Also 
with an electronic walkway, Ghoraani et al. [21] differ-
entiated cognitively impaired groups from the healthy 
subjects with an accuracy of 86.0% and an F1 score of 
88.0%. Using a detailed evaluation of gait provided by an 
inertial sensor-based gait analysis solution, Shahzad et al. 
[22] could achieve classification accuracies of 70.0% and 
sensitivities of 83.3% for the detection of mild CI, which 
proves the capacity of inertial sensor-based solutions.
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Performance using MoCA
Similarly to the study by Zaidi et al. [27], the threshold 
of 27 in MoCA was the one achieving the best combina-
tion of sensitivity and specificity (Table 5). Although this 
study used the same dataset, they included all 161 partic-
ipants and employed different neuropsychological crite-
ria to characterize CI. In [27] the threshold of 27 resulted 
in a maximized sensitivity of 79% and specificity of 67% 
in detecting CI post-stroke. As in our study, increasing 
the cutoff from 26 to 27 allowed an increase in sensitivity.

To increase specificity, some studies recommend low-
ering the threshold of MoCA [8, 10]. A pooled analysis 
showed that MoCA scores below 26 are able to detect 
post-stroke CI with a sensitivity of 95% and a specificity 
of 45%, but lowering the threshold to 22 results in a lower 
sensitivity of 84% and a better specificity of 78% [8]. The 
differences in sensitivity and specificity reported by the 
different studies are mostly justified by the different neu-
ropsychological criteria used to characterize CI [12].

Although disagreements in classification results 
obtained with MoCA<27 and with the best-performing 
gait condition did not differ significantly when com-
pared to the majority voting approach, the combination 
of these two modalities resulted in an overall improve-
ment in classification performance (Table 5). Compared 
to MoCA<26, the disagreements in classifications were 
significantly different, with the majority voting scheme 
achieving better sensitivity (93.1% versus 62.1%) for 
detecting CI. The sensitivity also improved compared 
to MoCA<27 (93.1% versus 75.9%), making the majority 
voting approach more suitable for screening purposes 
[8]. Although its sensitivity was lower than that of the 
DS1 + SS condition (93.1% versus 96.6%), it still remained 
very high, with a large improvement in specificity (72.2% 
versus 61.1%), which should favor its choice. The majority 
voting approach has received much attention in the lit-
erature for its simplicity and good performance on real 
data and has been applied in various fields [43]. To the 
best of our knowledge, this is the first study to propose 
the combination of MoCA with gait metrics for classify-
ing cognitive status in post-stroke patients.

Study limitations
Several factors constitute the limitations of our study. 
First, the sample size was relatively small, which may 
affect the robustness of the models and the generaliz-
ability of our findings. Second, the criteria for classify-
ing participants as impaired or cognitively normal based 
on neuropsychological assessments are not universally 
accepted and may vary depending on the cognitive 
domains evaluated, the tests used, their grouping criteria, 
the cutoffs demarcating impairment (most commonly 1 
SD, 1.5 SD, or 2 SD), and the number of tests required 
to declare a deficit in a certain domain [12, 34]. In our 

study, we employed the comprehensive criteria recom-
mended by Jak et al. [34] and the cognitive domains pro-
posed by Dilliott et al. [33], which resulted in 61.7% of 
the patients meeting the criteria for CI. This frequency 
is above the pooled prevalence rates reported in the lit-
erature for the first year after stroke [12], but it is impor-
tant to note that different criteria could lead to different 
results. Third, the participants in this study may have 
higher functioning levels than those typically seen in the 
general clinic, as those with severe functional disabilities 
were excluded from the study. Moreover, only individuals 
with MoCA>18 were included, which reduced the range 
of cognitive disorders associated with stroke that could 
be tested in this study. However, it is worth noting that 
our approach was able to detect CI in this group, which 
included more subtle symptoms that are usually harder 
to detect. Fourth, we did not evaluate the impact of the 
different study sites on the results. Although efforts were 
made to standardize assessments and ensure data quality 
across sites [24, 32, 36], differences could still be observed 
due to discrepancies in acquisition. This effect should be 
explored in future research. Finally, it is important to 
note that we did not evaluate the impact of the walking 
task on cognitive performance, although Plummer et al. 
[58] argue that the correct interpretation of the dual-
task interference requires an objective evaluation of both 
tasks. Motor-cognitive interference may be observed in 
just one of the tasks, or in both simultaneously, and, for 
this reason, the performance on both tasks should be 
taken into account [58]. Additionally, it is worth noting 
that the order of the gait tests was maintained for all par-
ticipants, which could potentially affect the results.

Future work
Further research is needed to determine the feasibility 
and effectiveness of gait assessments and machine learn-
ing models in detecting CI in post-stroke patients within 
a clinical setting. To achieve this, it would be necessary 
to include a larger and more diverse group of partici-
pants, including those with lower functioning levels and a 
wider range of cognitive abilities. Additionally, we should 
explore the detection of CI in the context of chronic CVD 
without a previous stroke [9].

Utilizing additional gait metrics as measured by iner-
tial sensors could also be a valuable area of investigation. 
Inertial sensors have gained popularity in gait assess-
ment due to their flexibility, low cost, and performance 
[59], and have the potential to extract gait metrics that 
have not yet been explored in this context [48, 49]. As 
suggested by Jung et al. [23], using sequential gait param-
eters extracted from inertial sensors could improve clas-
sification results and should, thus, be explored in the 
future. Furthermore, it is important to include an analy-
sis of the performance on the cognitive task to provide 



Page 12 of 14Guimarães et al. BMC Medical Informatics and Decision Making          (2025) 25:157 

a complete assessment of motor-cognitive interference in 
these patients [58].

Conclusion
Cognitive impairment (CI) after stroke is a common but 
often undiagnosed condition. To better manage cogni-
tive disorders resulting from cardiovascular disease, 
it is necessary to develop new techniques to improve 
the screening of CI. In this study, we examined the use 
of gait, dual tasks, and machine learning to detect CI in 
post-stroke patients. Our results showed that a machine 
learning approach combined with dual-task gait met-
rics can effectively differentiate impaired and cognitively 
normal groups, with a performance that is not inferior 
to commonly used screening tests like MoCA. We also 
found that when using gait to assess cognitive status, it is 
important to include gait features that evaluate individ-
ual strides and gait phases, as opposed to just overall gait 
metrics like speed, cadence, or number of steps, as these 
result in poorer classification results. Using a major-
ity voting approach that combines MoCA and dual-task 
gait metrics resulted in improved classification results, 
with better combinations of sensitivity and specificity for 
the detection CI. This study demonstrates the potential 
of machine learning and gait assessments as objective 
tools for cognitive screening, offering a good alternative 
or complement to MoCA in identifying CI in post-stroke 
patients. Further research is required to evaluate the 
practical and effective performance of this approach in a 
clinical setting.
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