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Abstract
Recent advances in artificial intelligence-based audio and speech processing have increasingly focused on the 
binary and multi-class classification of voice disorders. Despite progress, achieving high accuracy in multi-class 
classification remains challenging. This paper proposes a novel hybrid approach using a two-stage framework 
to enhance voice disorders classification performance, and achieve state-of-the-art accuracies in multi-class 
classification. Our hybrid approach, combines deep learning features with various powerful classifiers. In the first 
stage, high-level feature embeddings are extracted from voice data spectrograms using a pre-trained VGGish 
model. In the second stage, these embeddings are used as input to four different classifiers: Support Vector 
Machine (SVM), Logistic Regression (LR), Multi-Layer Perceptron (MLP), and an Ensemble Classifier (EC). Experiments 
are conducted on a subset of the Saarbruecken Voice Database (SVD) for male, female, and combined speakers. 
For binary classification, VGGish-SVM achieved the highest accuracy for male speakers (82.45% for healthy vs. 
disordered; 75.45% for hyperfunctional dysphonia vs. vocal fold paresis), while VGGish-EC performed best for 
female speakers (71.54% for healthy vs. disordered; 68.42% for hyperfunctional dysphonia vs. vocal fold paresis). 
In multi-class classification, VGGish-SVM outperformed other models, achieving mean accuracies of 77.81% for 
male speakers, 63.11% for female speakers, and 70.53% for combined genders. We conducted a comparative 
analysis against related works, including the Mel frequency cepstral coefficient (MFCC), MFCC-glottal features, and 
features extracted using the wav2vec and HuBERT models with SVM classifier. Results demonstrate that our hybrid 
approach consistently outperforms these models, especially in multi-class classification tasks. The results show the 
feasibility of a hybrid framework for voice disorder classification, offering a foundation for refining automated tools 
that could support clinical assessments with further validation.
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Introduction
Voice production is the process by which humans pro-
duce sound to communicate ideas, meaning, opinions, 
and other information. The human voice production 
system includes the lungs, larynx, vocal tract, and vocal 
folds. The lungs provide the air pressure that is needed 
to vibrate the vocal folds. The vocal folds are located in 
the larynx, also known as the voice box. When the vocal 
folds vibrate, they create sound waves that travel through 
the vocal tract, which is the passage of air from the lar-
ynx to the mouth and nose. The shape of the vocal tract 
affects the timbre of the voice. Voice disorders can occur 
when there is a problem with any of the components 
of the voice production system causing changes in the 
pitch, loudness, or quality of the voice. These disorders 
can reduce the clarity of a person’s oral communication 
ability. Voice disorders can vary in severity from minor 
hoarseness or alterations in vocal quality to the extreme 
outcome of complete voice loss [1].

Voice disorders can result from various factors. These 
disorders are commonly classified based on their under-
lying causes, which may include psychogenic, functional, 
or organic factors. Organic voice disorders are caused by 
structural or neurological problems that affect the vocal 
folds or other parts of the voice production system [2]. 
Functional voice disorders occur when the vocal mech-
anism is not used efficiently, even though the physical 
structure of the larynx and vocal tract is normal. Psycho-
genic voice disorders, on the other hand, stem from psy-
chological factors such as sadness, anxiety, or emotional 
responses to traumatic or stressful situations [3].

Voice disorders can have a significant impact on people 
of all ages, potentially leading to stress, embarrassment, 
frustration, withdrawal, and depression. Professions that 
require frequent and demanding use of the voice, such 
as teaching, acting, and singing, are particularly suscep-
tible to these disorders [4]. To ensure the right treatment, 
accurate classification of the voice disorders is crucial. 
A speech therapist typically evaluates the patient’s voice 
quality for this purpose. However, this approach is sub-
jective and relies on the speech therapist’s expertise. 
Another approach to assess voice disorders is to use 
artificial intelligence (AI) to process acoustic features of 
voice signals, which provides an objective assessment. 
Automatic classification of voice disorders can provide 
speech therapists with a faster and more comfortable way 
to identify voice disorders in patients.

Recent advances in AI have enabled significant prog-
ress in audio and speech processing tasks, including 
speaker identification, speech emotion recognition, 
and voice disorder detection. For instance, Xie et al. [5] 
employed attention-based long short-term memory 
(LSTM) networks to classify speech emotions. Similarly, 
Keser and Gezer [6] conducted a comparative analysis of 

speaker identification methods, combining deep learn-
ing, machine learning, and subspace classifiers with 
diverse feature extraction techniques. Authors in [7] fur-
ther demonstrate the potential of deep multiple instance 
learning for voice activity detection (VAD). These stud-
ies highlight the versatility of hybrid approaches—inte-
grating feature engineering with classifiers like support 
vector machines (SVMs), logistic regression, and neural 
networks—to address the unique challenges of audio 
classification. However, voice disorder classification 
poses distinct difficulties due to the subtle acoustic varia-
tions between disorders and the need for high diagnos-
tic precision. While existing works often focus on binary 
classification, multi-class frameworks remain underex-
plored. This gap motivates our proposed framework, 
which combines deep learning-based feature extraction 
with robust classifiers to improve both binary and multi-
class classification performance.

Related work
In recent years, researchers have become increasingly 
interested in the automatic classification of voice disor-
ders. These methods, utilizing computer algorithms to 
analyze speech signals, can revolutionize the classifica-
tion and detection of voice disorders, making it more 
objective, efficient, and accessible. Most researchers 
focus on binary classification problems, such as clas-
sifying between healthy and pathological voices or the 
detection of a voice disorder. Spectrograms and cepstral 
analysis are two commonly used features for this pur-
pose. However, in recent years, machine learning algo-
rithms have gained popularity for their ability to learn 
and recognize patterns in acoustic features associated 
with various types of voice disorders. Fang et al. [8] used 
Mel Frequency Cepstral Coefficients (MFCCs) and three 
classifiers, namely Deep Neural Network (DNN), Gauss-
ian Mixture Model (GMM) and SVM, for pathological 
voice detection. Cordeiro et al. [9] applied hierarchical 
classification for the identification of pathological voice, 
employing MFCCs and line spectral frequencies features. 
Kodrasi et al. [10] proposed a hierarchical multi-class 
automatic technique using handcrafted acoustic features 
to distinguish between speech apraxia, dysarthria and 
neurotypical speech. The approach utilizes two SVMs, 
with the first SVM distinguishing between neurotypical 
speech and impaired, while the second SVM discrimi-
nates between dysarthria and apraxia of speech.

Costa et al. [11] proposed combining the hidden Mar-
kov model (HMM) and modified MFCCs for the voice 
disorders caused by a vocal fold pathology. In [12, 13], the 
authors applied multilayer neural networks for the classi-
fication of MFCC features and demonstrated that results 
can be enhanced by considering the differentiation of the 
speaker’s gender. Ali et al. [14] introduced a method for 
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the classification and detection of voice disorders, uti-
lizing a Gaussian mixture model (GMM) classifier with 
running speech voice data. Benba et al. [15] investigated 
the detection of dysphonia using a Naive Bayes (NB) 
algorithm. They extracted acoustic features using MFCC. 
Authors in [16] used MFCC features to differentiate 
between Parkinson’s disease (PD) and healthy voices. 
They extracted MFCC features from three different vowel 
sounds: /a/, /o/, and /u/. Authors in [17, 18] also explored 
binary classification of voice disorders in their research. 
In [19], the authors employ wavelet scattering features 
to capture both time-frequency information from voice 
signals, which are then used for classifying neurological 
voice disorders.

In addition to binary classification, the majority of 
research studies use sustained vowel /a/ recordings from 
clinical settings for their investigations [20]. In [21], the 
introduction of continuous speech and vowel /a/ analysis 
for voice disorder identification is discussed. The authors 
conducted a comparison of glottal features extracted 
from the sustained vowel sound /a/ and voiced segments 
within continuous speech. Fujimura et al. [22] used 
an end-to-end 1D-CNN model to classify voice disor-
ders using voice samples of the sustained vowel /a/. The 
research demonstrated that the 1D-CNN models were 
capable of consistently evaluating voice disorders, align-
ing with human assessments.

In recent years, deep learning has achieved impressive 
results in a variety of areas, including natural language 
processing, computer vision and audio analysis. Deep 
learning’s ability to handle complex and high-dimen-
sional acoustic features makes it well-suited for address-
ing the challenges of voice disorders classification. This 
has encouraged many researchers to explore the potential 
of deep learning for voice disorder classification. Wu et 
al. [23] developed a novel system using spectrograms of 
disordered and normal speech recordings as input. They 
employed Convolutional Deep Belief Networks for pre-
training CNN weights as a generative model to under-
stand the input data’s structure statistically. Subsequently, 
they fine-tuned the CNN using supervised back-propa-
gation. In [24], authors propose the use of a CNN model 
along with short-time Fourier transform (STFT) features 
for the binary classification of voice disorders. Moham-
med et al. [25] addressed the problem of voice disorder 
detection by using CNN model. They specifically focused 
on the automatic detection of depression from speech. 
Chaiani et al. [26], the authors analyzed an algorithm 
that extracts a chromagram acoustic feature from voice 
samples and uses it as input to a CNN-based classifica-
tion system. The research in [27] proposed a two-stage 
framework for the classification of different voice disor-
ders. The first stage uses speech enhancement to improve 
the voice signal quality by removing noise. The second 

stage employs a CNN with long short-term memory 
(CNN-LSTM) to learn complex features from spectro-
grams of the enhanced voice signals. Harar et al. [28] 
proposed a novel approach for voice pathology detection 
that uses convolutional and LSTM layers to learn directly 
from raw audio signals. Furthermore, recent studies have 
highlighted the beneficial impact of denoising for audio 
signals [29], advanced vocal feature extraction [30]. These 
approaches collectively suggest promising avenues for 
enhancing the automatic classification of voice disorders.

In voice disorders classification, limited data avail-
ability is a common challenge. To address this, some 
researchers have used pre-trained models [31–34]. In 
[35], the authors proposed a transfer learning framework 
that uses a pre-trained OpenL3-SVM model and linear 
local tangent space alignment (LLTSA) for dimensional-
ity reduction. They first extracted the Mel spectrum of 
the voice signals and then fed it into the OpenL3 model 
to obtain high-level feature embeddings. Violeta et al. 
[36] investigated the performance of self-supervised 
pre-trained Wav2Vec 2.0 and WavLM models for auto-
matic pathological speech recognition using different 
setups. Zhu et al. [37, 38] introduced pre-trained BERT 
and WavBERT models for the detection of dementia 
using human speech. Karaman et al. [39] employed the 
SqueezeNet1_1, ResNet101, and DenseNet161 networks 
for the detection of Parkinson’s disease based on speech 
signals. The findings showed that the proposed networks, 
which utilize pre-trained models with a fine-tuning 
approach, achieved promising results. In [40], the authors 
used a pre-trained ResNet50 model for dysarthric speech 
detection.

Research gap and contribution
Most studies on the automatic classification of voice dis-
orders have focused on the binary classification, typically 
distinguishing between pathological and healthy voices. 
Some studies have taken a more specialized approach, 
aiming to identify particular pathological voices among 
all other pathological and healthy voices. A few stud-
ies have investigated multi-class classification of voice 
disorders, but the accuracy of these approaches is low. 
Multi-class classification of voice disorders is a challeng-
ing problem due to the limited training data and subtle 
differences between different types of disordered voices. 
In this study, we address both binary and multi-class clas-
sification of voice disorders. For binary classification, 
we distinguish between healthy and disordered voices, 
as well as between two different types of pathologi-
cal voices. For multi-class classification, we have three 
classes: healthy, vocal fold paresis and hyperfunctional 
dysphonia.

Gender-specific classification of voice disorders has 
not been widely investigated. We present classification 



Page 4 of 14Rahman and Direkoglu BMC Medical Informatics and Decision Making          (2025) 25:177 

results separately for male and female speakers, as well as 
combined results, for both binary and multi-class tasks. 
This enables us to analyze and compare gender-based dif-
ferences in the classification of voice disorders.

Feature extraction is a crucial step in machine learn-
ing tasks, and it holds particular significance in the clas-
sification of voice disorders due to the small dataset size. 
We utilize the pre-trained VGGish model [41] to extract 
128-dimensional high-level embedding features using 
logarithmic mel spectrogram of voice data. As the name 
indicates, the VGGish network takes inspiration from a 
well-known VGG network and is adapted for audio clas-
sification. This model was trained on a large Audio set, 
which was a preliminary version of the YouTube-8M 
dataset. These embeddings are then utilized as input for 
machine learning classifiers.

Previous studies have employed transformer-based 
models like wav2vec and HuBERT for extracting audio 
embeddings. While these models perform well in gen-
eral speech tasks, we found that VGGish, a CNN-based 
model, delivers better results for the classification of 
voice disorders. Consequently, our approach outper-
forms transformer-based models in this domain.

Our dataset is imbalanced, which mirrors the distribu-
tion often seen in real-world applications, where certain 
voice disorders are less common. This imbalance pres-
ents challenges in accurately classifying minority classes. 
To overcome this issue, we employed ensemble classifiers 
that combine the strengths of multiple models, improv-
ing performance on minority classes and enhancing over-
all classification accuracy.

We tested three machine learning classifiers: Logis-
tic Regression (LR), Multi-Layer Perceptron (MLP), and 
Support Vector Machine (SVM). We also employed an 
ensemble classifier (EC) using SVM, LR, and MLP with 
soft voting to combine the predictions of the three clas-
sifiers. This allowed us to leverage the collective insights 
of these diverse classifiers and improve the overall clas-
sification performance.

This study demonstrates the effectiveness of utiliz-
ing embeddings from a pre-trained VGGish model and 
ensemble classifiers for both binary and multi-class clas-
sification of voice disorders. Additionally, we examine 
the impact of gender on the classification task. Our find-
ings are compared to popular baseline methods, provid-
ing a comprehensive evaluation of our approach. The 
results show that our method outperforms the baseline 
approaches on both binary and multi-class classifica-
tion tasks, demonstrating the superiority of the proposed 
method.

Paper outline
The rest of the paper is structured as follows. Section 
“Proposed method” presents an in-depth explanation of 
the proposed method. Section “Dataset and experimen-
tal setup” describes the experimental setup and the voice 
dataset used in this study. Section “Experiments and 
results” provides a comprehensive overview of the exper-
iments conducted for both binary and multi-class clas-
sification tasks. We present the results and performance 
metrics achieved by our approach. Section “Discussion” 
presents the implications of our findings. Section “Con-
clusion” summarizes the key points and highlights the 
main contributions made by our study.

Proposed method
In this paper, we propose a novel hybrid two-stage frame-
work for voice disorders classification. In the first stage, 
voice data is converted into logarithmic mel spectro-
grams and high-level feature embeddings are extracted 
from these spectrograms using the pre-trained VGGish 
model. In the second stage, we use classifiers, including 
an ensemble classifier, to classify the feature embeddings. 
Figure 1 provides an illustration of the proposed classifi-
cation framework.

Fig. 1 The proposed voice disorders classification system
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Preprocessing and feature extraction
Before extracting features, we apply several preprocess-
ing steps. In the original dataset, as explained in Sect. 
3, voice signals were recorded at 50  kHz sampling fre-
quency. To align with our processing requirements, 
we resampled the audio to 16  kHz. The length of each 
audio recording in the original database is different. We 
trimmed the audio signals to 1 s. Audio signals that were 
less than 1 s were padded with zeros to ensure that all 
audio data had the same length.

The VGGish model takes the logarithmic mel spectro-
gram of an audio signal for feature extraction. To com-
pute the mel spectrogram for each audio, we apply the 
Short-Time Fourier Transform (STFT) with a Hamming 
window lasting 25 milliseconds (ms) and a 10  ms shift. 
This resultant spectrogram is subsequently integrated 
into 64 frequency bins spaced along the Mel scale, and 
the magnitude of each bin is then transformed logarith-
mically. The configuration of the mel spectrogram draws 
inspiration from psychoacoustic analysis, which strives to 
replicate characteristics of the human auditory system. 
This procedure involves the application of a Mel filter 
bank denoted as Hm(k) to filter the spectral line energy of 
the audio. The purpose of these filters is outlined by the 
following equations.

 

Hm(k) =





0 if k < f(m − 1)
k−f(m−1)

f(m)−f(m−1) if f(m − 1) ≤ k ≤ f(m)
f(m+1)−k

f(m+1)−f(m) if f(m) < k ≤ f(m + 1)
0 if k > f(m + 1)

 (1)

Here, 0 ≤ m ≤ M, and M represents the count of filters. 
The central frequency f(m) of the filters can be written as:

 
f(m) =

(
N

fs

)
F −1

mel

(
Fmel(fl) + m

Fmel(fh) − Fmel(fl)
M + 1

)
 (2)

Here, fl denotes the lowest frequency within the filter’s 
frequency domain. fh represents the highest frequency. 
N corresponds to the length of the Fourier transform. fs 
stands for the sampling frequency. Fmel signifies the Mel 
frequency. The transformation formula linking Fmel and 
the regular frequency f is given by:

 
Fmel = 2595 log

(
1 + f

700

)
 (3)

The log mel spectrogram tensor (96 × 64) is the input to 
VGGish. Here, 96 is the number of frames within each 
time scale, and 64 is the number of frequency bands.

In Fig.  2, the VGGish [41] model’s structure is illus-
trated. Batch normalization was implemented follow-
ing each convolutional layer. The chosen loss function 
was cross-entropy, and the model employed the Adam 
optimizer. Dropout, weight decay, and other usual regu-
larization methods were not utilized. This architecture 
was trained on a large Audio set which was a prelimi-
nary version of the YouTube-8 M dataset. We extracted 
128-dimensional high-level feature embeddings using a 
pre-trained VGGish model. These embeddings are then 
utilized as input for machine learning classifiers.

Classifiers
We evaluated the performance of three classifiers: SVM, 
LR, and MLP. The SVM classifies audio signals by map-
ping high-dimensional VGGish features into a new space 
using a kernel, allowing it to create a nonlinear decision 
boundary. LR assigns weight coefficients to features and 
makes predictions based on probability scores. The MLP 
model learns hierarchical representations through its 
hidden layers, capturing complex patterns in the VGGish 
embeddings.

In addition, we utilized an ensemble classifier (EC) that 
incorporated SVM, LR, and MLP. Figure  3 shows the 
EC model. Instead of relying on a single model, the EC 
combines the predictions of multiple models to improve 
accuracy and reduce the risk of overfitting. Soft voting 
was employed to combine the predictions of these three 
classifiers. Soft voting is an ensemble strategy that com-
bines the predictions of multiple classifiers by averaging Fig. 2 VGGish model architecture
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their predicted probability scores for each class. In soft 
voting, each classifier outputs a probability distribution 
over the classes. For a given input sample, let pi(c) be the 
probability that classifier i assigns to class c. With K clas-
sifiers, the ensemble probability for class c is computed 
as:

 
P (c|x) = 1

K

K∑
i=1

pi(c) (4)

Then, the final predicted class is the one with the highest 
averaged probability.

 
ŷ = arg max

c
P (c|x) = arg max

c

(
1
K

K∑
i=1

pi(c)

)
 (5)

While the EC demonstrated superior performance for 
female speakers in the binary classification task (see Sect. 
4), SVM emerged as the top-performing individual model 
for multiclass classification across genders and for male 
speakers in binary classification. This advantage can be 
attributed to SVM’s ability to capture complex, nonlinear 
relationships within high-dimensional VGGish features 
while maintaining robust generalization through rigorous 
regularization.

In our experiments, we employed SVM with a radial 
basis function (RBF) kernel. The SVM was configured 
with a regularization parameter of ‘1’, ‘scale’ kernel coeffi-
cient and utilized the ‘ovr’ (one-vs-rest) decision function 
shape. A logistic regression classifier with a maximum 
iteration count of 300, ‘newton-cg’ solver, L2 penalty and 
‘ovr’ multi-class strategy was utilized to ensure conver-
gence and prevent overfitting of the training data. Fur-
thermore, we incorporated an MLP classifier with two 
hidden layers, stochastic gradient descent solver, a learn-
ing rate of 0.001 and ReLU activation function. To opti-
mize the classifier’s performance, we employed the grid 
search technique. We tested all classifiers for male and 
female speakers separately, as well as combined for both 
binary and multi-class tasks.

Dataset and experimental setup
This section provides a comprehensive description of 
the voice dataset used in the study. We also describe the 
training and testing process of classifiers.

Dataset
We selected a subset of voice data from the publicly avail-
able Saarbruecken Voice Database (SVD) [42, 43] for this 
study. The SVD database was created by researchers at 
the Institut für Phonetik at Saarland University and the 
Phoniatry Section of the Caritas Clinic St. Theresia in 
Saarbrücken. The database contains audio recordings of 
71 different voice disorders. Speakers engage in various 
speaking tasks, including the pronunciation of vowels ‘a’, 
‘i’, and ‘u’ at normal, high, low, and rising-falling pitches 
as well as saying the sentence “Guten Morgen, wie geht es 
Ihnen?” (“Good morning, how are you?”). This includes 
individuals who were recorded before and after recovery 
from a voice disorder. Every recording in the database 
was captured at a sampling frequency of 50 kHz and 16 
bits resolution.

We extracted a subset from the SVD database contain-
ing three classes: healthy, hyperfunctional dysphonia, 
and vocal fold paresis. The healthy class includes 227 
recordings of males and 360 recordings of females. The 
hyperfunctional dysphonia voice disorder class has 32 
recordings of males and 114 recordings of females. The 
vocal fold paresis voice disorder class has 25 recordings 
of males and 60 recordings of females. We included the 
recordings from individuals whose ages ranged from 19 
to 60  years at the time of recording. Table  1 provides 
details of the subset used in this work. We chose hyper-
functional dysphonia and vocal fold paresis because they 

Table 1 Details of voice recordings for each class
Class Male 

recordings
Female 
recordings

Total 
recordings

Age 
range

Healthy 227 360 587 19–60
Hyper-
functional 
dysphonia

32 114 146 19–60

Vocal fold 
paresis

25 60 85 19–60

Fig. 3 Ensemble classifier
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are commonly found voice disorders [44]. By choosing 
these specific disorders and matching the number of 
recordings used in previous study [45], we were able to 
directly compare our experimental results with existing 
research. This approach allowed for a more robust and 
fair evaluation of our findings.

Training and testing
To train the classifiers, we used 5-fold cross-validation. 
In each iteration, we held out one fold for evaluation and 
used the remaining folds for training. All samples from 
each speaker were consistently placed within a single 
fold to prevent the model from learning to classify voice 
samples based on speaker identity. We computed perfor-
mance metrics based on the predictions generated for 
the evaluation fold. The evaluation metrics include mean 
accuracy and F1 score, as well as mean precision, recall, 
and F1 score for each class.

The dataset used in this study is imbalanced, which can 
be a problem for machine learning models, as they can 
learn to favor the majority classes and ignore the minor-
ity classes. To address this issue, we balanced the training 
set by oversampling the minority classes. This involved 
duplicating samples from the minority classes to ensure 
that each class had an equal number of samples in the 
training set, which helping to prevent the model from 
overfitting to the majority classes. We also applied Stan-
dardScaler to all feature embeddings to ensure that all 
features were on the same scale, thereby to improve the 
performance of the machine learning models.

Experiments and results
This section presents a comprehensive overview of all the 
experiments conducted to compare the performance of 
the proposed voice disorders classification framework to 
other state-of-the-art methods. The first two experiments 
address binary classification problems: healthy vs. disor-
dered and vocal fold paresis vs. hyperfunctional dyspho-
nia. The third experiment is a multi-class classification 
problem.

Healthy vs. disordered
As shown in Table 1, we have three classes: healthy, vocal 
fold paresis and hyperfunctional dysphonia. For this 
experiment, hyperfunctional dysphonia and vocal fold 
paresis are combined into a single class. Separate experi-
ments have been conducted for male speakers, female 
speakers, and both genders combined. Table  2 shows 
the mean accuracy and F1 score, as well as the precision, 
recall, and F1 score of each class for male and female 
speakers. For male speakers, VGGish-SVM achieved 
the highest accuracy, closely followed by VGGish-EC. 
VGGish-SVM achieved an accuracy of 82.45%, while 
VGGish-EC reached 80.25%. Our method outperforms 
the approach presented in [45], as shown in Table  2, 
which uses SVM as a classifier and features extracted 
with wav2vec and HuBERT models, as well as SVM with 
MFCC and MFCC-glottal features.

For female speakers, VGGish-EC achieved the highest 
accuracy with 71.54%, followed closely by VGGish-SVM, 
VGGish-MLP and VGGish-LR with accuracies of 70.03%, 
68.36%, and 66.31% respectively. It is worth noting that 
this is the only case where our model demonstrates a 
slightly lower accuracy compared to the existing method 

Table 2 Performance metrics for the binary classification task of healthy vs. disordered for male and female speakers
Gender Model Accuracy F1 Score PR 0 RE 0 F1 0 PR 1 RE 1 F1 1
Male VGGish-SVM 82.45 ± 2.77 82.99 0.91 0.87 0.89 0.54 0.64 0.58

VGGish-LR 75.35 ± 4.30 75.45 0.85 0.84 0.84 0.41 0.41 0.40
VGGish-MLP 77.09 ± 5.75 76.96 0.86 0.86 0.86 0.43 0.42 0.42
VGGish-EC 80.25 ± 5.70 79.66 0.86 0.89 0.88 0.51 0.44 0.47
wav2vec-SVM [45] 75.65 ± 5.81 - 0.91 0.82 0.87 0.50 0.69 0.58
MFCC-glottal-SVM [45] 74.48 ± 5.85 - 0.90 0.84 0.87 0.51 0.64 0.57
MFCC-SVM [45] 72.02 ± 7.75 - 0.89 0.88 0.88 0.54 0.56 0.55
HuBERT-SVM [45] 72.14 ± 7.93 - 0.89 0.85 0.87 0.50 0.59 0.54

Female VGGish-SVM 70.03 ± 3.07 70.05 0.79 0.77 0.77 0.53 0.57 0.54
VGGish-LR 66.31 ± 4.86 66.68 0.77 0.72 0.74 0.48 0.55 0.51
VGGish-MLP 68.36 ± 3.76 68.11 0.76 0.78 0.77 0.51 0.49 0.50
VGGish-EC 71.54 ± 4.13 71.83 0.80 0.76 0.78 0.56 0.62 0.58
wav2vec-SVM [45] 73.80 ± 5.03 - 0.84 0.77 0.80 0.60 0.71 0.65
MFCC-glottal-SVM [45] 66.13 ± 3.11 - 0.80 0.66 0.72 0.49 0.66 0.56
MFCC-SVM [45] 68.15 ± 4.59 - 0.81 0.68 0.74 0.51 0.68 0.58
HuBERT-SVM [45] 74.50 ± 4.38 - 0.85 0.76 0.81 0.60 0.72 0.65

In the metric names, ‘0’ corresponds to the healthy class, and ‘1’ represents the disordered. PR, RE and F1 represent Precision, Recall and F1 score respectively. The 
mean values over folds are presented for all matrices. The highest accuracy is indicated in bold. Additionally, standard deviations for accuracy are provided



Page 8 of 14Rahman and Direkoglu BMC Medical Informatics and Decision Making          (2025) 25:177 

[45], which attains its highest accuracy of 74.50% using 
HuBERT-SVM.

Experiments were also conducted with male and female 
speakers combined. The mean accuracy, F1 score, pre-
cision and recall are shown in Table 3. The results dem-
onstrate that VGGish-EC achieved the highest overall 
accuracy and F1 score, with values of 73.84% and 73.92%, 
respectively. It was closely followed by VGGish-MLP, 
VGGish-SVM, and then VGGish-LR in terms of accu-
racy. This study’s results on combined male and female 
speakers can not be directly compared to those of any 
other study because of the differences in the datasets and 
disorders studied. Figure 4 presents the normalized con-
fusion matrices for each classifier and gender.

Hyperfunctional dysphonia vs. vocal fold paresis
To classify hyperfunctional dysphonia and vocal fold 
paresis, we used the same classification setup for male, 
female, and combined gender speakers. The mean 

accuracy, F1 score, precision, and recall for male and 
female speakers are presented in Table 4. VGGish-SVM 
achieved the highest accuracy (75.45%) for male speak-
ers, while VGGish-EC achieved 71.82%. For female 
speakers, VGGish-EC attained the highest accuracy at 
68.42%, closely followed by VGGish-SVM, VGGish-MLP, 
and VGGish-LR, with respective accuracies of 68.37%, 
64.97%, and 62.11%. Our method outperforms the 
approach presented in [45]. For male speakers, their high-
est accuracy was 71.95%, while for female speakers, their 
best accuracy was 63.06%, achieved with wav2vec-SVM.

Table  5 presents the mean accuracy, F1 score, preci-
sion, and recall for male and female speakers combined. 
VGGish-SVM achieved the highest overall accuracy of 
68.80% and F1 score of 67.64%, followed by VGGish-EC 
with an accuracy of 67.10% and F1 score of 66.39%. These 
results cannot be directly compared to previous studies 
because of the differences in the datasets and disorders 

Table 3 Performance metrics for the binary classification task of healthy vs. disordered for male and female speakers combined
Gender Model Accuracy F1 Score PR 0 RE 0 F1 0 PR 1 RE 1 F1 1
Male & Female VGGish-SVM 73.35 ± 3.32 72.95 0.81 0.83 0.82 0.53 0.49 0.51

VGGish-LR 70.05 ± 3.08 70.80 0.82 0.75 0.78 0.48 0.58 0.52
VGGish-MLP 73.35 ± 3.93 73.57 0.82 0.80 0.81 0.53 0.56 0.54
VGGish-EC 73.84 ± 2.83 73.92 0.82 0.81 0.82 0.54 0.55 0.54

In the metric names, ‘0’ corresponds to the healthy class, and ‘1’ represents the disordered. PR, RE and F1 represent Precision, Recall and F1 score respectively. The 
mean values over folds are presented for all matrices. The highest accuracy is indicated in bold. Additionally, standard deviations for accuracy are provided

Fig. 4 Normalized confusion matrix for healthy vs. disordered. The predicted classes are represented on the horizontal axis, while the true classes are 
represented on the vertical axis. Class labels: 0 for healthy and 1 for disordered
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studied. Figure  5 illustrates the normalized confusion 
matrices for all classifiers and genders.

Multi-class classification
The mean accuracy, F1 score, precision, recall, and F1 
score of each class for male and female speakers are 
shown in Table  6 and for both genders combined in 
Table  7. For male speakers, the highest classification 
accuracy achieved was 77.81%, for female speakers, it 
was 63.11%, and when both genders were combined, 
the accuracy reached 70.53%. In the case of multi-class 
classification, VGGish-SVM outperformed all other 
classifiers, including those in [41], in terms of accuracy. 
While the accuracy of VGGish-EC is lower than that of 
VGGish-SVM, it demonstrates better performance for 
the minority classes, which is important when dealing 
with imbalanced datasets, as it ensures that the model 
effectively recognizes and classifies the minority classes. 
The normalized confusion matrices for all classifiers are 
illustrates in Fig.  6. It is clear that the ensemble classi-
fier enhances the performance of the minority classes for 
both male and female speakers.

Discussion
The proposed voice disorders classification system dem-
onstrates superior performance compared to state-of-
the-art methods. In this study, we employed machine 
learning classifiers, particularly ensemble classifiers, to 
evaluate high-level feature embeddings extracted using a 
pre-trained VGGish model. To evaluate the effectiveness 
of our approach, the results were compared with those 
reported in [45], where the same dataset was used for 
evaluation. Our study shows that extracting features with 
a pre-trained model outperforms MFCC feature-based 
systems, which are the most commonly used features in 
the detection and classification of voice disorders [46–
48]. This statement is also confirmed by [45], where the 
authors extract features with the wav2vec and HuBERT 
models and compare the results with MFCC features.

Our study also investigated the performance of the pro-
posed system on male and female speakers separately for 
both binary and multi-class classification tasks. Interest-
ingly, our findings reveal a consistent trend where the 
accuracy of male speakers outperforms that of female 
speakers. The best accuracy for healthy vs. disordered 

Table 4 Performance metrics for the binary classification task of hyperfunctional dysphonia and vocal fold paresis for male and female 
speakers
Gender Model Accuracy F1 Score PR 0 RE 0 F1 0 PR 1 RE 1 F1 1
Male VGGish-SVM 75.45 ± 6.24 74.64 0.75 0.85 0.79 0.81 0.64 0.69

VGGish-LR 66.52 Ł} 7.24 64.92 0.68 0.75 0.69 0.70 0.56 0.59
VGGish-MLP 71.66 ± 11.02 70.97 0.72 0.81 0.75 0.74 0.60 0.65
VGGish-EC 71.82 ± 7.12 70.89 0.73 0.81 0.75 0.75 0.60 0.65
wav2vec-SVM [45] 71.95 ± 12.62 – 0.74 0.75 0.74 0.67 0.66 0.66
MFCC-glottal-SVM [45] 69.05 ± 9.67 – 0.73 0.74 0.73 0.66 0.64 0.65
MFCC-SVM [45] 61.60 ± 8.86 – 0.65 0.76 0.70 0.60 0.47 0.53
HuBERT-SVM [45] 71.88 ± 10.56 – 0.73 0.80 0.76 0.70 0.62 0.66

Female VGGish-SVM 68.37 ± 6.61 67.66 0.74 0.80 0.77 0.56 0.47 0.51
VGGish-LR 62.11 ± 7.77 61.83 0.70 0.73 0.71 0.46 0.42 0.44
VGGish-MLP 64.97 ± 3.51 64.96 0.74 0.72 0.73 0.50 0.52 0.50
VGGish-EC 68.42 ± 6.39 68.08 0.75 0.77 0.76 0.54 0.52 0.53
wav2vec-SVM [45] 63.06 ± 6.77 – 0.74 0.83 0.78 0.57 0.44 0.50
MFCC-glottal-SVM [45] 59.96 ± 7.91 – 0.72 0.81 0.76 0.52 0.40 0.45
MFCC-SVM [45] 57.09 ± 7.48 – 0.71 0.74 0.72 0.45 0.42 0.43
HuBERT-SVM [45] 61.31 ± 5.94 – 0.73 0.78 0.75 0.52 0.45 0.48

In the metric names, ‘0’ represents hyperfunctional dysphonia class and ‘1’ represents vocal fold paresis. PR, RE and F1 represent Precision, Recall and F1 score 
respectively. The mean values over folds are presented for all matrices. The highest accuracy is indicated in bold. Additionally, standard deviations for accuracy are 
provided

Table 5 Performance metrics for the binary classification task of hyperfunctional dysphonia and vocal fold paresis for male and female 
speakers combined
Gender Model Accuracy F1 Score PR 0 RE 0 F1 0 PR 1 RE 1 F1 1
Male & Female VGGish-SVM 68.80 ± 6.79 67.64 0.72 0.82 0.77 0.60 0.46 0.52

VGGish-LR 63.20 ± 2.40 63.03 0.72 0.70 0.70 0.50 0.52 0.50
VGGish-MLP 65.37 ± 3.08 65.27 0.73 0.73 0.72 0.53 0.53 0.53
VGGish-EC 67.10 ± 3.93 66.39 0.72 0.78 0.75 0.57 0.48 0.52

In the metric names, ‘0’ represents hyperfunctional dysphonia class and ‘1’ represents vocal fold paresis. PR, RE and F1 represent Precision, Recall and F1 score 
respectively. The mean values over folds are presented for all matrices. The highest accuracy is indicated in bold. Additionally, standard deviations for accuracy are 
provided
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classification was 82.45% for male speakers and 71.54% 
for female speakers. Similarly, the highest accuracy for 
hyperfunctional dysphonia vs. vocal fold paresis clas-
sification was 75.45% for male speakers and 68.42% for 
female speakers. In the multi-class classification sce-
nario, the accuracy differences between male and female 
speakers continued similar trends. For male speakers, our 
model achieved an impressive accuracy of 77.81%, how-
ever, for female speakers, the highest accuracy observed 
was 63.11%. It is important to highlight that the binary 
classification of healthy vs. disordered voices for female 
speakers stands as the only case where our model exhib-
ited a slightly lower accuracy compared to the results 
reported in [45].

VGGish-SVM achieved the highest accuracy for male 
speakers and VGGish-EC for female speakers in both 
binary classification tasks (i.e., healthy vs. disordered 
and hyperfunctional dysphonia vs. vocal fold paresis). In 
multi-class classification, VGGish-SVM performed better 
for both genders. However, while VGGish-EC achieved a 
lower overall accuracy than VGGish-SVM in multi-class 
classification, it outperformed VGGish-SVM on minority 
classes. For example, for male speakers, the precision and 
recall for hyperfunctional dysphonia with VGGish-SVM 
were 0.20% and 0.27%, respectively, while with VGGish-
EC, the precision and recall were 0.23 and 0.44, respec-
tively. Similarly, VGGish-EC performed better for vocal 

fold paresis. The same trend was observed for female 
speakers. In multi-class classification, for male speakers, 
the lowest F1 score is recorded for hyperfunctional dys-
phonia, while for female speakers, the lowest F1 score is 
observed for vocal fold paresis. These classes presented 
particular challenges in terms of accuracy, probably 
because of the smaller number of samples available for 
these classes. This underlines the importance of address-
ing data imbalance in future research to further enhance 
classification performance.

As part of our future work, we plan to incorporate 
explainability techniques such as LIME, SHAP, and Grad-
CAM. These methods will enable us to better understand 
the contribution of different features in the classification 
process and provide visual insights into the regions of the 
spectrograms that are most influential in decision-mak-
ing. It will help build trust in the model’s predictions and 
facilitate its integration into diagnostic workflows.

This study demonstrates the efficacy of hybrid frame-
works for voice disorder classification using controlled 
datasets. However, it does not evaluate real-time perfor-
mance, which is a critical factor for clinical deployment. 
Furthermore, the computational demands of the VGGish 
feature extractor and classifier pipeline may introduce 
latency in unoptimized implementations. Future work 
will focus on optimizing the framework for low-latency 
inference (e.g., via model lightweighting, edge-device 

Fig. 5 Normalized confusion matrix for hyperfunctional dysphonia vs. vocal fold paresis. The predicted classes are represented on the horizontal axis, 
while the true classes are represented on the vertical axis. Class labels: 0 for hyperfunctional dysphonia and 1 for vocal fold paresis
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deployment) and validating its performance on stream-
ing audio data acquired in clinical or telehealth settings.

Conclusion
In this paper, we proposed a two-stage hybrid framework 
for voice disorders classification. In the first stage, we uti-
lized a pre-trained VGGish model to extract high-level 
feature embeddings from the log-mel spectrograms of 
voice data. In the second stage, we evaluated four clas-
sifiers: support vector machine (SVM), logistic regres-
sion (LR), multilayer perceptron (MLP), and ensemble 
classifier.

The results of our study demonstrate the potential of 
using a pre-trained VGGish model to extract features 
for voice disorders classification. We achieved state-of-
the-art results on the SVD dataset, outperforming the 
baseline systems that used MFCC features, MFCC-glottal 
features, as well as features extracted with pre-trained 
wav2vec and HuBERT models. Compared to the best 
baseline accuracy, we improved by 6.8% for male speak-
ers in healthy vs. disordered task, 3.5% and 5.36% for 
male and female speakers respectively in hyperfunctional 
dysphonia vs. vocal fold paresis tasks. In the context of 
multi-class classification, our method significantly out-
performed the baseline, achieving a 15.04% improvement 
for male speakers and a 7.75% improvement for female 
speakers.

While our model excelled in most scenarios, there was 
a slight exception. In the healthy vs. disordered task for 
female speakers, our model demonstrated an accuracy 
that was 2.96% lower when compared to the baseline. 
The accuracies for the combined dataset of male and 
female speakers are also promising in all three scenarios. 
It is important to note that these combined results can-
not be directly compared to existing studies because of 
variations in the datasets and the types of voice disorders 
investigated.

In binary classification, VGGish-SVM exhibited the 
highest accuracy for male speakers, while VGGish-EC 
performed best for female speakers. However, in multi-
class classification, VGGish-SVM outperformed other 
models for both genders. Notably, VGGish-EC dem-
onstrated its strength in handling minority classes, 
an important aspect of medical applications. The 
results confirm that VGGish-EC provides more bal-
anced accuracy by giving importance to the minority 
classes. Although we used oversampling to balance the 
classes, the accuracy of minority classes remains com-
paratively lower. Future research will focus on improv-
ing the robustness and generalizability of the proposed 
two-stage hybrid framework for voice disorders classifi-
cation. Additionally, expanding the dataset to include a 
more diverse and a broader range of voice disorders will 

Fig. 6 Normalized confusion matrix for multi-class classification. The predicted classes are represented on the horizontal axis, while the true classes are 
represented on the vertical axis. Class labels: 0 for healthy, 1 for hyperfunctional dysphonia, and 2 for vocal fold paresis
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be crucial for enhancing the model’s applicability in real-
world scenarios.
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