
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t t p  : / /  c r e a  t i  v e c  o m m  o n s .  o r  g / l i c e n s e s / b y / 4 . 0 /.

Lin et al. BMC Medical Informatics and Decision Making          (2025) 25:148 
https://doi.org/10.1186/s12911-025-02977-x

BMC Medical Informatics 
and Decision Making

†Xiaomeng Lin and Chao Liu contributed equally to this work as 
co-first authors.
†Yao Wang, Xudong Cai and Xin Peng contributed equally to this 
work as co-corresponding authors.

*Correspondence:
Xin Peng
pengx@nit.zju.edu.cn

Full list of author information is available at the end of the article

Abstract
Background Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM), with patients typically 
remaining asymptomatic until reaching an advanced stage. We aimed to develop and validate a predictive model for 
DKD in patients with an initial diagnosis of type 2 diabetes mellitus (T2DM) using real-world data.

Methods We retrospectively examined data from 3,291 patients (1740 men, 1551 women) newly diagnosed with 
T2DM at Ningbo Municipal Hospital of Traditional Chinese Medicine (2011–2023). The dataset was randomly divided 
into training and validation cohorts. Forty-six readily available medical characteristics at initial diagnosis of T2DM from 
the electronic medical records were used to develop prediction models based on linear, non-linear, and SuperLearner 
approaches. Model performance was evaluated using the area under the curve (AUC). SHapley Additive exPlanation 
(SHAP) was used to interpret the best-performing models.

Results Among 3291 participants, 563 (17.1%) were diagnosed with DKD during median follow-up of 2.53 years. 
The SuperLearner model exhibited the highest AUC (0.7138, 95% confidence interval: [0.673, 0.7546]) for the holdout 
internal validation set in predicting any DKD stage. Top-ranked features were WBC_Cnt*, Neut_Cnt, Hct, and Hb. High 
WBC_Cnt, low Neut_Cnt, high Hct, and low Hb levels were associated with an increased risk of DKD.

Conclusions We developed and validated a DKD risk prediction model for patients with newly diagnosed T2DM. 
Using routinely available clinical measurements, the SuperLearner model could predict DKD during hospital visits. 
Prediction accuracy and SHAP-based model interpretability may help improve early detection, targeted interventions, 
and prognosis of patients with DM.
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Background
Diabetic kidney disease (DKD) is a common micro-
vascular complication of diabetes mellitus (DM) and is 
considered the leading cause of end-stage renal disease 
(ESRD) [1]. DKD is typically asymptomatic until reaching 
an advanced stage [2]. Although its progression can be 
slowed down through medication at an early stage, life-
style changes, and careful blood sugar level management 
[3], its advanced stages are often irreversible and may 
result in ESRD, necessitating dialysis or kidney transplan-
tation [4].

With approximately 30% of patients with DM develop-
ing DKD locally and globally [5–7], epidemiological data 
emphasise its significant prevalence. Furthermore, DKD 
has become the leading cause of dialysis [8], suggesting 
its severity. Moreover, a substantial portion of patients 
with abnormal clinical or laboratory measurements 
remain undiagnosed with DKD [9]. These findings sug-
gest the need for a DKD early prediction model that can 
be used for risk communication.

Despite an increasing body of literature on DKD pre-
diction models [10–12], including those specific to 
Asians or Chinese populations [13, 14], several factors 
limit the validity and clinical application of these models.

First, from the study design perspective, the selec-
tion of the study population in most previous studies 
was either unmatched with real-world hospital-visited 
patients with T2DM or introduced bias due to inappro-
priate requirements for data completeness. For instance, 
patients without baseline estimated glomerular filtration 
rate (eGFR) were excluded in certain studies [14–18], 
potentially introducing selection bias, as individuals who 
undergo creatinine testing due to physician suspicion of 
kidney disease are more likely to have pre-existing renal 
conditions [19, 20]. Consequently, the areas under the 
curve (AUC) of the models developed based on these 
cohorts may have been overestimated.

From a methodology perspective, the final best-per-
forming models in previous studies were mostly clas-
sifiers of a single type, such as linear (e.g., Lasso) or 
non-linear (e.g., random forest) [11]. However, the com-
plexity of potential predictors and their interactions sug-
gests a need beyond a single algorithm. To date, no model 
has surpassed the predictive accuracy of any individual 
algorithm by appropriately weighting the contributions 
of each algorithm (e.g., SuperLearner). Moreover, several 
other factors hinder such investigations, including risk 
predictor selection based on univariate screening and the 
no mention of handling of missing data [21], revealing 
gaps in research methodology.

This study aims to address these gaps by applying and 
comparing the performance of multiple machine learn-
ing models for patients with T2DM. We utilized Super-
Learner to combine predictions from various single 

algorithms for improving the overall prediction perfor-
mance. Additionally, we used SHapley Additive exPlana-
tions (SHAP) to improve the model interpretability by 
delineating how each feature contributes to the predic-
tion outcome at the patient level.

Methods
Study design and population
This retrospective cohort study included patients initially 
diagnosed with T2DM at the Ningbo Municipal Hospital 
of Traditional Chinese Medicine between 2011 and 2023. 
All patients with at least one occurrence of T2DM were 
screened using ICD-9 or ICD-10 codes in the outpatient 
and inpatient departments. The baseline was defined as 
the time of earliest diagnosis of T2DM in each patient 
(also called ‘T0’ hereafter). A 6-month T0-centred inter-
val was designated as the patient’s baseline time window.

The inclusion criteria were: (1) age ≥ 18 years; (2) at 
least one hospital visit (regardless of visit type) following 
the end of the baseline time window.

The exclusion criteria were: (1) diagnosis of DKD 
at any time before the end of the baseline time win-
dow, identified by a urinary albumin-to-creatinine 
ratio (UACR) ≥ 30  mg/g (urine microalbuminuria 
[mAlb] ≥ 30 mg, total protein [TP] − 24 h urine ≥ 180 mg), 
eGFR < 60 mL/min/1.73 m2 (the Chronic Kidney Disease 
Epidemiology Collaboration [CKD-EPI]) [22], or protein 
in the urine dipstick test ≥ 1 +; (2) pregnancy within the 
baseline time window; (3) presence of active infections 
within the baseline time window; (4) active cancer or 
malignancy within the baseline time window; (5) auto-
immune disease within the baseline time window; (6) 
involvement of other renal diseases (e.g., urinary tract 
infection, polycystic kidney disease, glomerulonephritis) 
any time before the end of the baseline time window.

Notably, we did not set thresholds for the required 
number of measurements for the key indices (e.g., eGFR) 
or the length of follow-up. Figure  1 shows the patient 
inclusion diagram.

Candidate predictor variables and outcomes
The baseline data included 74 routinely measured char-
acteristics extracted from the Medical Data Intelligence 
Platform related to patients’ initial T2DM diagnosis. 
Candidate predictor variables were classified into the fol-
lowing categories: (1) demographics (e.g., age at T0 and 
sex), (2) medical history (e.g., hypertension), (3) vital 
signs (e.g., systolic blood pressure), and (4) laboratory 
tests (e.g., routine blood tests, urinalysis, and biochemical 
analysis). All baseline predictor variables were collected 
within the patient’s baseline time window, and in case of 
multiple testing values for one parameter, the value clos-
est to T0 was selected. A complete list of the predictor 
variables, attributes of each variable in the dataset, and 
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their abbreviations in the analysis are displayed in Table 
S1.

The primary endpoint was the occurrence of DKD, 
regardless of the specific stage it reached, for the first 
time during follow-up. Specifically, the event was 
defined as any of the following: (1) persistent albu-
minuria (UACR ≥ 30  mg/g) (mAlb ≥ 30  mg, TP − 24  h 
Urine ≥ 180  mg) over 3 months; (2) eGFR < 60 mL/
min/1.73 m2 [10]; (3) urinary protein in routine urine 
tests ≥ 1 +; (4) diagnosis of DKD according to ICD-9 or 
ICD-10 codes.

Modelling
Patients with outliers in any predictor variables based 
on clinical experience were removed when preparing the 
data for modelling. Variables with more than 70% miss-
ing data were excluded. Subsequently, patients with miss-
ing data for more than 30% of the remaining variables 
were excluded. A comparison of variable distributions 
before and after applying missing-rate based filtering was 
conducted to ensure consistency. Missing data were veri-
fied to be missing at random [23]. Subsequently, missing 
values were addressed using the multivariate imputation 

by chained equations (MICE) method [24]. The variables 
used in the analyses were converted to numeric or binary 
values (e.g., 1 = male, 0 = female). The primary outcome 
variable was converted to either zero (negative, no DKD) 
or one (positive, DKD present).

The cohort dataset was randomly assigned to a train-
ing (70%, N = 2303) or validation (30%, N = 988) set 
before model development. Machine learning algorithms 
were used to develop prediction models. Typical linear 
models (i.e., multivariate logistic regression and Lasso 
[25]), typical non-linear models (i.e., random forest and 
extreme gradient boosting), and SuperLearner were used 
for model development [26]. Subsequently, the optimal 
parameters of the machine learning algorithms were 
obtained through cross-validation using the training set. 
Finally, the models’ performances were compared using 
the validation set, and the model with the highest AUC 
was selected as the final best-performing model.

SHapley Additive exPlanations (SHAP) was used to 
interpret the results of the best-performing prediction 
model by computing the contribution of each variable 
to the prediction [27]. SHAP values quantify each fea-
ture’s impact on a model’s prediction by assessing how 

Fig. 1 Diagram showing patient selection. *Baseline time window: a 6-month interval centred on the initial diagnosis of T2DM. #T0: initial diagnosis of 
T2DM. T2DM: type 2 diabetes mellitus; eGFR: estimated glomerular filtration rate; UACR: urinary albumin-to-creatinine ratio; DKD: diabetic kidney disease
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the prediction changes when the feature is included or 
excluded across all possible combinations. To enhance 
interpretability, several SHAP visualization techniques 
were employed: the bee swarm plot ranked features 
by their overall importance across the population, the 
dependence plot illustrated SHAP values at the feature 
level across the study population, and the waterfall plot 
revealed SHAP contributions at the individual level.

Model evaluation and validation
The performance of the best model (SuperLearner) was 
evaluated using AUC. The accuracy of the optimal cut-
off value was assessed using sensitivity, specificity, and 
positive and negative predictive values (PPV and NPV, 
respectively).

The validation strategy, described in our previous study, 
was as follows: ‘By applying the final best-performing 
model to make predictions, patients in the holdout vali-
dation cohort were classified into two prognostic groups 
(i.e., high-risk group vs. low-risk group) based on their 
predicted probability of DKD and the selected cut-off 
probability. Their survival curves were compared using 
the Kaplan–Meier method’ [28].

Statistical analysis
Unpaired two-tailed t-tests and Wilcoxon tests were used 
to compare the distributions of continuous variables. The 
median and quantile values were compared for variables 
that did not follow a normal distribution. The chi-square 
test was used to quantify the relationships between cat-
egorical variables (e.g., label balance between the train-
ing and validation sets). Missing values were imputed 
using the multivariate imputation by chained equations 
method (‘MICE’ R package). SuperLearner is imple-
mented in the ‘SuperLearner’ R package. Statistical sig-
nificance was set at P = 0.05, or P = 0.001 when adjusting 
for multiple comparisons as appropriate. Statistical anal-
yses were performed using R version 4.0.1 (R Foundation 
for Statistical Computing, Vienna, Austria).

Results
Patient characteristics
Overall, 3,291 patients were included in the analysis (the 
initial diagnosis of T2DM was evenly distributed over the 
12-year study period). The median age of the patients was 
61 years (interquartile range [IQR], 50–69 years), and 
1,551 (47.1%) of them were women. The median follow-
up time (non-normal) was 2.53 years (IQR, 0.97–5.88 
years) after the initial diagnosis of T2DM (i.e., T0). Dur-
ing the follow-up, 563 (17.1%) patients were diagnosed 
with DKD (Fig. 1).

Predictor variables and outcomes
After filtering for missing rate-based data, we identified 
3,291 patients and 47 variables (46 predictor variables 
and 1 outcome variable). A comparison of variable dis-
tributions before and after filtering confirmed that there 
were no significant differences in either the variables or 
the incidence rate. Baseline characteristics of patients 
who progressed to DKD and those who did not are pre-
sented in Table  1. RBC_Cnt, Hb, Hct, LDL, HDL, Ca, 
MCHC, Lymph_Cnt, TBIL, PLTHct, TC, ALT, Lymph_
Per, and PLT_Cnt were significantly higher in patients 
without DKD than in those with DKD. A significant posi-
tive correlation was noted with age, urine pH, Mono_Per, 
PDW, DDimer, AST/ALT, RDWCV, creatinine, and MCV 
among those with DKD. No significant differences were 
found in other variables between the groups. All clinical 
variables were well-balanced between the training and 
validation sets (Table S2).

Development, evaluation, and validation
After the missing-value imputation, we ensured the 
integrity of the dataset by thoroughly comparing the dis-
tribution of imputed values with the original observed 
data to verify consistency. Our analysis revealed no sig-
nificant differences between the observed and imputed 
values across all 46 variables, and no significant outliers 
were identified in the feature set. Additionally, the inci-
dence of DKD was consistent between the training and 
validation sets (17.1% vs. 17.1%, P > 0.99).

All variables (N = 46) were used as inputs for the five 
machine learning algorithms to predict the risk of DKD 
occurrence. The discrimination abilities were compared, 
and SuperLearner had the highest AUC (0.714, 95% con-
fidence interval [CI] 0.673–0.755) (Fig. 2A, Table S3) and 
was thus chosen as the final best-performing model. In 
the validation cohort, the sensitivity, specificity, PPV, and 
NPV for differentiating DKD were 0.7337, 0.5910, 0.2702, 
and 0.9149, respectively (Table 2).

To further validate the model, patients in the validation 
cohort (N = 988) were categorised into two prognostic 
groups based on their DKD predicted probability by the 
best-performing model as follows: high-risk (459/988, 
predicted probability > 0.15) and low-risk (529/988, pre-
dicted probability ≤ 0.15) groups. Their survival curves 
were compared using the Kaplan–Meier method [29]. 
The difference between these groups was statistically sig-
nificant (P < 0.01) (Fig. 2B).

Explanation of risk factors
SHAP was used to interpret the results of SuperLearner 
by computing the contribution of each variable to the 
prediction [13]. The SHAP summary plot (beeswarm) is 
shown in Fig. 3A. The importance plot ranked the vari-
ables contributing to DKD risk prediction from most to 
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Characteristics DKD (N = 563) Non-DKD (N = 2728) p-value
Demographics (N = 2)
Age 66 (54–75) 60 (50–68) < 0.001
Gender 0.413
 Female 256 1295
 Male 307 1433
Lifestyle (N = 2)
 is_drinking 62 (11.01%) 360 (13.20%) 0.180
 is_smoking 106 (18.83%) 518 (18.99%) 0.977
Blood routine (N = 21)
 WBC_Cnt 6.1 (5.1–7.8) 6.3 (5.2–7.7) 0.495
 Neut_Cnt 3.8 (2.9–5.1) 3.8 (2.9–5) 0.724
 Hct 39.4 (36–42.6) 40.5 (37.5–43.9) < 0.001
 Hb 133 (121–145) 137.5 (127–150) < 0.001
 Lymph_Per 27.3 (20.9–33.55) 29.2 (22.6–35.6) < 0.001
 Baso_Cnt 0.02 (0–0.03) 0.02 (0.01–0.03) < 0.001
 RBC_Cnt 4.26 (3.89–4.71) 4.44 (4.10–4.85) < 0.001
 MCV 91.9 (88.9–95.1) 91.2 (88.48–93.8) < 0.001
 Lymph_Cnt 1.6 (1.3–2.1) 1.8 (1.4–2.2) < 0.001
 MCH 31.1 (29.8–32.3) 31 (30–32) 0.436
 Neut_Per 62.8 (56–70.15) 61.7 (54.7–68.6) 0.049
 Mono_Cnt 0.4 (0.3–0.5) 0.4 (0.3–0.5) 0.001
 Mono_Per 6.8 (5.5–8.1) 6.1 (5.1–7.5) < 0.001
 PDW 16.5 (16.2–16.9) 16.4 (16.1–16.7) < 0.001
 Eos_Per 1.8 (0.9–3) 1.6 (0.9–2.7) 0.104
 PLTHct 0.19 (0.15–0.22) 0.2 (0.16–0.23) < 0.001
 MCHC 338 (332.75–343.25) 340 (334–346) < 0.001
 PLT_Cnt 190 (154–230) 198.75 (163–239.6) < 0.001
 MPV 9.8 (9.1–10.75) 9.8 (9–10.7) 0.632
 Baso_Per 0.4 (0.3–0.6) 0.4 (0.3–0.6) 0.454
 RDWCV 13 (12.6–13.5) 12.8 (12.4–13.4) < 0.001
Biochemical analysis (N = 13)
 LDL 2.27 (1.75–2.76) 2.45 (1.91–3.01) < 0.001
 TC 4.34 (3.7–5.09) 4.58 (3.86–5.27) < 0.001
 Crea 61 (51–73) 59 (49.875–69) < 0.001
 HbA1c 7.6 (6.5–9.6) 7.4 (6.5–9) 0.118
 HDL 1.13 (0.9–1.355) 1.185 (0.99–1.43) < 0.001
 TBIL 10.5 (7.65–14) 11.1 (8.3–15) < 0.001
 PA 236.9 (192.65–286.55) 242.8 (196.675–291.225) 0.248
 TG 1.43 (1.055–2.06) 1.44 (1.02–2.1) 0.838
 ALT 19 (13–29) 21 (14–32) < 0.001
 AST 19 (16–27) 20 (16–27) 0.966
 ASTALT 1 (0.8–1.4) 0.9 (0.7–1.2) < 0.001
 Ca 2.23 (2.13–2.32) 2.25 (2.16–2.34) < 0.001
 Eos_Cnt 0.1 (0.06–0.2) 0.1 (0.05–0.17) 0.124
Urinalysis (N = 7)
 pH 6.5 (6–7) 6 (5.5–6.5) < 0.001
 glu_qual 204 (36.23%) 1058 (38.78%) 0.278
 ket_qual 47 (8.35%) 299 (10.96%) 0.078
 uro_qual 6 (1.07%) 23 (0.843%) 0.790
 nit_qual 15 (2.66%) 48 (1.76%) 0.209
 ob_qual 69 (12.26%) 287 (10.52%) 0.257
 bil_qual 3 (0.533%) 8 (0.293%) 0.620

Table 1 Baseline demographic, clinical, and biological characteristics of patients who progressed to diabetic kidney disease and those 
who did not
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least important as patients’ baseline WBC_Cnt, Neut_
Cnt, Hct, Hb, and so forth.

The SHAP dependence plots of the four selected vari-
ables included in SuperLearner are shown in Fig. 3B (the 

remaining top 20 plots are shown in Fig. S1). Higher 
SHAP values are associated with an increased risk of 
developing DKD. Older patients with higher WBC_Cnt, 
lower Neut_Cnt, higher Hct, and lower Hb levels had 
an increased risk of developing DKD. The feature value 
associated with zero SHAP can be used as a reference to 
determine the desired value of the variable, acting as a 
tipping point to distinguish between positive and nega-
tive contributions to DKD risk. A waterfall plot was used 
to illustrate how each patient’s specific clinical variables 
influenced their SHAP values, contributing to the over-
all prediction. Figure 3C provides examples: the left panel 
shows a 48-year-old male with a lower risk profile and 
a predicted probability of 0.1125 (< 0.15 threshold) for 
DKD, while the right panel shows an 81-year-old female 
with a higher predicted probability of 0.2721. Addressing 
modifiable risk factors, such as Hb, Lymph_Per, RBC_
Cnt, Lymph_Cnt, and WBC_Cnt, may reduce this risk.

Discussion
The present study included hospital-visiting patients ini-
tially diagnosed with T2DM without pre-existing renal 
diseases, using SuperLearner and SHAP to uncover 
complex relationships between predictors and DKD out-
comes. In comparison to existing studies on developing 

Table 2 Prediction accuracy of the superlearner estimating the 
risk of diabetic kidney disease in patients with type 2 diabetes 
mellitus and normal renal function

Value (95% CI)
Variable Training cohort

(N = 2303)
Validation cohort
(N = 988)

#DKD 394 (17.11%) 169 (17.11%)
AUC 0.9378 (0.9272, 

0.9484)
0.7138 (0.673, 
0.7546)

Cutoff probability 0.15 0.15
Sensitivity, % 95.94 (93.49, 97.66) 73.37 (66.04, 79.87)
Specificity, % 67.73 (65.58, 69.83) 59.10 (55.64, 62.49)
PPV, % 38.03 (35.00, 41.13) 27.02 (23.00, 31.33)
NPV, % 98.78 (98.02, 99.30) 91.49 (88.78, 93.73)
Positive likelihood ratio 2.9732 (2.7775, 

3.1827)
1.7938 (1.5869, 
2.0277)

Negative likelihood ratio 0.0600 (0.0371, 
0.0970)

0.4506 (0.3486, 
0.5824)

*roc.test() for two receiver operator characteristic curves, P > 0.99

Abbreviations: AUC, area under the curve; CI, confidence interval; NPV, negative 
predictive value; PPV, positive predictive value

Fig. 2 Models for predicting diabetic kidney disease and model evaluation of performance and validation. (A) Receiver operating characteristic curves for 
evaluating the discrimination ability of the model. SuperLearner had the highest area under the curve compared with the other models (p < 0.05*). *roc.
test() was used for pairwise comparison of receiver operating characteristic curves and the results are presented in the Table S3. AUC: area under curve; 
MLR: multivariate logistic regression; RF: random forest. (B) Comparison of survival curves (end event: diabetic kidney disease) in different risk groups 
using SuperLearner (P < 0.01). *Regrettably, two individuals from the ‘predicted high-risk’ group and one individual from the ‘predicted low-risk’ group 
lacked the necessary time stamp for their final follow-up, necessitating their omission from the survival curve analysis

 

Characteristics DKD (N = 563) Non-DKD (N = 2728) p-value
Blood coagulation function (N = 1)
 DDimer 133 (78–268.5) 105 (61.75–202) < 0.001
Continuous variables are presented as medians (interquartile ranges), and categorical variables are presented as counts (percentages). The abbreviations of all 
analytical variables are detailed in Table S1

Table 1 (continued) 
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Fig. 3 Model interpretability assessed using SHapley additive exPlanation. (A) The SuperLearner bee swarm plot depicts each variable’s importance for 
predicting diabetic kidney disease with type 2 diabetes mellitus and normal renal function (top 20). One dot per patient per feature is coloured according 
to an attribute value, where orange and purple represent higher and lower values, respectively. Features are sorted in decreasing order of importance, 
calculated as the average absolute SHAP value per feature. The abbreviations of all analytical variables are detailed in Table S1. (B) SHapley Additive ex-
planation dependence plot of SuperLearner (selected four features), depicting how a single variable affects the prediction. SHapley Additive explanation 
values greater than zero for specific features suggested an increased risk of diabetic kidney disease. SHapley Additive explanation values below zero for 
specific features indicate a decreased risk of diabetic kidney disease. The remaining 16 from the top 20 plots are shown in Figure S1. (C) SHAP waterfall 
plot for patients with predicted low (left) and high (right) risk of developing DKD. SHAP value (left: -0.0789, right: 0.106). The base value at the bottom of 
the waterfall plot starts at zero. SHAP values shown inside yellow arrows correspond to input variables that ‘push’ the model towards predicting higher 
risk, whereas those in the magenta ‘push’ the model towards a lower predicted risk
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prognostic models to predict DKD in patients with 
T2DM [10, 12], we identified new predictive markers 
(e.g., WBC_Cnt and urine pH) using innovative meth-
ods in representative populations. The study’s design, 
ensuring real-world relevance [30], improved clinical 
applicability, and the revealed associations between new 
markers and DKD offer new research avenues.

This study design enhanced the practicality and valid-
ity of the final model. First, we considered hospital vis-
its in patients with T2DM; this population was neither 
general (e.g., the general healthy population) nor too 
specific (e.g., clinical research) [13]. Given the elevated 
DKD risk in T2DM patients, this approach emphasised 
the necessity for DKD screening [31, 32]. Patients initially 
diagnosed with T2DM typically undergo routine clini-
cal tests, providing readily available measurements that 
make it easier to estimate their risk [16, 19, 20]. Second, 
using EMR-based automatic data extraction enhanced 
data-driven discovery, ranking previously uncommon 
markers like WBC_Cnt. This approach facilitated explo-
ration of the association between DKD and blood dys-
function, such as anaemia, through the higher ranking of 
routine blood characteristics.

Unlike previous studies that solely employed a single 
classifier for risk modelling, this study conducted analy-
ses using linear, non-linear (including ensemble learning 
algorithms), and SuperLearner models. The comparison 
of model performance revealed the superiority of Super-
Learner over non-linear models, which, in turn, gener-
ally outperformed linear models in the validation set 
(Fig.  2A). Recognising the complexity of multiple inter-
acting characteristics influencing the progression and 
risk of DKD [33, 34], this study provided data-driven 
evidence supporting clinical intuition and demonstrated 
these findings using data for the first time. To mitigate 
selection bias, we avoided excluding patients based on 
eGFR or other key indices (e.g., UACR) and opted for 
data-driven filtering. This increased the difficulty of 
improving the prediction model’s discriminative capabil-
ity, measured using the AUC. This is because, in contrast 
to patients who are not required to be tested for creati-
nine, patients who are required to undergo creatinine 
testing usually have a higher likelihood of renal disease 
and suspicion of renal disease by physicians, making it 
easier to identify those with positive outcomes for the 
prediction model. Nevertheless, our study achieved a 
comparable AUC (0.7) compared to previous studies 
(0.6–0.8), thereby improving the practicality and validity 
of the final model [12].

For a more complex model, greater interpretability 
is required. One of the strengths of SHAP is its indi-
vidualised explanation, which provides more explana-
tion at a higher level of granularity [35]. In addition, the 
dependence plot is an accumulation of individualised 

explanations, which depicts the general association 
between variables and the risk of DKD and reveals a 
desired value for the variables. For instance, the risk of 
DKD escalated sharply at 65–67 years of age (Fig.  3B), 
consistent with findings from previous studies [13], pre-
sumably reflecting the nonlinear increase in the risk of 
kidney diseases and other age-associated conditions as 
individuals advance in age [36].

SuperLearner and SHAP confirmed the prognostic 
value of several common risk factors. The present study 
showed that age, glycated haemoglobin (HbA1c) levels, 
and serum creatinine levels were positively correlated 
with DKD risk (Fig. 3A, B). Previous studies have identi-
fied these markers as important variables for predicting 
long-term microvascular complications of diabetes [10, 
13, 37, 38]. Specifically, older patients with T2DM and 
high HbA1c and creatinine levels had a higher risk of 
developing DKD. Moreover, the SHAP dependence plots 
provided tipping points where the DKD risk contribution 
of these variables switched from negative to positive; for 
example, 8 for HbA1c and 66 for age (Fig. 3B).

Infection, inflammation, and immunity are critical risk 
factors that affect DKD outcomes [39]. However, their 
role in early-stage DKD development has seldom been 
quantitatively investigated. In this study, WBC_Cnt and 
Neut_Cnt, reliable markers of systemic inflammation, 
infections, and immunity [40, 41], were ranked the high-
est among all potential predictors (Fig.  3A). We found 
that elevated WBC_Cnt and reduced Neut_Cnt were 
risk factors for DKD in patients newly diagnosed with 
T2DM and that these two characteristics at baseline 
were proportional to the risk of DKD even if they were 
in the clinically normal range. The identified association 
in this study and previous studies indicated that control 
of inflammatory activity and attention to immune status 
are critical to T2DM outcomes [42–44]. Patients with 
elevated WBC_Cnt and reduced Neut_Cnt at baseline 
should be closely monitored (e.g., more frequent routine 
screening for DKD).

In the present study, low Hb levels were associated with 
an increased risk of developing DKD. Although previous 
studies have demonstrated the predictive value of Hb for 
the risk of renal function decline in the early stages of 
DKD [45], the negative association between baseline Hb 
concentrations and the risk of follow-up DKD has often 
been overlooked [13, 46]. We speculate that patients 
with diabetes often have anaemia, which can lead to 
renal hypoxia and accelerate the progression of diabetic 
nephropathy [47, 48]. In contrast, other studies have 
shown that high Hb levels are also associated with an 
increased risk of diabetic nephropathy [49]. Maintaining 
an appropriate haemoglobin level is important for man-
aging and preventing diabetic nephropathy.
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Furthermore, higher baseline LDL levels were associ-
ated with a lower risk of progression to DKD. A previ-
ous study identified a similar association with marginal 
significance (P = 0.09) [13]. From a clinical perspective, 
elevated LDL levels are normally associated with an 
increased risk of DKD [50]. However, the current study 
showed the opposite association. We suspect this was due 
to the intervention provided. Because controlling lipid 
levels is significant, and lipids are one of the most inter-
venable indices [51, 52], patients with higher LDL-C lev-
els are more aggressively managed with statins or other 
lipid-lowering therapies due to cardiovascular risk, which 
might confound the observed association. While statins 
lower LDL-C levels, they also have pleiotropic effects, 
such as anti-inflammatory properties and potential renal 
benefits, which could reduce the risk of DKD progression 
independently of LDL-C levels. Furthermore, patients on 
statins are more likely to receive comprehensive cardio-
vascular and renal risk management, potentially impact-
ing DKD progression.

Notably, we identified new predictive markers, such 
as urine pH. Urine pH, which reflects the kidney’s abil-
ity to regulate the body’s acid-base balance and is related 
to diet, medication, and other factors [53], was positively 
associated with the risk of DKD. However, this finding 
has not been reported to date. Since urine pH detection 
is inexpensive and practical, it can serve as an auxiliary 
biomarker for DKD risk estimation. Additionally, this dis-
covery provides valuable information for future research.

The findings from the present study have several clini-
cal implications. First, based on our real-world study 
design and stringent inclusion and exclusion criteria, the 
model yielded a moderately good and realistic AUC, indi-
cating good discriminatory ability. At the optimal thresh-
old probability, the sensitivity and specificity were 0.7337 
and 0.5910, respectively. Clinicians can adjust the thresh-
old for better sensitivity (i.e., a lower risk threshold) or 
specificity (i.e., a higher risk threshold) case-by-case. Sec-
ond, the dependence plots generated by SHAP provide 
index-wise cut-off points for DKD risk alteration, which, 
when combined with mechanism validation, can be used 
to facilitate clinical decision-making, such as targeted 
interventions. Third, at the individual patient level, SHAP 
waterfall plots allow clinicians to pinpoint the modifiable 
risk factors contributing most to a patient’s predicted 
risk. This personalized insight helps guide interventions 
such as lifestyle changes, medication adjustments, or fur-
ther diagnostics, ultimately reducing risk and improving 
outcomes for that specific patient.

This study has some limitations as well. First, the 
analysis was based on patient data from a single cen-
tre, which may limit the generalisability of these find-
ings to other populations, including those from different 
regions or ethnic backgrounds. The data also reflected 

centre-specific characteristics, including the lack of 
established risk factors, such as diabetic retinopathy. 
Multicentre studies and external validations are required 
to confirm these results. Second, a prospective study 
is required to confirm the usefulness of the developed 
model. The third limitation of our study is the relatively 
short follow-up period, which may limit the ability to 
identify later-onset outcomes and constrain the estima-
tion of risk within the observed duration. Future studies 
with extended follow-up durations would help identify 
these cases and provide a more accurate assessment of 
the long-term effects, while adjustments for known risk 
factors would further enhance the validity and clinical 
applicability of the results. Nonetheless, the study design 
and large dataset generated by our Medical Data Intel-
ligence Platform, the data-driven analytical approach, 
and the interpretability greatly improved the validity and 
robustness of the final model.

Conclusions
In conclusion, we used real-world data and novel ana-
lytical methods and developed a SHAP-based explain-
able SuperLearner model to predict DKD in patients with 
T2DM with hospital visits. The resulting model revealed 
discoveries via risk estimation (e.g., markers), which can 
improve patient outcomes through easy-to-conduct early 
detection and more targeted interventions.
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