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Abstract
Background  Emergency Medical Services (EMS) response times are critical for optimizing patient outcomes, 
particularly in time-sensitive emergencies. This study explores the multifaceted determinants of EMS response times, 
leveraging machine learning (ML) techniques to identify key factors such as urgency levels, environmental conditions, 
and geographic variables. The findings aim to inform strategies for enhancing resource allocation and operational 
efficiency in EMS systems.

Methods  A retrospective analysis was conducted using over one million EMS missions from Stockholm, Sweden, 
between 2017 and 2022. Advanced ML techniques, including Gradient Boosting models, were applied to evaluate 
the influence of diverse variables such as call handling times, travel times, weather patterns, and resource availability. 
Feature engineering was employed to extract meaningful insights, and statistical models were used to validate the 
relationships between key predictors and response times.

Results  The study revealed a complex interplay of factors influencing EMS response times, aligning with the study’s 
aim to deepen the understanding of these determinants. Key drivers of response time variability included weather 
conditions, call priority, and resource constraints. ML models, particularly Gradient Boosting, proved effective in 
quantifying these impacts and provided robust predictions of response times across scenarios. By providing a 
comprehensive evaluation of these influences, the results support the development of adaptive resource allocation 
models and evidence-based policies aimed at enhancing EMS efficiency and equity across all call priorities.

Conclusions  This study underscores the potential of ML-driven insights to revolutionize EMS resource allocation 
strategies. By integrating real-time data on weather, call types, and workload, EMS systems can transition to adaptive 
deployment models, reducing response times and enhancing equity across priority levels. The research provides a 
blueprint for implementing predictive analytics in EMS operations, paving the way for evidence-based policies that 
improve emergency care efficiency and outcomes.

Clinical trial number  Not applicable.
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Background
Emergency medical services (EMS), integral to out-of-
hospital emergency care, utilize specialized vehicles 
and exhibit a notable degree of organizational similarity 
across different countries [1, 2]. The EMS process begins 
when an emergency call is received by the Emergency 
Medical Communication Centre (EMCC), where an 
Emergency Medical Dispatcher (EMD) assigns a prior-
ity based on the perceived risk of the patient having a 
time-critical medical condition [1, 3]. In Sweden, there 
are three priority levels: Priority 1, indicating the highest 
urgency, followed by Priorities 2 and 3 for lower levels, 
with lower-priority cases being deferred if resources are 
limited [3].

Accurately assessing the urgency of emergency calls 
is challenging due to factors such as language barriers 
and caller agitation. Emergency calls are rarely made by 
patients themselves and are often made by relatives or 
bystanders, leading to discrepancies between the urgency 
assigned by the EMCC and the clinical assessment per-
formed by EMS personnel upon arrival. These discrep-
ancies can result in misjudgment, potentially impacting 
patient outcomes [4–8].

Response time, defined as the interval from the initia-
tion of an emergency call to the arrival of EMS personnel 
on the scene, is a globally recognized metric for evaluat-
ing EMS performance, particularly in high-urgency cases 
where lights and sirens are used. It comprises two phases: 
call handling time, from receipt of the call to the dispatch 
of resources, and travel time, from resource deploy-
ment to arrival at the scene [9]. Delays in response time 
can affect patient outcomes, making it a critical factor in 
EMS resource planning. Resource shortages in specific 
geographic areas often exacerbate response times [9–12]. 
In Sweden, the Swedish Association of Local Authorities 
and Regions (SKR) employs the median response time for 
Priority 1 calls as a benchmark for comparative assess-
ment across EMS systems nationwide [13].

Despite extensive research on EMS resource allocation 
and optimization models, gaps remain in understanding 
how various factors interact to influence response times. 
Real-time traffic data, historical trends, and dynamic 
resource allocation strategies, such as “fluid deploy-
ment,” have shown potential for reducing response times. 
However, many studies have focused on isolated factors 
like traffic or weather without accounting for their com-
bined effects or the disparities between urgency levels [6, 
14–29].

While using lights and sirens accelerates response and 
transportation times, it poses risks of vehicular acci-
dents and threats to public safety. Evidence supporting 
response times direct positive impact on patient out-
comes remains limited [30]. Additionally, factors such as 
weather conditions and temporal variations, can impact 

response times, patient volumes, and resource deploy-
ment, further complicating resource allocation strategies 
[31–42].

Advances in machine learning in EMS systems and research 
gap
Recent advancements in data collection and machine 
learning (ML) have significantly transformed Emer-
gency Medical Services (EMS) operations. ML technolo-
gies have enhanced operational efficiency, minimized 
response times, and improved patient outcomes. Con-
temporary research underscores the critical roles of 
ML in EMS systems, particularly in demand prediction, 
resource optimization, and the integration of environ-
mental and temporal factors into planning frameworks.

Machine learning models have demonstrated remark-
able capabilities in several domains. They effectively fore-
cast EMS demand by leveraging spatio-temporal data, 
traffic patterns, and even insights from social media [21, 
26, 43]. Bayesian models, dynamic relocation strate-
gies, and robust optimization algorithms have improved 
resource allocation, directly reducing response times [23, 
44–46]. Additionally, regression-based models, including 
gradient boosting techniques, estimate response times 
with high accuracy, factoring in external variables such as 
weather and traffic conditions [6, 10, 39].

However, despite these strides, significant challenges 
and research gaps remain. Most studies have focused on 
individual factors like traffic or weather, neglecting their 
combined effects on EMS efficiency [6, 10, 21, 25, 27, 39]. 
Moreover, the scalability of ML models across different 
geographic and operational contexts is underexplored 
[23, 44–47]. Practical implementation of real-time ML 
predictions in live EMS operations also poses logistical 
and computational hurdles, especially during high-risk 
situations [6, 10, 39].

Addressing these gaps, the current study introduces an 
integrative ML framework that combines various factors 
such as urgency levels, geographic contexts, and weather 
conditions to provide a holistic analysis of EMS response 
dynamics. Unlike prior research, this approach not only 
evaluates the interplay of these variables but also pro-
poses equitable strategies for resource allocation across 
different priority levels, emphasizing both high-priority 
and lower-priority cases.

Outline of the paper
This paper begins by introducing the current state of 
knowledge regarding EMS response times, emphasizing 
both their significance in clinical outcomes and the limi-
tations of solely using traditional metrics such as high-
priority response times. It then explains how machine 
learning techniques can integrate various factors—
urgent call assessments, dynamic resource deployment, 



Page 3 of 15Hill et al. BMC Medical Informatics and Decision Making          (2025) 25:143 

and environmental variables—to develop a more holis-
tic understanding of EMS operations. Subsequently, 
the data sources and methodological framework are 
discussed, highlighting the retrospective observational 
design, over one million EMS missions included from 
Stockholm between 2017 and 2022, the use of feature 
engineering, and the application of both linear regres-
sion and advanced machine learning methods (particu-
larly gradient boosting). The analysis then focuses on 
the study’s main findings, demonstrating how urgency 
levels, weather conditions, and geographic factors col-
lectively influence EMS response times, while also com-
paring model performance across different call priorities. 
This leads into a broader discussion that contextualizes 
these results within existing literature, explores their 
potential implications for resource allocation and pol-
icy, and addresses the feasibility and challenges of real-
time machine learning implementation in EMS. Lastly, 
the paper concludes by underscoring key contributions, 
proposing strategies for more equitable and efficient 
EMS management, and outlining directions for fur-
ther research, including the integration of missing data 
sources such as real-time traffic information, refined 
model deployment, and applicability to other regions.

Aim
This study aims to deepen the understanding of the com-
plex factors influencing EMS response times. By examin-
ing the interplay between urgency levels, environmental 
conditions, and geographical contexts, it seeks to uncover 
actionable insights that can optimize resource allocation 
and enhance the effectiveness of emergency response 
operations.

Materials and methods
Study design
This study utilizes a retrospective observational design, 
leveraging an extensive dataset of over one million emer-
gency medical service (EMS) missions conducted in 
Stockholm, Sweden, from 2017 to 2022. The Strengthen-
ing the Reporting of Observational Studies in Epidemi-
ology (STROBE) checklist, designed to assist authors in 
presenting observational studies with clarity and rigor, 
was followed to ensure comprehensive and transpar-
ent reporting [48]. The invaluable EMS procedural data 
were sourced from the Region Stockholm VAL databases, 
which are renowned for their robust and cohesive data at 
the individual level [49, 50]. Furthermore, to enrich our 
analysis, meteorological data from the Swedish Meteo-
rological and Hydrological Institute were seamlessly 
integrated to provide invaluable contextual insights [7, 
50, 51]. For analytical rigor, the study employed diverse 
statistical methods, including linear regression and 
advanced machine learning models, supported by feature 

engineering to incorporate key variables influencing EMS 
response time. A directed acyclic graph (DAG) was con-
structed to visually represent factors partially assumed 
to be influencing response time, elucidating potential 
causal pathways. To enhance the understanding of the 
multifaceted factors influencing EMS response time and 
their interrelationships, data analyses were conducted 
via a diverse array of statistical methodologies, including 
both traditional linear regression and advanced machine 
learning models [52–54]. These analyses were meticu-
lously synthesised, presenting a comprehensive blend 
of inferential and descriptive statistics. To increase the 
analytical depth, sophisticated data mining techniques 
and feature engineering have been employed to identify 
and incorporate variables known to significantly influ-
ence response time [8, 9, 14, 31–37, 39, 40, 42, 55]. The 
program code used for feature engineering and machine 
learning is provided in Appendix B.

Setting of the study
The study was conducted in Stockholm, a metropoli-
tan area with a population of approximately 2.5  mil-
lion inhabitants [56]. Healthcare services in Stockholm, 
including EMSs, are overseen by Region Stockholm [56]. 
The EMCC is operated by SOS Alarm AB, a publicly 
owned entity. EMS operations are carried out by a com-
bination of private and publicly owned operators con-
tracted by Region Stockholm [56, 57]. The EMS resources 
are stationed at fixed stations with the option of “fluid 
deployed” [9, 58–60].

Participants
The initial dataset comprises a total of N = 1 297 858 
observations, encompassing all EMS missions con-
ducted in Stockholm between 2017 and 2022. Employ-
ing the exclusion criteria outlined in Table 1, the dataset 
underwent a meticulous refinement process, resulting 
in a refined subset of n = 1 144 754 observations deemed 
appropriate for subsequent feature engineering and in-
depth analysis.

Variables and features
A DAG illustrated the hypothesized factors influencing 
response time and their measurable features. The DAG 
highlights the variables (in green) that were quantifiable 
either directly or by combining multiple variables (Fig. 1).

Feature engineering and utilisation in data analysis
The feature engineering process in this study was 
designed to extract meaningful insights from a complex 
dataset comprising over one million EMS missions. By 
transforming raw data into actionable features, the anal-
ysis incorporated diverse factors influencing response 
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times, including urgency levels, geographical variables, 
and environmental conditions.

Continuous variables were standardized to a mean of 0 
and a standard deviation of 1 to facilitate linear regres-
sion [54]. This standardization ensured comparability 

across variables with different scales, improving the sta-
bility and interpretability of the model. Missing data 
were incorporated into machine learning models as pre-
dictors, acknowledging that missingness itself can con-
tribute valuable insights by reflecting systemic strain or 
resource availability. For instance, missing timestamps 
were included as indicators of data flow issues or opera-
tional delays.

Notably, the dataset excluded extreme outliers, such 
as response times exceeding 10  h, which were deemed 
operationally implausible based on expert knowledge (by 
object specialist of the data source at Region Stockholm) 
and technical reviews of timestamp errors. This exclusion 
ensured that the analysis focused on plausible scenarios 
while maintaining model reliability.

The features for the machine learning models were 
designed to align with the specific requirements out-
lined in the DAG. Key considerations and methodologies 
included variable grouping, where the original data-
set containing 333 categories for call reasons and 115 
localities was grouped into 54 and 48 broader catego-
ries, respectively. These groupings reduced dimension-
ality while preserving meaningful distinctions, based on 
similarities in call type characteristics and geographic 

Table 1  Inclusion and exclusion criteria
Initial dataset N = 1 297 858 observations
Exclusion criteria Number of 

excluded 
observations

Dispatch priority not 1, 2, or 3 (Transport assignments) n = 480 710
EMS unit type not Emergency Ambulance
Year not between 2017 and 2022
Response time not between 0 and 10 h*
Call handling time not between 0 and 10 h*
Travel time not between 0 and 10 h*
On scene time not between 0 and 10 h*
Transportation time not between 0 and 10 h*
Delivery time not between 0 and 10 h*
Intrahospital transports
Observations included n = 817 148 observations
* Observations with skewed timestamps caused by technical issues in the 
prehospital digital platform FRAPP were excluded. Specifically, data with 
negative time values or response times exceeding 10 h were considered highly 
unlikely on the basis of the authors’ domain expertise and were therefore 
omitted from the analysis

Fig. 1  Depicts a directed acyclic graph illustrating the relationships between exposures and the outcome, indicating the absence of any open biasing 
path (60). The features highlighted in green represent variables that were included in the study
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proximities to ensure operational relevance and inter-
pretability (Table 2).

Derived features were also created to capture temporal 
and system-wide dynamics. Hourly averages of response 
times, call handling times, and travel distances were 
calculated to reflect system strain during peak periods. 
Weather-related features, such as temperature and pre-
cipitation, were integrated to evaluate their impact on 
EMS operations. Resource utilization metrics, including 
the hourly sum of missions and cancellations, provided 
insights into workload effects.

Additionally, gradient boosting models were used to 
assess the relative importance of features. Key deter-
minants, such as Emergency Medical Communication 
Centre (EMCC) priority levels and weather conditions, 
aligned with prior research and expert judgment. Inter-
action effects, such as those between locality and adverse 
weather, were modelled to capture their combined influ-
ence on response times, offering a deeper understanding 
of these interdependencies.

This comprehensive approach ensured that the mod-
els effectively represented the complexities of EMS 
operations, enabling robust predictions and actionable 
insights.

Statistical methods
This study employed SAS Enterprise Guide 8.2 for data 
standardisation and manipulation, ensuring rigorous 
statistical procedures. Furthermore, SAS Viya 3.05 and 
Visual Analytics 8.5.2 facilitated comprehensive data 
analysis. The software allows the user to control the set-
tings and tune the machine learning models. The specific 
code utilised for these analyses is outlined in Appendix D 
for easy reference and reproducibility.

Linear regression
To explore the relationships between the variables and 
response time, we utilised a linear regression model with 
20 bins and a depth of 5 percentiles with a tolerance of 
1e–10 [53, 54]. The objective of this analysis was to vali-
date the impact of various factors on the response time 
(Appendix C.2).

Machine learning models
To construct a reliable prediction model for response 
time, the dataset underwent partitioning, with 60% allo-
cated for training data, 30% allocated for validation data 
and 10% as test data. Each model where autotuned by the 
software to optimise the performance. Various models, 
including random forest, gradient boosting, neural net-
work, and linear regression, have been investigated and 
juxtaposed for comparative analysis [52, 53, 61, 62]. Par-
tial Dependence-plots (PDP) where used to interpret the 
models and gain understanding of the features of interest. 

The PDP illustrate the marginal effect of one or two fea-
tures on the predicted outcome, averaged over the range 
of values of other features. They help to understand how 
a single feature influences predictions while holding all 
other variables constant [63–65]. The gradient boosting 
model was used to investigate the overall data and data 
stratified by priority level with the settings reported in 
Table 3.

Ethical considerations
All procedures were performed in compliance with rele-
vant laws and institutional guidelines and were approved 
by the Swedish Ethical Review Authority 2022-09-13 Dnr 
2022-03701-01. The study was conducted in accordance 
with the Declaration of Helsinki and good clinical prac-
tice [66, 67].

Results
The main result showed that complex factors influenc-
ing EMS response times. Call handling times impact 
on overall response time varied by both call reason and 
urgency level. Travel time and distance likewise differed 
across call types and priorities. Calls for certain issues 
(e.g., breathing problems, unconsciousness) consistently 
had shorter response and travel times, while others (e.g., 
abdominal pain) had longer handling times, suggesting 
potential areas for operational improvement (Fig. 2).

Feature importance
Feature importance varied, with EMCC priority level 
emerging as the most influential in the overall model 
(Fig. 3).

Interestingly, some features (e.g., the “hourly sum 
of missions”) showed opposing effects across differ-
ent priorities. The result showed an increased workload 
shortens the Priority 1 response times (perhaps due to 
resources already are on route to other lower prioritized 
patients and are redirected to higher prioritized patients), 
by the PDP used to interpret the model. However, the 
response time was lengthened for Priority 2 (Fig. 3).

Temperature and precipitation also played roles. 
Precipitation was generally associated with increased 
response times, and extreme cold (< − 8  °C) affected 
Priority 1 calls more than moderate temperatures. 
Conversely, higher temperatures (> 18  °C) tended to 
affect lower-priority calls. Local geography influenced 
response time variations, particularly in how urgency 
levels interacted with different areas. PDPs revealed 
that high-priority calls in central Stockholm had consis-
tently lower response times compared to suburban or 
rural areas. However, for lower-priority calls, this trend 
reversed in some cases, with central areas experiencing 
longer response times than expected. This suggests that 
resource saturation at peak times may lead to a trade-off 
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Feature Explanation
Priority level set by EMCC The priority level set by EMCC is presumed to affect response time due to the assessed urgency. Since all mis-

sions in all priority levels affect response time between priority levels, stratification between priority levels is 
not suitable. Instead, the priority level is handled as a feature affecting response time like the other variables 
investigated in this study.

Response time A created feature using the time difference between when the EMCC call was received, and the first EMS 
resource arrival at scene of incident. The response time is a result of call handling time and travel time.

Call Handling time A created feature using the time difference between when the EMCC call was received, and the first EMS 
resource received a mission from EMCC in the incident.

Travel time A created feature using the time difference between when the first EMS resource received a mission from EMCC 
in the incident, and the first EMS resource arrival at scene of incident.

Reason of Call to EMCC The reason of call to EMCC was grouped from the origin of 333 different categories, which differs slightly be-
tween different years, into 54 different categories reflecting the reason of call to EMCC. Reason of Call to EMCC 
is presumed to effect call handling time because differences in call handling time due to the nature of different 
reason of call to EMCC-categories. Reason of Call to EMCC is presumed to effect travel time because differences 
in travel time in different reason of call to EMCC-categories where personal EMS-personnel experience might 
influence travel time.

Locality The locality was grouped from the origin of 115 localities, where the same localities was duplicated one ore 
several times due to misspelling, into 48 localities which reflect the real locality. Locality is presumed to affect 
call handling time due to amount of available resources might differ in different localities. If there is lack of 
resources in a locality the call handling time might increase due to finding nearest suitable resource. Locality is 
presumed to affect travel distance and travel time because different coverage of available resources in different 
localities. Differences related to locality might indicate EMS allocation out of tune.

Hour The hour of day is used to investigate differences in response time between hour of day. Differences related to 
hour might indicate EMS allocation out of tune.

Month The month of year is used to investigate differences between month of year. Differences related to month 
might indicate EMS allocation out of tune.

Year The year is used to identify differences in years like the Covid-19 pandemic and differences in EMS allocation 
between years. Differences between years might indicate EMS allocation out of tune.

On scene time A created feature using the time difference between when the first EMS resource arrival at scene of incident 
and the first EMS resource started transportation of patient.

Transportation time A created feature using the time difference between when the first EMS resource started transportation of 
patient and the first EMS resource arrival at hospital.

Air temperature The average temperature current day at the weather station called “Observatoriekullen” in the centre of Stock-
holm. Differences in temperature is presumed to affect response time in different ways, like low temperature in 
combination with precipitation could affect traffic and travel time. It could also generate differences in reason 
of call to EMCC related to high and low temperatures.

Airtemperature_max The max temperature current day at the weather station called “Observatoriekullen” in the centre of Stockholm. 
Differences in max temperature is presumed to affect response time in different ways, like low temperature in 
combination with precipitation could affect traffic and travel time. It could also generate differences in reason 
of call to EMCC related to high and low temperatures.

Airtemperature_min The min temperature current day at the weather station called “Observatoriekullen” in the centre of Stockholm. 
Differences in min temperature is presumed to affect response time in different ways, like low temperature in 
combination with precipitation could affect traffic and travel time. It could also generate differences in reason 
of call to EMCC related to high and low temperatures.

H_AVG_of_Responsetime A created feature aggregating the response time as average response time of all missions current hour. The 
purpose is to reflect how the general response time the current hour effects response time in individual mis-
sions. Differences in the hourly average response time is presumed to reflect the system where increased hourly 
response time might indicate strained situation or EMS allocation out of tune.

H_AVG_of_Call_Handlingtime A created feature aggregating the call handling time as average response time of all missions current hour. The 
purpose is to reflect how the general call handling time the current hour effects response time in individual 
missions. Differences in the hourly average call handling time is presumed to reflect the system where in-
creased hourly call handling time might indicate strained situation or EMS allocation out of tune.

H_AVG_of_DistArrival_km A created feature aggregating the travel distance to patient in all missions current hour. The purpose is to reflect 
how the general travel distance to patient the current hour effects response time in individual missions. Differ-
ences in the hourly average travel distance is presumed to reflect the system where increased travel distance 
might indicate strained situation or EMS allocation out of tune.

Table 2  Explanation of crafted feature
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where high-priority cases are prioritized at the expense 
of lower-priority calls. Additionally, in some lower-den-
sity areas, ambulances may be stationed farther apart, 
leading to naturally longer response times, which dispro-
portionately affect lower-priority dispatches (Appendix 
A.34).

The results show that different features have differ-
ent effect on response time which confirms the rela-
tionships in the DAG (Fig. 1). Multiple features interact 
to influence EMS response time. PDPs show that while 
urgency level is the strongest predictor of response time, 
its effect varies depending on geographic location and 
real-time system strain. For instance, in areas with high 
EMS demand, the travel time component increases sig-
nificantly for lower-priority calls, whereas high-priority 
calls maintain stable response times. This effect suggests 
that EMS resource allocation strategies should not only 

prioritize high-urgency cases but also account for cumu-
lative system strain to prevent excessive delays in less 
urgent cases.

One example is determinants driving calls to EMCC, 
including call handling duration, travel time to the 
patient, and the urgency level of the situation, which col-
lectively influence response time (Fig.  2). Among these 
factors, both the duration of call handling and the travel 
time to the patient emerge as influencers alongside the 
priority level set by EMCC, introducing variability into 
the overall response time.

A PDP revealed that specific reasons for contacting 
the EMCC, such as breathing problems and loss of con-
sciousness, are associated with shorter call handling and 
travel times. This finding underscores that these variables 
not only directly impact response time but also exert 
indirect effects by influencing other factors. For exam-
ple, within priority level 1, variations in response time 
are observed across different reasons for contacting the 
EMCC (Appendix A.18). The predicted response time 
differs from about 15 min for Unconsciousness and Car-
diac arrest compared to over 30 min for Abdominal pain 
and Extremity/Wound/Minor trauma, all in the same pri-
ority level 1 (Fig. 4).

By shedding light on these relationships, this study elu-
cidates how various factors interact to shape emergency 
response times, offering insights crucial for optimising 
EMS on the basis of response time.

The EMS response time is subject to the influence of 
various factors beyond immediate call handling and 
travel logistics. Among these factors, the timing of inci-
dents throughout the day is a significant determinant. 

Table 3  Gradient boosting settings
Gradient Boosting model settings

Overall Priority 1 Priority 2 Priority 3
Auto-stop 
method

Stagnation Stagnation Stagnation Stagnation

Auto-stop 
iterations

4 4 4 4

Number of 
trees

50 50 50 50

Learning rate 0.23 0.23 0.23 0.23
Subsample 
rate

0.1 1 1 1

Lasso 6.11111111 1.11111111 1.11111111 0
Ridge 2.22222222 6 1 2.22222222

Feature Explanation
H_AVG_of_Drivetime A created feature aggregating the drive time as average drive time of all missions current hour. The purpose is 

to reflect how the general drive time the current hour effects response time in individual missions. Differences 
in the drive time is presumed to reflect the system where increased travel distance might indicate strained situ-
ation or EMS allocation out of tune. The traffic situation is a factor highly affecting drive time.

H_AVG_of_Onscenetime A created feature aggregating the on scene time as average on scene time of all missions current hour. The pur-
pose is to reflect how the general on scene time the current hour effects response time in individual missions. 
Differences in the on scene time is presumed to indicate prolonged treatment time affecting the response time.

H_AVG_of_Transportationtime A created feature aggregating the on transportation time as average transportation time of all missions current 
hour. The purpose is to reflect how the general transportation time the current hour effects response time in 
individual missions. Differences in the on scene time is presumed to indicate prolonged transportation time 
affecting the response time.

H_SumOfTasks A created feature aggregating the sum of missions current hour. The purpose is to reflect how the sum of 
missions the current hour effects response time in individual missions. Differences in the sum of missions is 
presumed in relation to available resources is presumed affecting the response time.

H_Sum_of_MissionCancelled A created feature aggregating the sum of cancelled missions the current hour. The purpose is to reflect how the 
sum of cancelled missions the current hour effects response time in individual missions. Differences in the sum 
of cancelled missions is presumed to reflect the system, where a strained situation with lack of resources, or 
EMS allocation out of tune, would give a higher rate of cancelled missions and affect the response time.

H_C_DIST_of_rakelid A created feature aggregating the sum of distinct EMS resource ID the current hour. The purpose of this variable 
is to reflect how the sum of EMS resources assigned to a mission the current hour effects response time in 
individual missions. Differences in the sum of EMS resources in relation to the sum of missions affects response 
time.

Table 2  (continued) 
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Fig. 3  Feature importance in overall data and by urgency level; color-coding to show highest impact

 

Fig. 2  Boxplots of call handling, travel, and response times for the 5 most common call types by EMCC priority
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The analysis revealed discernible fluctuations in response 
times across different hours, with particularly notewor-
thy impacts evident during periods of varying urgency 
levels, especially compared with instances of the highest 
urgency (Appendix A.22).

Furthermore, the geographical location of incidents 
plays a pivotal role in shaping response time dynam-
ics across different urgency levels. Notably, the central 
region of Stockholm has markedly shorter response 
times during high-urgency scenarios. Conversely, during 
lower-urgency scenarios, this same area experiences pro-
longed response times in comparison to other geographi-
cal localities (Appendix A.34).

Distribution of response time
Response time distribution was heavily skewed for pri-
ority levels 2 and 3, featuring a “long tail” of extended 
response times (Fig. 5). This skew can reduce ML model 
generalizability by overemphasizing outliers. Because 
the aim was to deepen the understanding of the complex 
factors influencing EMS response times, including these 
long-tail cases, rather than to build a perfect predictive 
model, this trade-off was considered acceptable (see 
Fig. 6).

Model performance
Overall, the gradient boosting model produced an ASE 
of 1757.70  min in the test data. Performance improved 
when stratified by priority level, with Priority 1 yielding 
the best prediction accuracy (ASE = 545.99) and Priority 

3 the lowest (ASE = 6752.75), reflecting that Priority 3 
data were more skewed (Table 4).

Linear regression indicated significant associations 
between a vast number of variables and response time 
(average squared error [ASE] = 2127.1291 in the test data; 
R² = 0.3706). This R² value, while not extremely high, 
aligns with the DAG’s suggestion that additional unmea-
sured factors also play a role. Of the tested ML models, 
gradient boosting demonstrated the best fit, though dif-
ferences among models were slight. Table 5 (below) com-
pares model performance (Appendix B.2).

Discussion
Key results
This study aimed deepen the understanding of the com-
plex factors influencing EMS response times. Confirming 
previous research [9, 10], call handling and travel time 
are vital, but new detail emerged on how different call 
types within the same priority can yield substantial varia-
tions. Calls for unconsciousness produced shorter han-
dling times, while abdominal pain or urinary issues were 
lengthier all in the highest priority level.

Environmental factors like precipitation also signifi-
cantly influenced response times, aligning with prior 
findings [33, 35, 40, 42]. The Machine Learning model 
allowed for better recognition of these “uncontrollable” 
contributors to response time.

Fig. 4  PDP of the hourly total sum of missions at different priority levels compared to predicted response time
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Fig. 6  The histogram shows distribution of response time in different priority levels set by EMCC

 

Fig. 5  PDP of the Reason of Call to EMCC compared to predicted response time in the priority 1 level. Calls for abdominal pain and minor trauma experi-
ence longer response times despite being priority 1 while unconsciousness and cardiac arrest exhibit the shortest response times
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Implications for EMS management
By leveraging machine learning for predictive model-
ing, EMS agencies can optimize resource allocation and 
improve response times. To operationalize these insights, 
EMS should develop a dynamic resource allocation sys-
tem by implementing real-time monitoring dashboards 
that integrate machine-learning-driven predictive alerts 
for demand surges based on call type, weather condi-
tions, and geographic trends. Shifting from fixed sta-
tioning to a fluid deployment model, where ambulances 
dynamically reposition based on real-time forecasts, 
would enhance efficiency.

Emergency call prioritization can be improved by 
deploying AI-assisted triage systems in Emergency Medi-
cal Communication Centers (EMCCs) to refine priority 
classification and reduce misallocations of high-priority 
responses. Training dispatchers to use machine learning-
backed decision support tools would ensure that emer-
gency calls are matched with appropriate response levels 
based on historical trends and real-time data. Integrating 

traffic and weather data for smarter routing is also essen-
tial. Automated rerouting protocols should be established 
to adjust dispatch recommendations based on live traffic 
feeds and adverse weather forecasts, while partnerships 
with municipal traffic authorities could facilitate the cre-
ation of EMS priority lanes or dynamic traffic signal pre-
emption for ambulances in high-demand areas.

Addressing equity in response times requires a geospa-
tial analysis to identify high-risk zones with prolonged 
response times and adjust resource distribution accord-
ingly. Allocating additional EMS units or mobile response 
teams in underserved areas during peak demand periods 
or severe weather conditions would ensure a more bal-
anced deployment of resources. Furthermore, improv-
ing data-driven decision-making through training and 
feedback mechanisms is crucial. Specialized training 
programs should be developed to ensure EMS person-
nel and dispatchers can interpret machine learning-based 
insights and adjust operational decisions accordingly. 
Establishing a feedback mechanism where EMS field 

Table 4  Gradient boosting machine learning models, overall and stratified by priority level set by EMCC

Table 5  Model comparison where gradient boosting was selected as the best fit
Selected Number Of Observations Percentile Predicted Average ASE Observed Average SSE Model
Yes 490,289 5 167.80 1690.09 172.90 828634299.32 Training: Gradient boosting
Yes 245,144 5 168.22 1789.91 169.40 438785173.01 Validation: Gradient boosting
Yes 81,715 5 167.29 1769.54 170.06 144598368.52 Test: Gradient boosting
No 490,289 5 168.66 1307.06 194.87 640835098.42 Training: Forest
No 245,144 5 166.32 1796.18 168.69 440322314.81 Validation: Forest
No 81,715 5 165.52 1786.66 169.21 145997039.91 Test: Forest
No 222,482 5 167.41 1788.88 169.01 397994152.56 Training: Neural network
No 110,779 5 168.11 1861.60 166.61 206226675.73 Validation: Neural network
No 37,213 5 168.51 1832.01 166.76 68174404.09 Test: Neural network
No 222,482 5 129.17 2116.45 158.05 470871881.72 Training: Linear regression
No 110,787 5 129.46 2138.34 157.61 236900262.60 Validation: Linear regression
No 37,214 5 129.65 2127.13 157.27 79158981.29 Test: Linear regression
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teams report real-world response discrepancies would 
enable continuous model refinement for improved 
accuracy.

Strengthening collaboration between EMS and poli-
cymakers is necessary to translate these insights into 
structural improvements. Engaging local governments in 
policy discussions on urban planning would help ensure 
that new infrastructure investments align with machine 
learning-based response efficiency insights. Addition-
ally, advocating for funding support to scale real-time 
machine learning deployment, particularly in regions 
with historically slow response times, could facilitate the 
implementation of these advanced strategies.

By systematically adopting these measures, EMS orga-
nizations can transition from reactive response models to 
proactive, data-driven emergency care strategies. These 
changes will enhance response efficiency, improve equity 
in service delivery, and ultimately lead to better patient 
outcomes.

Methodological considerations
This study employed a robust methodological framework 
combining advanced machine learning techniques and 
traditional statistical approaches to analyze a complex 
dataset of over one million EMS missions. A key strength 
of the methodology was the use of feature engineering 
and the construction of a directed acyclic graph (DAG) 
to elucidate relationships among variables. This approach 
ensured a comprehensive understanding of the factors 
influencing response times.

The dataset’s partitioning into training, validation, 
and test sets allowed for rigorous model evaluation, and 
the use of Gradient Boosting models provided nuanced 
insights into feature importance. However, the exclu-
sion of extreme outliers, such as response times exceed-
ing 10 h, may limit the generalizability of the findings to 
atypical cases.

Ethical considerations were integral to the study’s 
design, with adherence to the STROBE checklist ensur-
ing clarity and rigor. Limitations include the reliance on 
aggregate metrics, which may obscure finer temporal 
trends. The absence of traffic data and other operational 
constraints also highlights areas for future research.

Challenges and considerations for real-time 
implementation
The real-time implementation ML predictions in EMS 
operations presents both significant opportunities and 
notable challenges. While the potential of ML to dynami-
cally optimize resource allocation is clear, translating 
these insights into live operations requires addressing 
several practical considerations.

A key requirement for real-time deployment is robust 
computational infrastructure. Systems capable of 

processing large datasets and generating instantaneous 
predictions are essential. This may necessitate invest-
ments in advanced technologies such as cloud-based 
solutions or edge computing to meet the demanding 
computational requirements.

Seamless integration of diverse data sources is another 
critical factor for effective real-time predictions. Com-
bining weather updates, traffic conditions, and real-time 
EMS resource availability requires interoperable systems 
and standardized data protocols to ensure smooth opera-
tion and data flow.

Operational constraints within EMS systems must 
also be carefully considered. Regulatory and logistical 
requirements, including variations in response proto-
cols, resource limitations, and the need for rapid deci-
sion-making during high-stakes scenarios, necessitate 
models that are both adaptable and compliant with these 
constraints.

The adoption of real-time ML systems further depends 
on adequate training for EMS personnel and dispatch-
ers. These individuals must be equipped to interpret ML 
predictions and incorporate them into their workflows. 
User-friendly interfaces and decision support tools can 
significantly enhance the usability and acceptance of 
these systems.

Lastly, continuous monitoring and feedback mecha-
nisms are essential for maintaining the accuracy and reli-
ability of real-time ML systems. Establishing feedback 
loops that refine models based on operational outcomes 
will ensure their long-term utility and trustworthiness.

By addressing these challenges, the implementation 
of real-time ML systems can transition from theoretical 
potential to practical reality, enhancing the efficiency and 
responsiveness of EMS operations.

Limitations and directions for future research
The study identifies several limitations, including the 
exclusion of traffic data and operational constraints, but 
further elaboration is necessary to contextualize their 
impact and provide direction for future research. Traffic 
conditions are a critical factor influencing EMS response 
times, especially in urban environments. The absence of 
traffic data in the models could result in underestimating 
delays during periods of peak congestion. Future studies 
should aim to incorporate real-time traffic feeds or his-
torical congestion patterns to enhance model accuracy.

Operational variability also poses challenges to the gen-
eralizability of the findings. Differences in EMS standard 
operating procedures, such as dispatch protocols and 
resource allocation strategies, could influence outcomes. 
Expanding the analysis to include regional or organiza-
tional variations would provide a more comprehensive 
understanding of these effects and their implications.
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While the study includes weather data, its focus is lim-
ited to Stockholm. Regional weather patterns, such as 
extreme heat in arid climates or heavy snowfall in colder 
regions, may have distinct impacts on response times. 
Exploring these variations could improve the robustness 
and applicability of the models to diverse geographic 
settings.

The use of aggregated features, such as hourly aver-
ages, may obscure finer temporal trends. To address this, 
future research should investigate shorter time inter-
vals to better capture fluctuations in EMS demand and 
response dynamics. This approach would allow for a 
more detailed understanding of system behaviour under 
varying conditions.

Finally, while the study highlights the potential for real-
time machine learning applications, it does not address 
the technical and logistical challenges of implementing 
such systems in live EMS operations. Investigating suc-
cessful case studies of real-time ML integration could 
provide valuable insights and practical solutions for over-
coming these barriers.

By addressing these limitations, future research can 
build on the current findings to further advance the 
effectiveness and reliability of EMS resource planning 
and response strategies.

Generalizability
The machine learning model developed in this study 
demonstrates a high level of adaptability for other EMS 
systems, as it is built on widely applicable factors such 
as call handling time, travel distance, urgency levels, 
weather conditions, and geographic variability. These 
determinants influence EMS response times universally, 
making the model broadly relevant to emergency medical 
services beyond Stockholm. The use of Gradient Boost-
ing and feature engineering techniques ensures that the 
model captures complex interactions between these vari-
ables, allowing for meaningful insights into response time 
dynamics. Given that many urban EMS systems operate 
with structured dispatch protocols and centralized emer-
gency communication centres, the core structure of the 
model can be readily applied in similar settings.

However, certain modifications would be necessary 
when adapting the model to EMS systems with differ-
ent operational structures. Some EMS systems catego-
rize priority levels differently or use alternative dispatch 
methods, which may require adjustments to the model’s 
classification framework. Additionally, EMS systems that 
utilize a tiered response structure, where basic life sup-
port and advanced life support teams are dispatched 
separately, may need to introduce additional features to 
capture these nuances in resource allocation.

Geographic and traffic-related variations also pres-
ent challenges when applying the model across different 

regions. While the Stockholm EMS system operates in 
a metropolitan setting with both fixed and fluid deploy-
ment strategies, the model may require recalibration 
when applied to rural areas where response times are 
naturally longer due to increased distances between inci-
dents and available EMS units. Furthermore, the absence 
of real-time traffic data in the Stockholm dataset means 
that the model may need to be supplemented with live 
traffic inputs in cities where congestion significantly 
impacts response times.

Conclusion
This study provides a comprehensive analysis of the mul-
tifactorial determinants of EMS response times, dem-
onstrating the significant influence of variables such as 
urgency levels, weather conditions, and resource avail-
ability. By leveraging advanced machine learning tech-
niques, particularly Gradient Boosting models, the 
research offers a nuanced understanding of how these 
factors interact and provides a robust framework for pre-
dictive analytics in EMS operations.

Key findings underscore the importance of incorpo-
rating real-time data into dynamic resource allocation 
strategies. For high-priority calls, optimizing dispatch 
processes and leveraging predictive models can reduce 
response times and enhance patient outcomes. For 
lower-priority calls, addressing systemic inefficiencies, 
such as resource imbalances and weather-related delays, 
can improve equity and service delivery.

The implications for EMS management are substantial. 
Transitioning from static to adaptive deployment mod-
els can enable agencies to better respond to fluctuations 
in demand and external conditions. Integrating machine 
learning predictions into live operations offers a path to 
more efficient, equitable, and sustainable emergency care 
systems.

Future research should address limitations such as the 
exclusion of traffic data and operational constraints and 
explore the generalizability of these models to rural or 
smaller urban settings. Policymakers and EMS admin-
istrators are encouraged to consider the study’s findings 
to inform decisions on funding, resource allocation, and 
deployment strategies.

By bridging the gap between academic research and 
operational practice, this study lays the groundwork 
for a data-driven evolution in EMS planning, aiming to 
optimize response times and improve outcomes for all 
patients, regardless of urgency level or location.
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