
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Chen et al. BMC Medical Informatics and Decision Making          (2025) 25:144 
https://doi.org/10.1186/s12911-025-02973-1

BMC Medical Informatics 
and Decision Making

†Jian Chen and Ganhong Wang authors have contributed equally to 
this work and share first authorship.

*Correspondence:
Xiaodan Xu
xxddocter@gmail.com

Full list of author information is available at the end of the article

Abstract
Objective  In the functional assessment of the esophagogastric junction (EGJ), the endoscopic Hill classification plays 
a pivotal role in classifying the morphology of the gastroesophageal flap valve (GEFV). This study aims to develop an 
artificial intelligence model for Hill classification to assist endoscopists in diagnosis, covering the entire process from 
model development, testing, interpretability analysis, to multi-terminal deployment.

Method  The study collected four datasets, comprising a total of 1143 GEFV images and 17 gastroscopic videos, 
covering Hill grades I, II, III, and IV. The images were preprocessed and enhanced, followed by transfer learning using 
a pretrained model based on CNN and Transformer architectures. The model training utilized a cross-entropy loss 
function, combined with the Adam optimizer, and implemented a learning rate scheduling strategy. When assessing 
model performance, metrics such as accuracy, precision, recall, and F1 score were considered, and the diagnostic 
accuracy of the AI model was compared with that of endoscopists using McNemar’s test, with a p-value < 0.05 
indicating statistical significance. To enhance model transparency, various interpretability analysis techniques were 
used, including t-SNE, Grad-CAM, and SHAP. Finally, the model was converted into ONNX format and deployed on 
multiple device terminals.

Results  Compared through performance metrics, the EfficientNet-Hill model surpassed other CNN and Transformer 
models, achieving an accuracy of 83.32% on the external test set, slightly lower than senior endoscopists (86.51%) 
but higher than junior endoscopists (75.82%). McNemar’s test showed a significant difference in classification 
performance between the model and junior endoscopists (p < 0.05), but no significant difference between the 
model and senior endoscopists (p ≥ 0.05). Additionally, the model reached precision, recall, and F1 scores of 84.81%, 
83.32%, and 83.95%, respectively. Despite its overall excellent performance, there were still misclassifications. Through 
interpretability analysis, key areas of model decision-making and reasons for misclassification were identified. Finally, 
the model achieved real-time automatic Hill classification at over 50fps on multiple platforms.
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Introduction
The global incidence of Gastroesophageal Reflux Disease 
(GERD) ranges from 8% to 33%, marking it as a com-
monly encountered yet complex digestive system dis-
order [1, 2]. Research suggests that esophageal mucosal 
injury is primarily linked to anatomical or physiologi-
cal defects at the Esophagogastric Junction (EGJ) [3]. 
In particular, the Gastroesophageal Flap Valve (GEFV), 
a key element of the EGJ, plays a significant role in the 
anti-reflux barrier [4]. The GEFV was first introduced by 
Tocornal et al. in 1968 [5], and its existence in the EGJ 
was later confirmed through autopsy by Thor and Hill 
in 1987 [6]. In 1996, Hill and others, based on the endo-
scopic characteristics of GEFV, proposed the Hill classifi-
cation, defining Grades I–II as normal GEFV and Grades 
III–IV as abnormal [7].

Studies have shown that abnormal GEFV is closely 
associated with diseases such as GERD, Barrett’s esopha-
gus, esophageal hiatal hernia, laryngopharyngeal reflux 
disease, dyspepsia, and esophageal variceal bleed-
ing [8–11]. The Hill classification is a crucial metric for 
evaluating GERD before and after surgical or endoscopic 
treatments [12]. Due to its clarity, the Hill classification 
is favored by endoscopists. Scholars have advocated for 
its inclusion in routine endoscopic reports and GERD 
assessments [13]. However, physicians face a learning 
curve and challenges in assessment consistency when 
applying the Hill classification.

In recent years, the application of artificial intelligence 
in the field of digestive endoscopy has been increas-
ing, particularly in aspects of quality control, diagnostic 
assistance, and decision support, bringing significant 
advancements to gastrointestinal endoscopy. Wang C 
and colleagues [14] utilized Convolutional Neural Net-
works (CNN) to develop a GERD grading model based 
on the Los Angeles classification criteria. Furthermore, 
H. Yen and others [15] introduced an innovative method 
combining deep learning with machine learning, sig-
nificantly enhancing the accuracy of gastroesophageal 
reflux disease endoscopic classification, achieving a test 
accuracy of 92.5% ± 2.1%. Notably, in recent years, Trans-
former technology is rapidly gaining attention in the 
medical field, surpassing CNN and emerging as a new 
focus in this domain.

This study applies deep learning (DL) technology to 
assess the function of the Gastroesophageal Flap Valve 
(GEFV) and to develop a four-category deep learn-
ing model based on the Hill classification system, 

encompassing the entire process from model develop-
ment, testing, interpretability analysis, to multi-terminal 
deployment. It employed two different deep learning 
architectures, CNN and Transformer, to construct seven 
distinct deep learning network models. In evaluating 
these models, a series of comprehensive performance 
metrics were used, including accuracy, precision, sensi-
tivity, specificity, recall rate, F1 score, average precision, 
and AUC value. Additionally, the study compared the 
performance in classification accuracy between DL mod-
els and endoscopists of varying experience levels, offering 
insights for the practical application of deep learning in 
the medical field.

Materials and methods
Datasets
In this study, we utilized four datasets. Dataset 1 and 
Dataset 2 were collected from Changshu Hospital Affili-
ated with Soochow University and Changshu Traditional 
Chinese Medicine Hospital, comprising a total of 924 
esophagogastric flap valve (GEFV) images. These datas-
ets were used for model training with a five-fold cross-
validation strategy. Dataset 3, obtained from Xinzhuang 
People’s Hospital of Changshu, contained 219 GEFV 
images and served as an independent external static 
image test set, without participating in the cross-vali-
dation process. Dataset 4, also sourced from Xinzhuang 
People’s Hospital of Changshu, consisted of 17 endo-
scopic videos and was designated for external video test-
ing to ensure an independent evaluation of the model. 
To maintain the independence and validity of testing, 
the external test datasets were exclusively used for per-
formance evaluation and were not involved in model 
training, cross-validation, or hyperparameter tuning. The 
endoscopic images and videos were acquired using Olym-
pus endoscopes (GIF-HQ290, GIF-Q260J, GIF-H260Z, 
GIF-Q260; Olympus Medical Systems Corp., Tokyo, 
Japan) and Olympus endoscopic video systems (EVIS 
LUCERA ELITE CV-290/CLV-290SL and EVIS LUCERA 
CV-260SL/CLV-260SL). All collected images were ano-
nymized prior to analysis. The dataset included GEFV 
images representing all four Hill classification grades (I to 
IV), covering a range of morphological variations. Rep-
resentative images are shown in Fig.  1. Figure  2A illus-
trates the distribution of image dimensions within the 
dataset, where yellow indicates a higher concentration 
of images of the same size, while purple indicates lower 

Conclusion  By employing deep learning to construct the EfficientNet-Hill AI model, automated Hill classification of 
GEFV morphology was achieved, aiding endoscopists in improving diagnostic efficiency and accuracy in endoscopic 
grading, and facilitating the integration of Hill classification into routine endoscopic reports and GERD assessments.
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concentrations. Figure 2B presents the dataset partition-
ing and class distribution.

Image labelling
In this study, we adhered strictly to inclusion and exclu-
sion criteria, collecting gastroesophageal flap valve 
(GEFV) endoscopic images from patients who under-
went endoscopic examinations between January 2018 
and October 2023. All images were required to clearly 
display the GEFV structure for Hill classification assess-
ment. The exclusion criteria included patients with a his-
tory of esophageal, gastric, or thoracic surgery; patients 
with digestive system diseases such as gastrointesti-
nal tumors, esophageal varices, peptic ulcers, or those 
with infectious esophagitis or eosinophilic esophagitis; 
patients with primary or secondary severe esophageal 
motility disorders (e.g., achalasia, scleroderma); as well 
as pregnant women, patients with severe cardiopulmo-
nary diseases, coagulation disorders, or others unable to 

tolerate the examination. All endoscopic examinations 
were performed in the endoscopy center by profession-
ally trained and certified endoscopists. These endosco-
pists also participated in systematic training and mock 
tests related to Hill classification. To ensure the compre-
hensiveness and quality of the examination, each gas-
troscopy lasted at least 7  minutes, ensuring at least 38 
clear images of various parts of the upper digestive tract 
were obtained. These stringent standards and procedures 
aimed to enhance the quality and reliability of data col-
lection, thereby ensuring the accuracy and validity of the 
study’s results.

Hill classification criteria [7]. Hill Grade I: The gas-
troesophageal flap valve is prominently defined, tightly 
wrapping around the endoscope along the lesser curva-
ture. Hill Grade II: The valve is not as prominent as in 
Grade I and may occasionally not close completely due to 
respiration. Hill Grade III: The valve is almost non-exis-
tent, unable to tightly envelop the endoscope. Hill Grade 

Fig. 1  Relevant image examples from the dataset; A1–A5 represent Hill Grade I, B1–B5 denote Hill Grade II, C1–C5 illustrate Hill Grade III, and D1–D5 
correspond to Hill Grade IV
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IV: There is a complete absence of the valve. The gastro-
esophageal area is open, with the esophageal squamous 
epithelium easily visible, as shown in Fig. 3.

Three levels of endoscopists participated in this study. 
Expert endoscopists: with over 20 years of experience in 
the field of digestive endoscopy. Senior endoscopists: with 
5–10  years of experience in digestive endoscopy. Junior 
endoscopists: with 1–3  years of experience in digestive 
endoscopy. To ensure the quality of the images and the 
accuracy of the grading, the labellers were divided into 

three teams, each responsible for a specific stage of the 
process. Only images that underwent labelling and veri-
fication following this workflow (Fig. 4) were included in 
the AI model training. All endoscopists involved in data 
annotation did not participate in the external testing pro-
cess, thereby reducing the risk of bias.

Fig. 3  Reference image for the Hill classification criteria

 

Fig. 2  A: Distribution of image sizes in the dataset. B: Distribution of various categories of images across different datasets
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Deep learning network
Image preprocessing
To enhance the model’s generalization ability, this study 
systematically preprocessed and augmented the image 
data. Online data augmentation (real-time data aug-
mentation) methods [16] were used, performing all data 
augmentation operations in real-time during the train-
ing process. This approach avoids generating new image 
files, ensuring the model is exposed to slightly different 
versions of images each time it trains. Specifically, for 
the training set, images were randomly resized and then 
cropped to 224  ×  224 pixels, with random horizontal 
flipping added to increase data diversity. The image for-
mat was converted from PIL Image or numpy.ndarray 
to PyTorch Tensor and normalized to the [0, 1] range. 
Moreover, the RGB channels of the images were stan-
dardized, using means of [0.485, 0.456, 0.406] and stan-
dard deviations of [0.229, 0.224, 0.225]. The processing 
method for the test set was similar, but the short edge of 
the images was first adjusted to 256, then center-cropped 
to 224 × 224 pixels. The image format conversion, nor-
malization, and RGB channel standardization for the 
test set were the same as for the training set. All prepro-
cessing and augmentation operations were implemented 
using the torchvision library of PyTorch.

Model training configuration
To achieve image classification, transfer learning was uti-
lized with pretrained models based on CNN and Trans-
former architectures. In the CNN segment, ResNet50 
[17], VGG19 [18], DenseNet121 [19], and EfficientNet 
[20] models were selected; while in the Transformer seg-
ment, ViT [21], Swin Transformer [22], and CvT [23] 
models were chosen. These CNN models all include con-
volutional layers, average pooling layers, and fully con-
nected layers with ReLU activation. To better adapt to 
our dataset, two dense layers with ReLU activation and 

an output layer with Softmax activation for classification 
were added to each pretrained model. The number of fea-
tures in the output layer was set to four to fit our classifi-
cation task.

All models were trained using the cross-entropy loss 
function, with different optimizers applied based on the 
model architecture. Specifically, CNN models primar-
ily used Adam, VGG19 was trained with SGD, while 
Swin Transformer and CvT employed AdamW. During 
training, all models adopted the StepLR learning rate 
scheduling strategy, reducing the learning rate by 50% 
(gamma = 0.5) every 5 epochs. Additionally, an Early 
Stopping mechanism was implemented with a patience 
value of 8, meaning training was halted if the validation 
loss did not decrease for 8 consecutive epochs. The batch 
size was adjusted according to the computational require-
ments of each architecture. Detailed hyperparameter 
settings are provided in Table 1. For data augmentation, 
CNN models underwent random cropping and hori-
zontal flipping, while Transformer models were further 
enhanced with up to 15° of random rotation. All opera-
tions were performed using the PyTorch framework.

Model performance evaluation
Deep learning models often exhibit a "black box" char-
acteristic in medical image analysis, where the inputs 
and outputs are visible, but the internal decision-making 
mechanism is difficult to interpret. To address this, we 
employed advanced interpretability methods, including 
Gradient-weighted Class Activation Mapping (Grad-
CAM) and SHAP (Shapley Additive exPlanations) 
techniques [24, 25], to enhance the transparency and 
interpretability of the model’s decision-making process. 
The Grad-CAM method utilizes feature maps from con-
volutional layers and gradient information to generate 
heatmaps, visually highlighting the areas in the image 
that contribute most to the model’s predictions. This 

Fig. 4  Image Labelling Process. (A) Step 1: A junior endoscopist captures gastroesophageal flap valve images in a retroflexed view from individuals of 
different ages and genders. (B) Step 2: Two senior endoscopists classify the images based on the Hill classification criteria and perform cross-checking. (C) 
Step 3: An expert-level endoscopist reviews the labels and makes the final decision
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approach allows us to visualize and understand the mod-
el’s focus areas when identifying different Hill grades, 
enabling a deeper analysis of the model’s attention mech-
anism. On the other hand, the SHAP technique calculates 
the contribution of each feature to the model’s output, 
providing a detailed explanation for each prediction. This 
method incorporates the concept of Shapley values from 
classical game theory, offering a powerful tool for under-
standing how models process complex medical image 
data.

In this study, we utilized deep learning to automate 
the Hill classification of the gastroesophageal flap valve, 
including Hill Grades I, II, III, and IV. To explore the 
model’s semantic classification capability, we extracted 
the intermediate layer outputs of the image classification 
model as semantic features. By registering forward hooks 
to the target layer, we captured these features. Subse-
quently, we employed the t-SNE method to reduce these 
high-dimensional features to a two-dimensional space 
[26]. For further analysis of these reduced features, we 
used the Plotly library for interactive visualization. First, 
a DataFrame containing the t-SNE reduction results was 
created, which included two-dimensional coordinates, 
the original data’s labeled categories, predicted catego-
ries, and image paths. Then, we utilized Plotly’s scatter 
function to create a scatter plot that displays each cat-
egory with different colors, labels, and symbols, allow-
ing users to view the detailed image paths of each point 
by hovering over them. Additionally, we optimized the 
chart’s appearance and saved this interactive graphic as 
an HTML file for detailed exploration and analysis in a 
web browser.

To ensure the optimal selection of models for external 
validation, we predefined performance thresholds in our 
study design to guarantee both high classification accu-
racy and computational efficiency for real-time clinical 
application. The specific criteria included an internal test 
set accuracy of ≥80%, an F1-score of ≥0.80 to ensure bal-
anced classification performance for Hill grading, and a 
computational efficiency of ≥50 FPS to meet real-time 
inference and clinical usability requirements.

Multi-device terminal model deployment
To automate the implementation of Hill classification 
of gastroesophageal flap valve (GEFV) morphology, we 
developed a deep learning model and deployed it on vari-
ous devices, including desktop computers, laptops, and 
online browsers at an endoscopy center. This model is 
designed to provide real-time and accurate monitoring 
for gastroscopy videos, fulfilling the minimum frames per 
second (fps) requirements for real-time inference pre-
diction. During its development, transfer learning tech-
niques were utilized, and the model, based on PyTorch, 
underwent specific optimizations. For cross-platform 
deployment, the model was converted to the Open Neu-
ral Network Exchange format (ONNX). Utilizing ONNX 
Runtime, the model efficiently operates on different oper-
ating systems like Linux, Windows, and MacOS, and is 
optimized for various hardware (CPU, GPU). ONNX, as 
an open standard for deep learning [27], not only ensures 
model interoperability but also expands deployment 
options, thereby enhancing the real-time recognition 
accuracy of GEFV morphology in gastroscopy videos. 
The entire process of model development and deploy-
ment is detailed in Fig. 5.

Experimental platform and statistical analysis
In this study, we employed a computer equipped with 
an RTX 3080 graphics card (10.5GB VRAM), a 6-core 
E5-2680 v4 CPU, and 500GB of disk space. Utilizing 
Python libraries such as PyTorch (1.10.0 + cu113) and 
OpenCV (4.5.4.60), we efficiently built and trained deep 
learning models and processed images. Data organiza-
tion, analysis, and visualization were conducted using 
Pandas (1.3.4), NumPy (1.21.4), Matplotlib (3.5.0), and 
Plotly (5.4.0). Model saving and loading were facilitated 
by H5py (3.6.0).

To thoroughly evaluate the model’s performance in 
image classification tasks, a diverse array of evaluation 
metrics was adopted. Firstly, accuracy (Acc), calculated 
as Accuracy = (TP + TN)/(TP + FP + FN + TN), reflects 
the model’s overall accuracy in all predictions. Secondly, 
precision, calculated as Precision = TP/(TP + FP), mea-
sures the accuracy of the model in predicting positive 
classes. Recall, calculated as Recall = TP/(TP + FN), indi-
cates the model’s ability to identify positive classes. The 

Table 1  Model hyperparameter settings
Model Learning Rate Optimizer Learning Rate Scheduler Batch Size Epochs Patience
EfficientNet 1e−4 Adam StepLR 60 80 8
ResNet50 1e−4 Adam StepLR 60 80 8
VGG19 1e−3 SGD StepLR 60 80 8
DenseNet121 1e−3 Adam StepLR 60 80 8
ViT 1e−3 Adam StepLR 32 80 8
Swin Transformer 1e−5 AdamW StepLR 64 80 8
CvT 1e−5 AdamW StepLR 64 80 8
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F1 score, calculated as F1 = 2 * (Precision * Recall)/(Preci-
sion + Recall), considers both precision and recall. Speci-
ficity, calculated as Specificity = TN/(TN + FP), measures 
the model’s ability to identify negative classes. Average 
precision (AP) assesses the mean accuracy at different 
thresholds. The area under the curve (AUC) reflects the 
model’s ability to distinguish between positive and nega-
tive classes. The Matthews correlation coefficient (MCC), 
calculated as MCC = [(TP * TN) − (FP * FN)]/sqrt[(TP + 
FP) * (TP + FN) * (TN + FP) * (TN + FN)], is a comprehen-
sive performance metric. A confusion matrix was used 
for quantitative analysis of the model’s classification 
predictions. Lastly, frames per second (fps), calculated 
as fps = 1/(average processing time), measures the mod-
el’s inference prediction speed. Furthermore, Cohen’s κ 
(Kappa) statistics were employed to assess the inter-rater 
agreement between endoscopists in their diagnostic eval-
uations. Cohen’s κ accounts for the agreement occurring 
by chance, and its values range from −1 (complete dis-
agreement) to 1 (perfect agreement), with higher values 
indicating stronger consistency. In this study, predictions 
with a confidence level of 80% or higher were consid-
ered highly reliable, representing the model’s dependable 
predictions. McNemar’s test was used to compare the 

diagnostic accuracy between the AI model and endos-
copists, with a p-value < 0.05 considered statistically 
significant.

Results
Baseline data
During the study period, a total of 1160 patients’ data, 
including 1143 GEFV images and 17 gastroscopy vid-
eos, were included in the research. Among these 
patients, 56.7% (658 individuals) were male, and 42.3% 
(502 individuals) were female, with an average age of 
63.2 ± 26.5 years. Regarding gastroesophageal reflux dis-
ease (GERD), 28.5% of the patients (331 individuals) did 
not exhibit GERD symptoms, 33.0% were diagnosed 
with non-erosive reflux disease (383 individuals), and 
38.4% suffered from reflux esophagitis (446 individuals). 
GERD, Non-erosive reflux disease (NERD), and Reflux 
esophagitis (RE) were diagnosed based on standardized 
criteria. GERD followed the Lyon Consensus, incorporat-
ing symptoms, esophageal pH monitoring, and response 
to proton pump inhibitors. RE was classified using the 
Los Angeles system, while NERD was defined as GERD 
symptoms without mucosal damage on endoscopy. Diag-
noses were extracted from electronic medical records 

Fig. 5  The complete workflow of model development and deployment; ONNX is an open file format designed to facilitate model interoperability across 
various deep learning frameworks, thereby simplifying the deployment and operation of models on diverse platforms and hardware
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and confirmed by at least two board-certified gastroen-
terologists, with discrepancies resolved by consensus. 
Further details on the patients’ baseline data are provided 
in Table 2.

Performance comparison of various deep learning models
In this study, a total of 924 colonoscopy images were uti-
lized, with 738 allocated to the training set and 186 to 
the test set. We conducted fine-tuning through transfer 

learning based on pretrained models from two major 
deep learning architectures: CNN and Transformer. 
Within the CNN architecture, models such as Efficient-
Net, ResNet50, Densenet121, and VGG19 were adopted, 
while in the Transformer architecture, models like vit_
base_patch32_224, SwinTransformer, and convit_small 
were selected. To accommodate the four-class labeling of 
GEFV morphology Hill grading, adjustments were made 
to the output layers of these models. During training, the 
Adam optimizer was used for efficiency. A comparison of 
these models’ performance metrics on the test set is illus-
trated in Fig. 6.

In the automatic Hill classification of GEFV morphol-
ogy, EfficientNet demonstrated the best performance 
with a test average accuracy of 82.03%, surpassing 
ResNet50 (77.65%) and Densenet121 (81.77%). The aver-
age precision, recall, and F1 score of EfficientNet reached 
78.43%, 76.84%, and 77.56%, respectively, highlighting its 
robustness and high accuracy in this task. In comparison, 
although Transformer models overall did not perform 
as well as CNNs, SwinTransformer among them had the 
highest average accuracy in the Transformer category, 
achieving 50.86%, proving its potential value in this field.

Table 2  Baseline data of the patients
Variable Overall(n = 1160)
Sex
  man 658(56.7%)
  female 502(42.3%)
Age(years) 63.2 ± 26.5
GERD
  No 331(28.5%)
  NERD 383(33.0%)
  RE 446(38.4%)
Hill classification
  Grade I 411 (35.8%)
  Grade II 152 (13.4%)
  Grade III 318 (27.8%)
  Grade IV 262(22.9%)

Fig. 6  Comparison of the average performance of different deep learning (DL) models on the test dataset
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Model training and evaluation results
Figure  7A illustrates the evolution of the loss function 
during training of the high-performing deep learning 
model EfficientNet (hereafter referred to as EfficientNet-
Hill) using five-fold cross-validation. The training data 
were partitioned into five subsets, with one subset serv-
ing as the validation set and the remaining four used for 
training in each fold; the resulting metrics were then 
averaged and plotted. It is evident that the loss continu-
ously declines with increasing iterations and eventually 
stabilizes, indicating steady model convergence. After 
35 epochs, the average loss on the validation set reached 
0.66, as shown in Fig.  7B, while the average accuracy 
attained 82.03%, underscoring its exceptional classifica-
tion performance. Figure  8 further depicts the average 
trends of accuracy, precision, recall, and F1 score across 

the folds during training, providing a clear view of the 
model’s overall stability and performance trajectory.

Model predictive performance on external test set
Utilizing a dataset from the Changshu Hospital Affiliated 
to Soochow University and the Changshu Traditional 
Chinese Medicine Hospital (n = 924), we developed the 
EfficientNet-Hill deep learning model aimed at auto-
mating Hill classification for various gastroesophageal 
flap valve (GEFV) morphologies. To verify the model’s 
generalization capabilities, 219 GEFV images from the 
Changshu Xinzhuang People’s Hospital were used as an 
independent external test set. This independent valida-
tion aids in thoroughly assessing the model’s predictive 
performance in real-world scenarios, while also prevent-
ing overfitting issues.

Fig. 8  Trends in various classification evaluation average metrics of the EfficientNet-Hill model during training. The horizontal axis represents the training 
epochs

 

Fig. 7  Trends in the average loss function of the EfficientNet-Hill model during training and testing. A: Change in the average loss function on the training 
set; B: Change in the average loss function on the test set
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The EfficientNet-Hill deep learning model demon-
strated exceptional automated classification perfor-
mance on the external test set. Particularly notable were 
its results in Hill Grade I and Hill Grade IV categories, 
where it achieved AUC values of 0.994 and 0.980 respec-
tively, showcasing its high discriminative capability. For 
Hill Grade II and Hill Grade III categories, the AUCs 
were 0.969 and 0.964, as shown in Fig.  9A. Overall, the 
model’s macro average precision was 0.848, with a sensi-
tivity of 0.833 and an AUC of 0.977. The weighted aver-
ages for precision, sensitivity, and AUC were 0.840, 0.836, 
and 0.976 respectively, as detailed in Table 3.

As illustrated in the precision-recall (PR) curve in 
Fig.  9B, the model developed in this study exhibited 
excellent performance across different Hill grading cat-
egories. For the Hill Grade I category, the model showed 
high precision (0.951) and a good recall rate (0.886), 
approaching an ideal state. In the Hill Grade II category, 
although precision slightly decreased to 0.824, the recall 
rate remained at a high level (0.778), demonstrating the 
model’s effective recognition ability in this category. For 
Hill Grade III, the model maintained its stability, with 
precision and recall rates of 0.769 and 0.857, respectively. 
In the Hill Grade IV category, while the recall rate slightly 
dropped to 0.812, precision increased to 0.848, maintain-
ing high accuracy. Overall, the model’s macro average and 
weighted average precision were 0.848 and 0.840, respec-
tively, with recall rates of 0.833 and 0.836, and the average 

precision (AP) for each category exceeded 0.900, further 
evidencing the model’s robustness and consistency across 
different categories. Additionally, through the analysis of 
the confusion matrix (as shown in Fig. 10A), we further 
confirmed the model’s classification accuracy and robust-
ness in each Hill grading category.

In this study, although the deep learning (DL) model 
exhibited impressive performance in most cases, there 
were also some notable classification errors. Specifically, 
as illustrated in Fig. 10 and (C), some images marked as 
Hill Grade III were incorrectly predicted as Hill Grade 
IV. Conversely, as shown in the two cases in Fig. 10 and 
(E), the model misclassified images that were actually Hill 
Grade IV as Hill Grade III. These classification discrepan-
cies may stem from overlapping features between image 
categories, unexpected reflections, excessive shooting 
distances, and image blurriness, among other factors.

In our study, to uncover underlying patterns and opti-
mize analysis, we employed t-SNE technology to reduce 
high-dimensional image features to two dimensions. The 
results displayed in Fig.  11 show some overlap between 
green plus signs (representing Hill Grade III) and blue 
diamonds (representing Hill Grade IV). This visual 
overlap explains why the model experiences misclas-
sification between these two categories. It suggests that 
although these two categories are distinguishable in the 
high-dimensional feature space, their features still bear 
certain similarities in the reduced two-dimensional 

Table 3  Classification performance of EfficientNet-Hill on the external test set
Category precision recall(sensitivity) specificity f1-score accuracy AP AUC MCC
Hill I; 0.951 0.886 0.989 0.918 0.886 0.966 0.994 0.899
Hill II 0.824 0.778 0.967 0.800 0.778 0.901 0.969 0.762
Hill III 0.769 0.857 0.879 0.811 0.857 0.931 0.964 0.717
Hill IV 0.848 0.812 0.933 0.83 0.812 0.959 0.980 0.754
macro avg 0.848 0.833 0.942 0.84 0.833 0.939 0.977 0.783
weighted avg 0.840 0.836 0.933 0.836 0.836 0.942 0.976 0.773

Fig. 9  Predictive performance of the model on the external test set. (A) Receiver operating characteristic (ROC) curve; (B) Precision-recall (PR) curve
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space, leading to classification challenges for the model. 
Additionally, the orange circles in the graph (represent-
ing Hill Grade I) are semantically distant from the green 
plus signs (representing Hill Grade III), indicating that 
the model performs well in differentiating these two 
categories.

We further utilized Plotly Express to create an interac-
tive scatter plot showcasing the data reduced by t-SNE 
technology. This scatter plot has been saved as an HTML 
file, which can be visualized and analyzed through a 
browser. The file has been uploaded online and can be 
downloaded via the provided link (​h​t​t​p​​s​:​/​​/​s​h​a​​r​e​​.​w​e​​i​y​u​​
n​.​c​o​​m​/​​5​f​I​I​e​g​t​m). Once users download this HTML file, 
they can intuitively explore the data and model features 
through clicking operations. This interactive visualiza-
tion tool enables users to gain a deeper understanding of 
the data structure and model performance, facilitating a 
comprehensive comprehension of the model’s classifica-
tion capabilities.

Deep learning vs. endoscopists diagnostic performance
In this study, we selected the top three performing deep 
learning models for performance evaluation on an exter-
nal test set containing 219 gastroesophageal flap valve 
(GEFV) images. For comparative analysis, two senior 
endoscopists and two junior endoscopists independently 
assessed these images, as illustrated in Fig. 12. The inter-
rater agreement among the endoscopists was evalu-
ated using Cohen’s κ (Kappa) statistics, yielding a value 
of 0.7805 for senior endoscopists and 0.7132 for junior 
endoscopists.The EfficientNet and Densenet121 mod-
els demonstrated significant accuracy in the automated 
Hill grading task, with accuracy rates of 0.833 and 0.818 
respectively. This was notably superior to the accuracy of 
junior endoscopists (0.758), but slightly lower than that 
of senior endoscopists (0.865). In addition, McNemar’s 

Fig. 11  Two-dimensional semantic feature map of images from the ex-
ternal test set

 

Fig. 10  Performance of the model on the external test set. (A) Confusion matrix: demonstrating the model’s classification accuracy. (B) & (C) Image 
examples: two cases where the model incorrectly classified images with true labels of Hill Grade III as Hill Grade IV. (D) & (E) Image examples: two cases 
where the model incorrectly classified images with true labels of Hill Grade IV as Hill Grade III

 

https://share.weiyun.com/5fIIegtm
https://share.weiyun.com/5fIIegtm
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test was conducted to statistically compare the classifi-
cation performance between the deep learning models 
and the endoscopists. The test revealed a statistically 
significant difference between the models and the junior 
endoscopists (χ² = 8.50, p = 0.0036), whereas no signifi-
cant difference was observed between the models and the 
senior endoscopists (χ² = 0.26, p = 0.6069). In terms of the 
time required for image recognition, these models also 
showed significant efficiency advantages, requiring only 
6.6 to 8.6  seconds, compared to the much longer times 
required by endoscopists (senior 557.2  seconds, junior 
607.2  seconds). The deep learning models significantly 
outperformed doctors in image recognition speed, pro-
viding strong evidence for the use of artificial intelligence 
in assisting medical image analysis.

In this study, we recorded each endoscopist’s judgment 
results and confidence levels and calculated the averages 
for comparison with the model’s performance. A con-
fidence level of 80% or higher was considered high con-
fidence, while values below this threshold were deemed 
low confidence, to ensure the reliability of predictions. 
Taking the EfficientNet-Hill model’s predictions for Hill 
Grade I category as an example, the model demonstrated 
the following performance: of the 36 Hill Grade I images, 
the model correctly predicted 36 with high confidence; 
only 1 Hill Grade I image was incorrectly predicted 
with high confidence. Additionally, there were 4 images 
incorrectly predicted with low confidence, and 3 images 

correctly predicted with low confidence. As illustrated in 
Fig. 13, using Hill Grades I and IV as examples, analyzing 
this visual representation allows for a better understand-
ing of the differences in predictive accuracy and confi-
dence between the model and endoscopists.

Model interpretation
To elucidate the decision-making mechanism of deep 
learning models in Hill classification, the torchcam 
library was utilized in conjunction with the Grad-CAM 
(Gradient-weighted Class Activation Mapping) visual-
ization method. Figure  14 displays: Column A contains 
the original endoscopic images; Column B shows the 
pixel activation heatmaps based on feature extraction by 
EfficientNet-Hill, highlighting the key areas relied upon 
in the model’s decision-making; Column C presents the 
overlay of the activation heatmap on the original images, 
where warm areas (red regions) indicate the key patho-
logical parts identified by the model, signifying higher 
weight assigned by the model during image classification 
judgment; lighter areas (such as yellow and blue) repre-
sent lower weight assigned by the model in the classifica-
tion process.

To gain a deeper understanding of the model’s predic-
tive logic, SHAP (SHapley Additive exPlanations) tech-
nology was employed for analysis. As shown in Fig.  15, 
Subfigure A and Subfigure B are real classifications of Hill 
Grade I and Hill Grade III, respectively. The intensity of 

Fig. 12  Comparison of hill classification accuracy and time between different deep learning models and endoscopists of varying experience. The bar 
graph represents accuracy comparison, while the line graph shows time comparison (in seconds)
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the pixel colors in the figure reflects their contribution to 
the model’s prediction: red indicates a positive contribu-
tion, while blue signifies a negative contribution. In Sub-
figure A, the red areas are more prominent compared to 
the Hill Grade II, III, and IV categories, leading the model 
to accurately classify it as Hill Grade I. Similarly, Subfig-
ure B is accurately predicted as Hill Grade III.

Model-based video prediction and multi-terminal 
deployment
To facilitate convenient deployment of the model on the 
inference engine, we employed transfer learning to train 
a PyTorch deep learning model and converted it into 
the ONNX (Open Neural Network Exchange) format. 
ONNX provides a standardized representation of the 
model, enabling AI researchers to easily deploy and share 
their findings across different platforms and devices. 
This conversion allows our EfficientNet-Hill model to be 
deployed in various environments (such as local comput-
ers, web frontends) for real-time automated Hill grad-
ing of gastroesophageal flap valves (GEFV). Utilizing 
the OpenCV library, each frame is captured in real-time 
from the video source and processed frame by frame 

through the ONNX model for inference. Figure 16 dem-
onstrates the predictive results for a single frame image. 
On the left side of the image, the original scene displays 
the model’s predictions for the top two classifications and 
their corresponding confidence levels in red font at the 
lower left corner. The image on the right shows the confi-
dence level bar charts for each classification. Subfigure A 
and Subfigure B respectively present the model’s predic-
tions and confidence levels for single-frame images with 
true labels of Hill Grade II and Hill Grade IV.

To assess the performance of the EfficientNet-Hill 
model in real-world application scenarios, we randomly 
selected three videos from the external test set (Data-
set 4) for demonstration. Table 4 provides links to these 
videos along with corresponding QR codes, making it 
convenient for users to access the videos via the links 
or watch them by scanning the QR codes. These videos 
intuitively demonstrate the process of the AI model auto-
matically performing Hill grading on gastroesophageal 
flap valve (GEFV) videos on local terminal devices. Video 
1 shows the model’s prediction process with real-time 
heatmap effects. This heatmap visualizes the key areas 
the model focuses on during prediction. Video 2 displays 

Fig. 13  Comparison of predictive results between the EfficientNet model and junior endoscopists on the external test set at different confidence levels. 
Each circle represents a GEFV image, where green and gray signify correct and incorrect predictions, respectively. Solid circles indicate high-confidence 
predictions, while half circles represent low-confidence predictions
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Fig. 15  Interpretability analysis using SHAP. (A) SHAP visualization for the prediction of Hill Grade I; (B) SHAP visualization for the prediction of Hill Grade 
III. Red indicates a positive contribution to the prediction, while blue signifies a negative contribution. When the red areas are significantly more promi-
nent than the blue areas, the image is predicted by the model to be of that category

 

Fig. 14  Interpretability analysis of the automated Hill grading model. Column A displays the original endoscopic images; Column B presents the pixel 
activation heatmaps generated using the Grad-CAM technique; and Column C illustrates the overlay of the original images with the activation heatmaps. 
The first row in the figure features images of Hill Grade I, while the second row displays original images of Hill Grade IV
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the real-time prediction of multiple GEFV images using a 
camera after the model is deployed on a local computer. 
Particularly noteworthy is the model’s high speed during 
inference prediction, averaging over 50 frames per sec-
ond (fps).

Discussion
In this study, we developed seven computer vision (CV) 
models based on deep learning (DL) to automate the Hill 
classification of gastroesophageal flap valve (GEFV) mor-
phologies. Among these models, four are based on Con-
volutional Neural Network (CNN) architectures, while 

Table 4  Real-time prediction of videos by the efficientnet-hill model
Video Links

Online Streaming Link Video 1: ​h​t​t​p​​s​:​/​​/​s​h​a​​r​e​​.​w​e​​i​y​u​​n​.​c​o​​m​/​​m​G​Y​6​c​C​H​W
Video 2: ​h​t​t​p​s​:​​​/​​/​s​h​a​r​​​e​.​w​​e​i​y​u​​​n​.​c​​​o​​m​/​I​D​s​w​q​A​k​4

Scan QR Code to Watch Video Online

This video series (including Video 1 and Video 2) demonstrates the model's effectiveness in real-time Hill classification of gastroesophageal flap valves. In Video 
1, the top left corner displays the model's predictions for the top two categories and their corresponding confidence levels in red font, while a real-time dynamic 
heatmap reveals the key areas of focus for the model. Video 2 showcases the process of real-time inferential prediction on multiple GEFV images displayed on an 
iPad, using a camera after the model is deployed on a local computer

Fig. 16  Predictive results and confidence levels after model deployment, with the left column showing the original images and the right column display-
ing corresponding predictive confidence bar charts. (A) A single frame from a Hill Grade II video. (B) A single frame from a Hill Grade IV video

 

https://share.weiyun.com/mGY6cCHW
https://share.weiyun.com/IDswqAk4
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three utilize Transformer architectures. Utilizing gastro-
scope datasets provided by three large comprehensive 
hospitals in Jiangsu Province, China, we selected 1143 
images and 17 videos, covering GEFV images with Hill 
Grades I, II, III, and IV features, for model development 
and testing. After validation through an external test set, 
the EfficientNet model emerged as the most outstanding. 
This model has been successfully deployed on multiple 
terminal devices, achieving real-time video prediction 
capabilities with an average inference speed of over 50 
frames per second (fps). Comparisons with endoscopists 
of varying experience levels in diagnostic performance 
highlighted the potential of this model in clinical applica-
tions. Our research conducted a comparative assessment 
of CNN and Transformer in automated Hill grading, 
identifying the optimal model and covering the complete 
process from model development and testing to inter-
pretability analysis and multi-end deployment.

In endoscopic diagnosis of gastroesophageal reflux 
disease (GERD) patients, it’s crucial to comprehensively 
consider different subtypes of GERD, potential complica-
tions, and other related anatomical abnormalities. This 
includes assessing the condition of the gastroesophageal 
flap valve (GEFV) and the presence of hiatal hernia. In 
the diagnostic process of GERD, patients presenting with 
reflux and heartburn symptoms may initially be diag-
nosed with GERD, but in reality, more than one-third of 
such patients do not exhibit the pathological characteris-
tics of GERD. Therefore, a definitive diagnosis of GERD 
relies on more objective evidence of esophageal reflux. 
Endoscopic examination can reveal GERD complica-
tions such as erosive esophagitis and also helps in ruling 
out other diseases like tumors. However, in assessing the 
morphology of the esophagogastric junction (EGJ), endo-
scopic descriptions are often limited to the presence of 
hiatal hernia (i.e., Hill Grade IV) and lack accuracy and 
repeatability, especially in minor lesions [28, 29]. Fur-
thermore, even in the absence of a hiatal hernia, the mere 
disappearance of GEFV (i.e., Hill Grade III) may also be 
associated with pathological GER and erosive esopha-
gitis. This indicates that for patients exhibiting GERD 
symptoms, relying solely on the presence or absence of 
a hiatal hernia in endoscopic reports is insufficient; a 
detailed assessment of Hill classification is also necessary. 
While Hill classification has high consistency in clini-
cal observations and numerous advantages, information 
about GEFV is rarely routinely recorded in endoscopic 
reports. Therefore, refining the assessment of Hill clas-
sification is of significant importance for more accurate 
diagnosis and understanding of GERD.

The application of deep learning in the field of gas-
trointestinal endoscopy has demonstrated its immense 
potential in gastroenterological endoscopic diagnosis. In 
this study, we utilized the advanced deep learning model 

EfficientNet-Hill for the automated Hill classification of 
gastroesophageal flap valve (GEFV) images. On a exter-
nal test set comprising 219 GEFV images, the model 
achieved an accuracy of 0.833, surpassing the 0.758 
accuracy of junior endoscopists and closely approaching 
the 0.865 accuracy of senior endoscopists. More impor-
tantly, in terms of image processing speed, the model 
required only 8.6  seconds to complete the recognition 
task for the entire external test set, showing a significant 
speed advantage compared to endoscopists. The use of 
the ONNX format enhanced the model’s interoperabil-
ity across deep learning frameworks, enabling successful 
deployment on various computing platforms, including 
local computers and web frontends. While achieving 
processing speeds of over 50 frames per second (fps), 
the model ensured real-time and accurate lesion classi-
fication. This efficient automatic classification approach, 
which does not require additional hardware investments, 
provides technical support to resource-limited endos-
copy centers, enhancing the speed and accuracy of medi-
cal image analysis. The future clinical application of this 
AI model paves the way for routine detailed Hill classifi-
cation of GEFV in gastroscopy reports.

In this study, we found that CNN models significantly 
outperformed Transformer models in the task of auto-
mated Hill classification. Despite the excellent perfor-
mance of Transformer models in many NLP and image 
processing tasks [30, 31], traditional CNN structures like 
EfficientNet surpassed the best Transformer models in 
key performance metrics such as Accuracy, Precision, 
Recall, and F1-Score. This outcome can be attributed to 
the advantages of CNN models, particularly Efficient-
Net, in capturing local structures and spatial hierarchies 
in images [32, 33], which is especially critical in GEFV 
image classification. On the other hand, Transformer 
models, especially the Vision Transformer (ViT), typically 
require large datasets to unlock their potential [34]. With 
smaller datasets, EfficientNet might more effectively pre-
vent overfitting, hence showing better performance on 
the test set. In the future, we plan to incorporate more 
GEFV images to further explore the potential of Trans-
former architecture models.

In this study, we conducted a thorough interpretability 
analysis of the EfficientNet-Hill model, utilizing two tech-
niques: Grad-CAM and SHAP. Although deep learning 
models are often considered inscrutable "black boxes," 
with the help of the torchcam library and Grad-CAM, we 
visualized key decision areas in the automated Hill clas-
sification model for GEFV morphologies. By analyzing 
the dynamic heatmaps generated by the model during 
the processing of GEFV endoscopic videos, we revealed 
the primary focus areas of the model during prediction. 
Additionally, using SHAP technology, we detailed the 
impact of each pixel on the prediction outcome. These 



Page 17 of 18Chen et al. BMC Medical Informatics and Decision Making          (2025) 25:144 

visualization techniques not only deepened our under-
standing of the model’s decision-making mechanisms but 
also provided a basis for further improvements and opti-
mizations of the model.

Although this study provides new insights into using 
deep learning for the automatic Hill grading of the gas-
troesophageal flap valve, several challenges remain. The 
dataset is limited to a single region, which may affect gen-
eralizability across diverse populations; future research 
will incorporate multi-center data to address this. The 
current gold standard relies on consensus diagnoses by 
endoscopists, and despite multiple expert reviewers min-
imizing subjectivity, inter-observer variability remains a 
challenge; integrating objective physiological measure-
ments such as impedance-pH monitoring could serve as 
a complementary validation standard. Additionally, while 
Hill classification is typically performed in real time, our 
model was trained on static images, limiting its ability to 
account for dynamic factors like peristalsis and respira-
tion. To address this, we deployed the model for real-time 
video inference at over 50 fps and aim to further optimize 
video analysis for integration into live endoscopic work-
flows to enhance AI-assisted decision-making.

Conclusions
Our research employed deep learning (DL) technology 
to assess the function of gastroesophageal flap valves 
(GEFV), developing a four-category deep learning model 
(EfficientNet-Hill) based on the Hill classification. The 
study encompassed the entire process of model devel-
opment, validation, testing, interpretability analysis, and 
multi-end deployment. On an independent external test 
set, EfficientNet-Hill achieved an accuracy of 83.32% 
and a precision of 84.81%, surpassing the performance 
of junior endoscopists. Moreover, the model’s inference 
speed significantly exceeded that of endoscopists with 
varying levels of experience, averaging over 50 fps. Given 
the importance of Hill classification in the assessment of 
gastroesophageal reflux disease (GERD) and its relative 
absence in routine endoscopic reports, our model has 
the potential to assist junior endoscopists in more rap-
idly mastering Hill classification skills and to promote its 
widespread application in clinical practice.
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