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Abstract
Background  Identification of prognostic factors for diabetes complications are crucial. Glucose variability (GV) and 
its association with diabetes have been studied extensively but the inclusion of measures of glucose variability (GVs) 
in prognostic models is largely lacking. This study aims to assess which GVs (i.e., coefficient of variation (CV), standard 
deviation (SD), and time-varying) are better in predicting diabetic complications, including cardiovascular disease 
(CVD), diabetic retinopathy (DR), and chronic kidney disease (CKD). The model performance between traditional 
statistical models (adjusting for covariates) and machine learning (ML) models were compared.

Methods  A retrospective cohort of type 2 diabetes (T2D) patients between 2010 and 2019 in Ramathibodi Hospital 
was created. Complete case analyses were used. Three GVs using HbA1c and fasting plasma glucose (FPG) were 
considered including CV, SD, and time-varying. Cox proportional hazard regression, ML random survival forest (RSF) 
and left-truncated, right-censored (LTRC) survival forest were compared in two different data formats (baseline and 
longitudinal datasets). Adjusted hazard ratios with 95% confidence intervals were used to report the association 
between three GVs and diabetes complications. Model performance was evaluated using C-statistics along with 
feature importance in ML models.

Results  A total of 40,662 T2D patients, mostly female (61.7%), with mean age of 57.2 years were included. After 
adjusting for covariates, HbA1c-CV, HbA1c-SD, FPG-CV and FPG-SD were all associated with CVD, DR and CKD, 
whereas time-varying HbA1c and FPG were associated with DR and CKD only. The CPH and RSF for DR (C-indices: 
0.748–0.758 and 0.774–0.787) and CKD models (C-indices: 0.734–0.750 and 0.724–0.740) had modestly better 
performance than CVD models (C-indices: 0.703–0.730 and 0.698–0.727). Based on RSF feature importance, FPG GV 
measures ranked higher than HbA1c GV, and both GVs were the most important for DR prediction. Both traditional 
and ML models had similar performance.

Conclusions  We found that GVs based on HbA1c and FPG had comparable performance. Thus, FPG GV may be used 
as a potential monitoring parameter when HbA1c is unavailable or less accessible.
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Background
Diabetes is increasing worldwide with 537 million adults 
living with diabetes, the majority of them in low- and 
middle-income countries [1]. This will lead to a fur-
ther increase in healthcare burden as the cost of illness 
increases, particularly as patients develop diabetes com-
plications [2]. Identifying diabetes complications early is 
thus important in diabetes management in order to delay 
disease progression [3]. Studies that explore the prognos-
tic factors for diabetic complications and develop prog-
nostic models may help to risk-stratify diabetic patients 
and help clinicians in management and decision-making 
[4, 5].

Haemoglobin A1c (HbA1c), measures average gly-
cemic control in the past three months, and is a widely 
used biomarker in diabetic monitoring and prognostic 
modelling. However, HbA1c reliability will be affected 
by conditions that are related to red blood cell turnover, 
such as pregnancy or anaemia [6]. Recently, many studies 
explored the use of visit-to-visit glucose variability (GV) 
as an additional predictor for diabetes complications, 
based either on HbA1c or fasting plasma glucose (FPG) 
[7–9]. Coefficient of variation (CV) and standard devia-
tion (SD) of HbA1c and FPG are the most commonly 
reported visit-to-visit measures of GV (GVs) [7, 10, 11].

Many prognostic models have been developed for dia-
betes complications (e.g., cardiovascular disease (CVD), 
diabetes retinopathy (DR) and chronic kidney disease 
(CKD)) using traditional statistical models [12, 13]. There 
has been increasing interest in the analysis of multi-
dimensional healthcare data, with linear or non-linear 
relationships, using machine learning (ML) models in 
the prediction of diabetes complications [14–16]. How-
ever, published ML prognostic models have not included 
MGVs among their predictors. Only one study used GVs 
in traditional statistical models (Cox proportional haz-
ards, CPH) and multiple logistic regression [7]; their 
prognostic model performance, as measured by C-sta-
tistics, ranged between 0.67 and 0.87 [12, 13]. Moreover, 
in resource-limited settings, particularly in developing 
countries where HbA1c testing is less accessible, the use 
of FPG-GV could be advantageous.

Hence, this study aims to assess and compare the abil-
ity of different GVs based on HbA1c or FPG, specifi-
cally CV, SD and time-varying, to predict type 2 diabetes 
(T2D) complications (i.e. CVD, DR and CKD); we used 
both traditional statistical models (CPH regression) and 
machine learning models (random survival forest (RSF) 
and left-truncated and right-censored survival (LTRC) 
forest).

Methods
Study population
This study utilized a retrospective cohort design, using 
a real-world T2D clinical cohort from the Ramathibodi 
Hospital, a tertiary care center in Thailand [17]. Data 
related to patient demographics, diagnosis, laboratory 
results, and medications were extracted from January 
2010 to December 2019. The dataflow of cohort creation 
is shown in Fig. 1. Ethics approval from the Institutional 
Review Board of Faculty of Medicine, Ramathibodi 
Hospital was obtained prior to conducting the research 
(COA.MURA 2022/100 and COA.MURA2022/474).

Patients who were diagnosed with T2D based on 
International Classification of Diseases version (ICD) 
10 (see Supplement Table  1), prescribed any diabetes 
medications (see Supplement Table  2), or who had any 
of the following: FPG ≥ 7.0 mmol/L in two consecutive 
tests, 2-hour post prandial glucose ≥ 11.1 mmol/L, or 
HbA1c ≥ 6.5%, were included in the study. In addition, 
patients had to have at least two readings of HbA1c or 
FPG in the first two years for the purpose of calculating 
GVs. Patients who were on dialysis or had the outcome 
of interest at the first visit were excluded from the study.

Two types of dataset were created. Firstly, the “base-
line dataset” used baseline covariates and “naïve method” 
GVs; these included HbA1c-CV, HbA1c-SD, FPG-CV 
and FPG-SD. GVs for the baseline dataset which were 
referred as “naïve method” GV measures. They were cal-
culated using HbA1c or FPG readings in the first two 
years of visit. We included one GV in each of the models. 
The formula used for CV and SD calculations are shown 
below [18]:

	
CV =

Standard deviation
Mean√

N
N−1

; N = total number of visits

Secondly, a “longitudinal dataset” used time-varying FPG 
and HbA1c in a time to event model (described below).

Outcomes of interest
The diabetic complications (CVD, CKD and DR) were 
identified using their respective ICD 9 and 10 codes, see 
Supplement Table 1. In addition, patients with glomeru-
lar filtration rate < 60 mL/min/1.73m2 for more than 3 
consecutive readings in 6 months were classified as hav-
ing CKD.

Covariates
The included covariates were age, gender, insurance 
scheme, body mass index (BMI), total cholesterol, low-
density lipoprotein (LDL), high-density lipoprotein 
(HDL), triglyceride, haemoglobin, systolic and diastolic 
blood pressure (SBP/DBP), hypertension, dyslipidemia, 
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presence of T2D complications (CVD, DR, or CKD) prior 
to the outcome of interest, medication use in terms of 
drug classes (biguanides, sulphonylurea, insulin, alpha-
glucosidase inhibitors, dipeptidyl peptidase-4 inhibitors 
(DPP-4i), glucagon-like peptide-1 agonists (GLP1-RA), 
thiazolidinedione (TZD), sodium-glucose cotrans-
porter-2 inhibitors (SGLT2i), meglitinides, statins) and 
the number of antihypertensive drugs.

Models
We compared traditional statistical CPH models with ML 
models in both baseline and longitudinal datasets. For 
the baseline dataset, CPH and RSF were used, whereas 
for the longitudinal dataset, CPH and left-truncated right 
censor (LTRC) random forest were used.

The CPH model was used because it is a semi-paramet-
ric model which is commonly applied for time-to-event 
outcomes in medical research. It is more flexible than 
parametric survival models because it requires only the 
proportional hazards assumption. RSF and LTRC models 
were used due to their ability to effectively handle non-
linear associations and high-order interactions among 
covariates. These become increasingly complex and dif-
ficult to interpret in the CPH model, particularly with 
more than three-way interactions.

Data analysis
Data were reported in number and percentage for cat-
egorical variables, and mean and SD for continuous 
variables. We utilized survival analysis to model time-
to-event data. For the baseline dataset, the patient’s first 
entry in the retrospective cohort was taken. All the vis-
its were included in the longitudinal dataset for time-
varying GVs. For modeling and evaluation, the data were 
divided into training and test sets in a 70:30 ratio.

A CPH model was applied by regressing each GV (i.e., 
GV-SD and GV-CV) on complication for baseline data, 
whereas time-varying GV was used for longitudinal data. 
A total of 26 covariates were also considered for feature 
selection: First, a simple CPH model was constructed by 
fitting each of covariates in the model. Second, a mul-
tivariate CPH model was performed simultaneously 
including covariates whose p-values < 0.2 in the first step. 
Only clinical and/or statistically significant covariates 
(p-value < 0.05) by a likelihood ratio test were retained in 
the final model [19]. Adjusted hazard ratios (HR) along 
with 95% confidence interval (CI) were estimated and 
reported. Schoenfeld residuals were used to check for the 
proportional hazard assumption.

For ML models, RSF was used with the baseline dataset 
to find the association between either GV-CV or GV-SD 
and diabetic complications. Covariates with a univariate 

Fig. 1  Dataflow of T2D cohort
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CPH p-value < 0.2 were simultaneously included in 
the RSF model alongside GV-CV and GV-SD. Inter-
nal feature selection was performed based on feature 
importance and model optimization. Hyperparameter 
tuning for RSF was performed using the “Randomized-
SearchCV” function in sklearn package [20].

Longitudinal data were analyzed using a random-effect 
CPH model and LTRC forest incorporating time-varying 
GVs and time-varying confounders. Feature selection 
mirrored the baseline analysis. Hyperparameter tuning 
for LTRC forest was performed manually as there was 
no readily available function, see more details in Supple-
ment Table  3. Model performance was evaluated with 

C-statistic, which measured model discriminative perfor-
mance and classified as poor, fair, good, and excellence if 
it was < 0.6, 0.6-<0.7, 0.7- <0.8, ≥ 0.8, respectively [21].

The integrated Brier score was also used to assess the 
calibration of LTRC forest, where 0 reflects the model 
is well calibrated. All analyses were performed based on 
complete case data. CPH was performed using R® soft-
ware (survival package v3.6). RSF was performed using 
Python® 3.8 with sksurv package version 0.17.1 and LTRC 
forest v0.7.0. P-value of less than 0.05 was considered as 
statistically significant.

Results
A total of 40,662 patients with T2D fulfilled our eligibil-
ity criteria between 2010 and 2019; most were female 
(61.7%), with a mean age of 57.2 years, were covered by 
the government insurance scheme (50.3%), and were 
obese (mean body mass index 28.1 kg/m2), see Table 1. 
FPG and HbA1c were measured approximately every 
3–6 month interval with overall mean within two-year 
interval of 153.2 (78.6) and 7.7 (2.0), respectively. A total 
of 3,921 (9.6%), 2,305 (5.7%), and 4,594 (11.3%) patients 
developed CVD, DR, and CKD respectively.

CVD
Of 40,662 in the complete-case dataset, 3,921 patients 
developed CVD. For baseline data, a simple CPH model 
was applied to all four “naïve method” GVs (i.e. HbA1c-
CV, HbA1c-SD, FPG-CV and FPG-SD), and 23 out of 
26 covariates were shown to be significant, see Supple-
mentary Table 4. Each of GVs plus 23 covariates were 
simultaneously included in multivariate CPH models, see 
Fig.  2a and d. All the “naïve method” GVs were signifi-
cantly associated with CVD but HbA1c-CV yielded high-
est HR following by FPG-CV with the HRs (95% CI) of 
4.332 (2.065, 9.085) and 3.792 (2.665, 5.396), respectively; 
whereas FPG-SD was poorestly performed with HR of 
1.003 (1.002–1.004), as judges by the HRs. In addition, 
male, age, use of statins and SGLT2i, DR at baseline, SBP 
and number of antihypertensives were also associated 
with increased risk of developing CVD. The use of bigua-
nides, on the other hand, was associated with a decreased 
risk of CVD. C-indices for HbA1c-CV, HbA1c-SD, FPG-
CV and FPG-SD in the training set were 0.722, 0.721, 
0.728, and 0.725, respectively, while those in the test set 
were 0.704, 0.703, 0.709, and 0.706.

The RSF models were constructed based on selected 
hyperparameters and their performance is shown in 
Table 2. The C-indices in the training set for HbA1c-CV, 
HbA1c-SD, FPG-CV, and FPG-SD models were 0.764, 
0.761, 0.772 and 0.770; these corresponding values in 
the test set were 0.727, 0.726, 0.708, and 0.698. However, 
permutation feature importance suggested that HbA1c-
CV, HbA1c-SD, FPG-CV and FPG-SD were ranked at 

Table 1  Baseline patient characteristics
N = 40,662

Age (years), mean (SD) 57.2 (13.9)
Male, n (%) 15,560 (38.3)
Insurance scheme, n (%)
  Civil servant scheme 16,220 (50.3)
  National health insurance 3,774 (11.7)
  Social security insurance 1,229 (3.8)
  Others 11,043 (34.2)
Body mass index (kg/m2), mean (SD) 28.1 (5.7)
Lab investigations, mean (SD)
  Total cholesterol (mg/dL) 198.4 (63.2)
  Low-density lipoprotein cholesterol (mg/dL) 129.3 (42.0)
  High-density lipoprotein cholesterol (mg/dL) 47.0 (13.0)
  Triglyceride (mg/dL) 171.6 (158.1)
  HbA1c (%) 7.7 (2.0)
  FPG (mg/dL) 153.2 (78.6)
  HbA1c-CV 0.07 (0.08)
  HbA1c-SD 0.67 (0.87)
  FPG-CV 0.12 (0.14)
  FPG-SD 25.98 (40.67)
  Haemoglobin level (mg/dL) 13.21 (1.68)
  Uric acid (mg/dL) 5.95 (1.80)
  Systolic blood pressure (mmHg) 141.92 (20.17)
  Diastolic blood pressure (mmHg) 83.14 (9.62)
Comorbidities, n (%)
  Hypertension 27,617 (67.9)
  Hyperlipidemia 27,363 (67.3)
Medication use, n (%)
  Biguanides 23,615 (58.1)
  Sulphonylurea 7,752 (19.1)
  Insulin 3,305 (8.1)
  Alpha-glucosidase inhibitors 2,540 (6.2)
  Dipeptidyl peptidase-4 inhibitors 2,838 (7.0)
  Glucagon-like peptide-1 agonists 138 (0.3)
  Thiazolidinediones 2,290 (5.6)
  Sodium-glucose cotransporter-2 inhibitors 250 (0.6)
  Meglitinides 53 (0.1)
  Statins 18,648 (45.9)
CV: Coefficient of variation; FPG: Fasting plasma glucose HbA1c: Haemoglobin 
A1c; SD: standard deviation
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17, 17, 12 and 11 out of 23, respectively (see Supplement 
Table  5). FPG GVs had higher concordance and also 
ranked higher in permutation importance as important 
variables.

For the longitudinal dataset, CPH models were con-
structed by fitting time-varying HbA1c and FPG in the 
model indicating both features were not significant, with 
HRs (95% CI) of 1.009 (0.964, 1.055) and 1.000 (0.999, 
1.001), see Fig. 2e f. In addition, male, age, use of statins, 
insulin and SGLT2i, baseline DR, and number of anti-
hypertensives were also associated with CVD risk. Con-
versely, high SBP, HDL, haemoglobin, and the use of 

biguanides were associated with decreased CVD risk. 
C-indices for these two corresponding CPH models in 
training and test sets were 0.726 and 0.730; and 0.726 and 
0.730, respectively.

LTRC forest was manually tuned with a selected num-
ber of trees and tree depth of 16 and 6, respectively. LTRC 
forest results showed that increasing the number of trees 
could improve the integrated Brier score and concor-
dance, but at the same time, the training time increased 
substantially, see Supplement Table 6. However, increas-
ing node depth increased the difference in integrated 
Brier score and concordance between training and test 

Fig. 2  Hazard ratios for cardiovascular disease (CVD) outcomes. BMI: Body mass index; CI: confidence interval; CKD: Chronic kidney disease; CV: Coefficient 
of variation; CVD: Cardiovascular disease; DR: Diabetic retinopathy; DPP-4: Dipeptidyl peptidase 4; FPG: Fasting plasma glucose; HbA1c: Haemoglobin A1c; 
HDL-C: high-density lipoprotein cholesterol; HR: hazard ratio; NHSI: National health insurance; SBP: Systolic blood pressure; SD: standard deviation; SGLT2: 
sodium-glucose cotransporter-2; SSI: Social security insurance
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sets, which is a sign of model overfitting. Discrimination 
performance was poor in both HbA1c and FPG models 
with the C-index for the training and test sets of 0.534 
and 0.468; and 0.564 and 0.484, respectively.

Discriminative performance for all models is summa-
rized in Table  3. Comparing different GVs in the CPH 
models, HbA1c-TV (time-varying) yielded higher dis-
crimination than HbA1c-SD and Hb1A1c-CV. In addi-
tion, FPG-TV had similar result HbA1C-TV and were 
slightly better than RSF, but much better than LTRC for-
est model.

DR
Of 40,662 in the complete-case dataset, 2,305 patients 
developed DRs. A simple CPH model was applied to all 
four “naïve method” GVs (i.e. HbA1c-CV, HbA1c-SD, 
FPG-CV and FPG-SD), and 20 of 26 covariates were 
shown to be significant, see Supplementary Table 4. Fig-
ure 3a and d show the summary of all HRs indicating all 
the “naïve method” GVs were significantly associated 
with DR. Increase in glucose variability was associated 
with an increased risk of developing DR, with hazard 
ratios (95% CI) of 7.356 (2.679, 20.203), 1.199 (1.093, 
1.317), 3.364 (2.041, 5.544), and 1.003 (1.001–1.004) for 
HbA1c-CV, HbA1c-SD, FPG-CV, FPG-SD, respectively. 
In addition, SBP, use of insulin, TZD, sulphonylurea, 
and CVD at baseline were associated with an increased 
risk of developing DR. Conversely, increase in age, BMI 
and haemoglobin were associated with a decreased risk 
of DR. C-indices for HbA1c-CV, HbA1c-SD, FPG-CV 
and FPG-SD in training set were 0.739, 0.739, 0.737, and Ta
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Table 3  The model performance using the C-index for each 
complication and glycemic variability in the test set
Complication GV Models

CPH RSF LTRC-forest
CVD HbA1c-CV 0.704 0.727 -

HbA1c-SD 0.703 0.726 -
HbA1c-TV 0.730 - 0.468
FPG-CV 0.709 0.708 -
FPG-SD 0.706 0.698 -
FPG-TV 0.730 - 0.484

DR HbA1c-CV 0.755 0.774 -
HbA1c-SD 0.753 0.776 -
HbA1c-TV 0.758 - 0.612
FPG-CV 0.754 0.787 -
FPG-SD 0.748 0.784 -
FPG-TV 0.748 - 0.678

CKD HbA1c-CV 0.735 0.724 -
HbA1c-SD 0.734 0.736 -
HbA1c-TV 0.750 - 0.579
FPG-CV 0.739 0.740 -
FPG-SD 0.736 0.738 -
FPG-TV 0.750 - 0.555
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0.740, respectively, while those in the test set were 0.755, 
0.753, 0.754, and 0.748.

For RSF models, C-indices of respective models in 
the training set for HbA1c-CV, HbA1c-SD, FPG-CV, 
and FPG-SD were 0.835, 0.833, 0.844 and 0.847 whereas 
C-indices for these corresponding models in the test set 
were 0.774, 0.776, 0.787 and 0.784, see Table 3. Permuta-
tion feature importance showed that all GVs were ranked 
as the 1st out of 21 features (see Supplement Table 5).

For the longitudinal dataset, both time-varying HbA1c 
and FPG were significantly associated with DR in their 
respective CPH models, with HRs (95% CI) of 1.150 
(1.097, 1.206) and 1.001 (1.000, 1.002), see Fig.  3e  f. In 
addition, the use of sulphonylurea, insulin, TZD, and 
prior CVD were associated with increased risk of devel-
oping DR whereas age, BMI and haemoglobin were asso-
ciated with a decreased risk of DR. C-indices for the 
model with time-varying HbA1c and FPG in training 

Fig. 3  Hazard ratios for diabetes retinopathy (DR) outcomes. BMI: Body mass index; CI: confidence interval; CKD: Chronic kidney disease; CV: Coefficient of 
variation; CVD: Cardiovascular disease; DR: Diabetes retinopathy; DPP-4: Dipeptidyl peptidase 4; FPG: Fasting plasma glucose; HbA1c: Haemoglobin A1c; 
HDL-C: high-density lipoprotein cholesterol; HR: hazard ratio; NHSI: National health insurance; SBP: Systolic blood pressure; SD: standard deviation; SGLT2: 
sodium-glucose cotransporter-2; SSI: Social security insurance
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and test sets were 0.794 and 0.758: and 0.781 and 0.748, 
respectively.

LTRC forest was manually tuned with a selected num-
ber of trees and tree depth of 16 and 10 for the HbA1c 
model and 32 and 10 for the FPG model. Increasing the 
number of trees improved the integrated Brier score and 
concordance, but at the same time, the time for build-
ing the model increased to as high as 5.7 h, see Supple-
ment Table  6. An increase in the node depth, however, 
increased the difference in integrated Brier score and 
concordance between training and test sets, again indi-
cating overfitting. C-indices in the training and test sets 
were 0.823 and 0.612 for HbA1c models, and 0.812 and 
0.678 for FPG models.

Among the CPH models, most HbA1c yielded bet-
ter discrimination than FPG, but they performed more 
poorly relative to HbA1c -CV and HbA1c -SD in the RSF 
models, see Table 3.

CKD
Of 40,662 in the complete-case dataset, 4,594 patients 
developed CKD. Simple CPH of four “naïve method” GVs 
(i.e. HbA1c-CV, HbA1c-SD, FPG-CV and FPG-SD) and 
23 of 26 covariates were significant, Supplementary Table 
4. All the “naïve method” GVs were significant in the 
multivariable CPH models (see Fig. 4a and d) with haz-
ard ratios (95% CI) of 4.871 (2.133, 11.122), 1.161 (1.075, 
1.254), 3.653 (2.480, 5.380), 1.003 (1.002, 1.004) for 
HbA1c-CV, HbA1c-SD, FPG-CV, FPG-SD, respectively. 
Age, male, BMI SBP, hypertension, use of insulin and 
DPP-4i, and prior CVD and DR, were associated with 
increased CKD risk. Biguanides use and haemoglobin 
were associated with a decreased risk of CKD. C-indi-
ces for HbA1c-CV, HbA1c-SD, FPG-CV and FPG-SD in 
training set were 0.746, 0.746, 0.752, and 0.748, respec-
tively, while in test set were 0.735, 0.734, 0.739, and 0.736.

RSF models yielded C-indices in the training dataset for 
HbA1c-CV, HbA1c-SD, FPG-CV, and FPG-SD of 0.845, 
0.782, 0.775 and 0.784; these corresponding values in the 
test set were 0.724, 0.736, 0.740, and 0.738, see Table 3. 
Permutation feature importance showed that HbA1c-CV, 
HbA1c-SD, FPG-CV and FPG-SD were ranked at 8, 7, 6 
and 3 out of 24 features, respectively (see Supplement 
Table 5).

CPH models of both time-varying HbA1c and FPG 
were not significantly associated with CKD, with HRs 
(95% CI) of 1.060 (1.014, 1.108) and 1.001 (1.000, 1.002), 
see Fig.  4e  f. Moreover, age, male, BMI, SBP, hyperten-
sion, use of sulphonylurea, insulin and DPP4-i, and 
prior CVD or DR were associated with increased CKD 
risk whereas haemoglobin and statins use were associ-
ated with decreased CKD risk. C-indices in training 
and test sets were 0.776 and 0.750 for the model using 

time-varying HbA1c, while 0.775 and 0.750 for the time-
varying FPG model.

LTRC forest was manually tuned and a selected num-
ber of trees and tree depth of 32 and 10 for the HbA1c 
model, and 16 and 10 for the FPG model, see Supplement 
Table  6. Increasing the number of trees improved the 
integrated Brier score and concordance, but the training 
time increased. An increase in the node depth indicated 
model overfitting again, with the C-indices for HbA1c 
model in the training and test sets of 0.717 and 0.579, and 
for the FPG model of 0.705 and 0.555.

Comparing discriminative performance among dif-
ferent GVs indicated that FPG-TV and HbA1c-TV were 
better than FPG-CV in the CPH models. However, all the 
CPH models performed better than the RSF and LTRC-
forest models, see Table 3.

Discussion
We conducted the study to assess which GVs could best 
predict complications of T2D. Based on baseline data, all 
four GVs (i.e., HbA1c-CV, HbA1c-SD, FPG-CV and FPG-
SD) were associated with all three diabetes complications 
of CVD, DR and CKD with well discriminate perfor-
mance, whereas time-varying HbA1c and FPG were only 
associated with DR and CKD with poor and fair discrimi-
nate performance [21, 22], respectively. Among the three 
complications, the DR and CKD models had margin-
ally better performance than CVD models. Among the 
GVs, CPH models using FPG-CV achieved the highest 
c-indices while feature importance in RSF ML indicated 
that FPG-SD was ranked highest in predicting T2D-
complications, followed closely by FPG-CV. The RSF ML 
model performed slightly better than the CPH model 
for DR. The models based on longitudinal data showed 
again marginally better performance in prediction of DR 
and CKD but not for CVD than models based on base-
line data. Overall, the best models for the prediction of 
CVD, DR, and CKD were FPG-CV with CPH, FPG-CV 
with RSF, and FPG-TV with CPH, respectively. Permuta-
tion feature importance indicated that GV might be most 
useful for predicting DR (first rank) and CKD (third rank) 
compared to CVD (11th rank).

GVs based on HbA1c and FPG were very close in prog-
nostic performance. Unmet needs for diabetes cascade 
of care (i.e. testing, diagnosis, treatment and control) in 
28 low- and middle-income countries was shown to be 
high, which indicates a need for improvement [23]. In 
terms of diabetes monitoring, a study in Thailand showed 
that FPG was more widely used than HbA1c (89.1s% ver-
sus 76.8%) [24]. We postulate that HbA1c might not be 
widely used or monitored in resource-limited settings 
due to the cost constraints. Hence, the use of actual FPG, 
FPG-CV, or FPG-SD could be a reasonable substitute for 
HbA1c in diabetes monitoring and prognostication, and 
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may even show advantages among patients with diabetes 
and CKD as anemia is common among CKD patients, 
which will affect the reliability of HbA1c [25].

Published prognostic models for DR and CKD showed 
that C-indices for DR are generally higher than CKD in 
the development phase, internal validation phase and 
external validation phase (DR: 0.82, 0.83, 0.81 vs. CKD: 
0.78, 0.79, 0.75) [13]. For prognostic models for CVD, 
studies reported C-indices ranging from 0.64 to 0.80, 
with a pooled C-index of 0.67 [12]. DR and CKD prog-
nostic models have better performance as compared to 

CVD models. One possible explanation is that CVD has a 
more complex mechanism or pathophysiology. Thus, fur-
ther studies need to explore other risk factors that could 
be included to improve the predictive ability of CKD and 
CVD models. In our study, DR models developed using 
RSF performed the best, but these still need external 
validation.

The HRs estimated based on baseline data for HbA1c-
CV, HbA1c-SD, FPG-CV, and FPG-SD are generally 
higher than those obtained using time-varying HbA1c or 
FPG in the longitudinal dataset. In other words, the effect 

Fig. 4  Hazard ratios for chronic kidney disease (CKD) outcomes. BMI: Body mass index; CI: confidence interval; CKD: Chronic kidney disease; CV: Coef-
ficient of variation; CVD: Cardiovascular disease; DR: Diabetes retinopathy; DPP-4: Dipeptidyl peptidase 4; FPG: Fasting plasma glucose; HbA1c: Haemo-
globin A1c; HDL-C: high-density lipoprotein cholesterol; HR: hazard ratio; NHSI: National health insurance; SBP: Systolic blood pressure; SD: standard 
deviation; SGLT2: sodium-glucose cotransporter-2; SSI: Social security insurance
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sizes are “diluted” when estimated based on longitudinal 
data. This is not surprising because the longitudinal data 
takes into account all changes of these GVs over time 
during follow up. When we performed proportional-
ity assumption checks on the GVs, we observed that the 
assumption was sometimes violated in the baseline data-
set (all GVs in CKD models; HbA1c-CV and HbA1c-SD 
from DR models) and in the longitudinal dataset (only 
FPG in CKD model). Thus, the longitudinal dataset is 
more reliable as most of the models in the baseline data-
set did not fulfill the proportional hazard assumption. 
This may explain the higher C-indices in the longitudinal 
dataset for DR and CKD models compared to baseline 
dataset models. On the other hand, if there is only base-
line data, RSF models are more reliable when there is a 
violation of the proportional hazard assumption.

One of the strengths of this study is that we utilized sev-
eral MGVs (naïve method and time-varying) to explore 
the predictive ability of each GV measure on three diabe-
tes complications. Furthermore, we utilized two different 
datasets – baseline and longitudinal, where the baseline 
dataset requires less computational power but the longi-
tudinal dataset included time-varying covariates which 
can handle non-proportional hazards. We also included 
two different ML models to compare the performance 
with CPH regression. As a result, we identified that FPG 
was a better parameter than HbA1c, and FPG-CV in the 
CPH or RSF models performed best for clinical prog-
nostication. Nonetheless, this study has its limitations. 
The ML models, particularly the LTRC forest, showed 
evidence of overfitting, with substantial discrepancies 
between training and testing C-indices. To mitigate this, 
further model tuning and validation are required using 
expanded datasets (internal data with increased observa-
tions and external datasets from diverse settings). Fur-
thermore, the single-center design, based on a tertiary 
care hospital in Thailand, limits the generalizability of 
our findings to other populations and healthcare systems, 
both within and outside of Asia. External validation is 
therefore necessary.

Conclusions
Different modalities were used to create GVs – using 
both naïve and time-varying methods. GVs using both 
HbA1c and FPG performed similarly; hence, FPG GV 
can be used as a monitoring and prognostic parameter 
when HbA1c is unavailable or less accessible. The best 
models for predicting CVD, DR and CKD used FPG-CV 
in either CPH or RSF models.
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