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Abstract
Introduction  Cellular Communication Network Factor 6 (CCN6) is an adipokine whose production undergoes 
significant alterations in metabolic disorders. Given the well-established link between obesity-induced adipokine 
dysfunction and the development of insulin resistance and type 2 diabetes mellitus (T2DM), this study investigates 
the potential role of CCN6 as a biomarker for T2DM. The present study aimed to investigate the association between 
serum CCN6 levels and T2DM, as well as its risk factors, for the first time.

Methods  In this case-control study, a total of 80 individuals diagnosed with T2DM and 80 healthy control individuals, 
who referred to Shariati hospital (Tehran, Iran), were included in the study. Biochemical parameters including fasting 
blood glucose (FBG), aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TG), total cholesterol 
(TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were determined using the AutoAnalyzer 
instrument. The circulating levels of CCN6, adiponectin, Tumor necrosis factor-α (TNF)-α, Interleukin 6 (IL-6), and 
insulin were quantified using ELISA. The Student t-test was applied to data that presented as mean ± standard 
deviations (SD). Moreover, the Gini Index was utilized to determine the weight of each factor in T2DM classification. 
Additionally, various machine learning models were employed to develop classifiers for predicting T2DM.

Results  T2DM patients demonstrated significantly lower levels of CCN6 (1259.76 ± 395.02 pg/ml) compared to 
controls (1979.17 ± 471.99 pg/ml, P < 0.001), as well as lower levels of adiponectin (P < 0.001) and higher levels of TNF-α 
and IL-6 (P < 0.001) compared to non-T2DM individuals. In the T2DM group, CCN6 exhibited negative correlations 
with insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), body mass index (BMI), IL-6, and 
TNF-α. Logistic regression analysis indicated an increased risk of T2DM, with a CCN6 cutoff value of 1527.95 pg/mL 
distinguishing T2DM patients with 86.3% sensitivity and 73.8% specificity. The Gini Index highlighted that HOMA-IR, 
IL6, and CCN6 had the highest weighting on T2DM.
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Introduction
Diabetes Mellitus is a medical condition characterized by 
challenges in the body’s efficient storage and utilization 
of glucose [1]. The most prevalent form of this condi-
tion is type 2 diabetes mellitus (T2DM), characterized by 
persistent elevation of blood glucose and insulin levels. 
This elevation is primarily triggered by insulin resistance 
and impaired insulin function in vital tissues such as the 
liver, adipose tissue, and skeletal muscle [1, 2]. In our cur-
rent era, obesity represents a substantial threat to human 
well-being [1] this has resulted in a surge of obesity-
related diseases, including insulin resistance and T2DM. 
Diet stands out as one of the significant factors influenc-
ing the onset and progression of these conditions [1, 3].

Obesity carries significant health implications, trig-
gering inflammation and insulin resistance, ultimately 
culminating in diabetes. Furthermore, insulin resistance 
can be associated with various factors such as oxidative 
stress, endoplasmic reticulum stress, hypoxia, aging, 
and lipodystrophy, all contributing to the development 
of T2DM [4, 5]. In cases of obesity, M1 macrophages in 
adipose tissue release numerous pro-inflammatory cyto-
kines, disrupting insulin signaling and promoting insulin 
resistance [1]. Moreover, other immune cells in adipose 
tissue influence inflammation and insulin resistance, 
including mast cells, dendritic cells, neutrophils, and B 
and T lymphocytes. Beyond fat storage, adipose tissue 
also plays a crucial role in releasing adipokines, a group 
of secretory cytokines [6]. These adipokines play a crucial 
role in the pathogenesis, prognosis, diagnosis, and treat-
ment of metabolic disorders triggered by obesity [3, 7, 8]. 
Due to the association of obesity with T2DM, the expres-
sion of a group of adipokines is increased and reduced in 
the induction of insulin resistance associated with obe-
sity and T2DM [9].

Adipokines are crucial in regulating carbohydrate and 
lipid metabolism, maintaining body energy balance, 
promoting homeostasis, and modulating inflamma-
tion. Notably, specific adipokines and cytokines, such 
as vaspin, resistin, apelin, ghrelin, omentin, TNF-α, and 
interleukin-6 (IL-6), are implicated in the development of 
insulin resistance associated with obesity and T2DM [9]. 
Another significant adipocytokine in this context is cel-
lular communication network factor 6 (CCN6/WISP3), 
which belongs to the CCN matrix protein family and is 
synthesized and secreted from adipose tissue [10].

WISP3 is one of the six members of the CCN pro-
tein family, and it holds significant importance in the 

mitochondrial electron transport system and tumor sup-
pression, particularly in certain metastatic cancers [10, 
11]. Significantly, earlier research has shown that CCN6 
acts as a tumor suppressor and inhibits the action of 
insulin-like growth factor 1 (IGF-1) when breast can-
cer advances. Epithelial cells could become invasive 
and migrate if the function of this adipokine is reduced 
because it may alter the IGF-1 growth factor receptor 
[12, 13]. Additionally, a 2022 study found that in NASH 
(Non-Alcoholic Steatohepatitis) mice, elevated CCN6 
expression decreased fibrosis, hepatic steatosis, and 
the inflammatory response [14]. However, there is cur-
rently little knowledge of the function of CCN6 in T2DM 
patients. Further investigation is required to comprehend 
its potential significance in the context of T2DM patients.

Furthermore, machine learning techniques have dem-
onstrated promising outcomes in identifying biomarkers 
for various diseases, including coronary artery disease, 
breast cancer [15], and Alzheimer’s disease [16]. In met-
abolic diseases such as T2DM, machine learning has 
emerged as a powerful method for complex data analysis 
and pattern recognition regarding disease progression, 
insulin resistance, and obesity-related complications. 
Machine learning algorithms, for example, have been 
applied to predict T2DM risk from clinical, biochemical, 
and genetic variables with the prospect of personalized 
medicine approaches [17–19]. These techniques per-
mit the integration of diverse variables, such as adipo-
kine levels, inflammatory markers, and anthropometric 
parameters, to improve diagnostic sensitivity and iden-
tify novel biomarkers. Machine learning techniques are 
employed in the current research to assess the utility of 
CCN6 as a biomarker in diagnosing patients with T2DM.

Through the application of sophisticated algorithms, we 
aim to contrast the diagnostic potential of CCN6 and its 
relationship with other conditions such as inflammation, 
insulin resistance, and obesity. This type of analysis not 
only gives greater insight into CCN6 in T2DM but also 
offers an understanding of how machine learning assists 
in the speeding up of biomarker discovery for metabolic 
disorders. Considering the association between CCN6/
WISP3 serum levels and obesity, inflammation, insulin 
resistance, and other physiological processes that could 
influence T2DM development, there is potential for 
CCN6 to be used as a biomarker for the early diagnosis 
and treatment of T2DM. As far as we know, the relation-
ship between CCN6 serum levels and type 2 diabetes has 
not been addressed in any previous research.

Conclusion  Our research identified a significant and negative association between serum CCN6 levels and the 
likelihood of T2DM, as well as inflammation biomarkers (IL-6 and TNF-α). CCN6 shows promise as a potential 
biomarker for T2DM; however, further investigations are necessary to validate this finding and assess its clinical utility.

Keywords  WISP3/CCN6, Type 2 diabetes mellitus, Inflammatory cytokines, Insulin resistance, Adiponectin
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Early detection of T2DM is crucial in order to inter-
vene early and prevent complications such as cardio-
vascular disease, neuropathy, and nephropathy. Current 
tests for diagnosis, including HbA1c and fasting plasma 
glucose, typically are not successful at identifying those 
individuals who are pre-diabetic or at high risk of T2DM. 
New biomarkers, including CCN6, can enhance early 
diagnosis and enable tailored therapeutic strategies to 
ultimately benefit patient outcomes.

Hence, the current study will be the first to investigate 
the serum levels of CCN6 in T2DM patients and explore 
its potential correlation with TNF-α, IL-6, and other bio-
chemical parameters.

Methods
Participants
The current study comprised 80 patients in the T2DM 
group (52 males and 28 females) and 80 individuals 
in the control group (53 males and 27 females), aged 
between 45 and 75 years, who referred to Shariati hospi-
tal (Tehran, Iran) [20]. The T2DM group was diagnosed 
according to the American Diabetes Association (ADA) 
compliant clinical tests [21]. The medical histories of all 
individuals were checked for the absence of renal dis-
eases, autoimmune disorders, chronic inflammations, 
cancer, steroid medication, a family history of thyrotoxi-
cosis, immune system suppression, and anti-inflamma-
tory drugs in the past six months, as well as individuals 
who had smoked or used tobacco products during the 
previous three months, were not allowed to participate in 
the study. Comprehensive medical records of both partic-
ipant groups were recorded. The current study was con-
ducted with adherence to ethical principles and received 
approval (IR.TUMS.SPH.REC.1401.280) from the Ethics 
Committee of the University of Medical Sciences, with 
written consent obtained from all participants. Ethical 
guidelines in accordance with the Helsinki Declaration 
were followed.

Assessment of anthropometric parameters
The Body Mass Index (BMI) of the participants was cal-
culated using the standard formula of weight (kg)/height 
(m2). Furthermore, a standard aneroid sphygmomanom-
eter was used to monitor their resting systolic blood 
pressure (SBP) and diastolic blood pressure (DBP).

Assessment of biochemical parameters
A volume of 7 ml of fasting venous blood was collected 
from each participant in both groups. Subsequently, 
the serum levels of fasting blood glucose (FBG), aspar-
tate transaminase (AST), alanine transaminase (ALT), 
triglycerides (TG), total cholesterol (TC), high-density 
lipoprotein (HDL), and low-density lipoprotein (LDL) 
were examined using an autoanalyzer and commercially 

available test kits. The serum insulin concentration 
in both groups was assessed using the enzyme-linked 
immunosorbent assay (ELISA) method and the commer-
cial Monobind kit. Additionally, the Homeostatic Model 
Assessment for Insulin Resistance (HOMA-IR ) index in 
this study was determined using the standard formula: 
[FBG (mg/dl)] × [fasting blood insulin (µU/mL)/405].

Assessment of cytokines and adipokines
The serum concentrations of CCN6, TNF-α, IL-6, and 
adiponectin were measured using the ELISA method. 
The CCN6 kit (KEH04333, Aviva system biology; USA) 
had intra-assay and inter-assay coefficients of variation 
(CV) of 8% and 10%, respectively, and a minimum detect-
able concentration of less than 50 pg/mL. The levels of 
adiponectin were determined using the Adipogen kit 
(South Korea) with intra-assay and inter-assay CV values 
of 3.4% and 4.3%, respectively, and a minimum detectable 
range of 0.1 nanograms per milliliter.

The R&D Systems kit, which has a minimum detect-
able range of 5.5 pg/mL for TNF-α and 0.11 pg/mL for 
IL-6, was used to measure the serum levels of these two 
chemicals. The intra-assay and inter-assay CV values for 
TNF-α were 7.4% and 5.2%, respectively, while for IL-6, 
they were 9.6% and 6.9%, respectively.

Statistical analysis
All statistical analyses were performed using SPSS ver-
sion 27, and a significance level of p < 0.05 was consid-
ered statistically significant. Categorized data were tested 
using the chi-square test and presented in terms of fre-
quency and percentage. The evaluation of data normality 
was carried out by employing the Kolmogorov-Smirnov 
test. Following this assessment, the Student t-test was 
applied to data that demonstrated a normal distribution, 
and the resulting results were presented as mean values 
alongside their corresponding standard deviations (SD). 
In cases where the data did not exhibit a normal distri-
bution, the U Mann-Whitney test was employed, and the 
results were reported as median values along with their 
respective interquartile ranges (IQR). Pearson correlation 
analysis was utilized to evaluate the relationship between 
CCN6 and continuous variables, while binary logistic 
regression was employed to investigate the connection 
between CCN6 and the probability of developing T2DM. 
To assess the diagnostic performance of the CCN6 ELISA 
test in distinguishing between the patient and control 
groups, the ROC curve was utilized. Moreover, the cutoff 
value, sensitivity, and specificity of the CCN6 ELISA test 
were determined based on the ROC curve.

Machine learning modeling and evaluation
RapidMiner 10.1 was used for the modeling and assess-
ment procedure [22]. To determine the significance of 
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each factor about T2DM, we employed the Gini Index 
[23]. Following that, we utilized five different machine 
learning algorithms: Naïve Bayes [24], Decision Tree 
[25], Gradient Boosted Trees [26], K-Nearest Neighbor 
(KNN) [27], Random Forest [26], and, to develop predic-
tive models for T2DM. The performance of these models 
was assessed using various metrics such as accuracy, area 
under the curve (AUC), f-measure, kappa, sensitivity, and 
specificity [28]. To ensure the reliability of our results, we 
implemented a 10-fold cross-validation technique [29].

Results
Anthropometric parameters
The data presented in Table  1 reveals that there were 
no statistically noteworthy differences observed in BMI 
(P = 0.77), SBP (P = 0.75), or DBP (P = 0.62) when compar-
ing the control group with the T2DM group. However, 
it’s worth noting that the mean age of the T2DM group 
shows a marginal elevation compared to the control 
group (P = 0.13).

Biochemical parameters
In contrast to the control group, the T2DM group 
showed considerably higher levels of FBG, HOMA-IR, 

and insulin (P < 0.001), as shown in Table  1. Addition-
ally, TG, TC, and LDL-C values were higher in the T2DM 
group than in the control group (P < 0.001, P = 0.002, and 
P = 0.002, respectively). On the other hand, it was discov-
ered that the patient group’s serum HDL-C concentration 
was lower than the control group’s (P = 0.005).

Cytokines and adipokines
There was a considerable reduction in the average serum 
levels of CCN6 among individuals with T2DM, declin-
ing from 1979.17 ± 471.99 pg/ml to 1259.76 ± 395.02 pg/
ml compared to the control group (P < 0.001). As well as, 
the serum concentration of adiponectin decreased from 
13.56 ± 3.52 µg/ml to 9.12 ± 2.74 µg/ml (P < 0.001) (Fig. 1 
(a, b) and Table 1). Moreover, the serum levels of inflam-
matory cytokines IL-6 and TNF-α were notably elevated 
in the T2DM group compared to the control group 
(P < 0.001 for both). These findings are graphically repre-
sented in Fig. 1 (c, d) and detailed in Table 1.

Correlation of CCN6 serum level with clinical parameters
Within both the non-T2DM and T2DM groups, a nega-
tive notable correlation was identified between serum 

Table 1  Basic anthropometric, biochemical and immunological 
characteristics of 80 control people and 80 T2DM patients. 
The student t-test was applied to data that presented as 
mean ± standard deviations (SD)
variables Non-T2DM T2DM P-value

Mean ± SD Mean ± SD
Age (Year) 55.71 7.06 57.48 7.85 0.13
BMI (kg/m2) 25.73 3.87 25.91 4.08 0.77
SBP (mmHg) 128.56 15.90 129.40 17.49 0.75
DBP (mmHg) 79.80 13.42 80.85 13.10 0.62
FBG (mg/dl) 90.91 10.95 155.41 22.92 < 0.001
Insulin (µU/ml) 4.77 3.13 10.52 4.77 < 0.001
Adiponectin (µg/ml) 13.56 3.52 9.12 2.74 < 0.001
TNF-alpha (pg/ml) 19.34 7.14 28.69 7.62 < 0.001
IL-6 (pg/ml) 4.76 1.95 9.78 3.32 < 0.001
HOMA-IR 1.08 0.72 4.11 2.13 < 0.001
Creatinine (mg/dl) 1.13 0.16 1.14 0.12 0.51
AST (U/l) 18.47 5.66 17.63 5.54 0.34
ALT (U/l) 19.18 8.41 18.14 7.39 0.40
TG (mg/dl) 125.30 50.18 162.10 54.83 < 0.001
TC (mg/dl) 169.42 45.93 191.49 42.91 0.002
LDL-C (mg/dl) 101.14 33.20 117.66 34.03 0.002
HDL-C (mg/dl) 45.28 8.17 42.12 5.50 0.005
CCN6 (pg/ml) 1979.17 471.99 1259.76 395.02 < 0.001
BMI: Body mass index, SBP: Systolic blood pressure, DBP: Diastolic blood 
pressure, FBG: Fasting blood glucose, IL-6: Interleukin-6, TNF-alpha: Tumor 
necrosis factor α, HOMA-IR: Homeostatic Model Assessment for Insulin 
Resistance, AST: Aspartate transaminase, ALT: Alanine transaminase, TG: 
Triglycerides, TC: Total cholesterol, LDL-C: Low-density lipoprotein cholesterol, 
HDL-C: High-density lipoprotein cholesterol, CCN6: Cellular communication 
network factor 6

Fig. 1  a, b Serum levels of CCN6 and adiponectin were lower in the T2DM 
group than the control group, respectively. c, d Serum levels of TNF-α and 
IL-6 were higher in T2DM group than the control group, respectively. Note: 
*<0.05, **<0.01.

 



Page 5 of 10Afrisham et al. BMC Medical Informatics and Decision Making          (2025) 25:114 

CCN6 levels and BMI [(r = -0.298, P = 0.007) and (r = 
-0.251, P = 0.025), respectively], as showed in Tables  2 
and 3.

As demonstrated in Tables  2 and 3, a clear negative 
and inverse relationship was evident between CCN6 lev-
els and insulin within both the non-T2DM and T2DM 
groups, as indicated by the correlation coefficients [(r = 
-0.231, P = 0.040) and (r = -0.334, P = 0.002), respectively]. 
Additionally, in control and patient groups a similar neg-
ative and significant correlation was observed between 
CCN6 and HOMA-IR [(r = -0.240, P = 0.032) and (r = 
-0.349, P = 0.002), respectively].

In the T2DM group, a negative and robust correlation 
was identified between CCN6 and TNF-α (r = -0.257, 
P = 0.022) and IL-6 (r = -0.403, P < 0.001), as detailed in 
Table  3. These findings highlight the potential role of 
CCN6 in the onset of type 2 diabetes by suggesting that 
the relationships between CCN6 and several variables 
varied between the control and T2DM groups.

Association of CCN6 serum level with the risk of T2DM
The effect of a 100-unit change in serum CCN6 con-
centration on the risk of acquiring type 2 diabetes was 
assessed using a binary logistic regression analysis. The 
findings consistently indicated a significant relationship 
between both the unadjusted model (OR [95% CI] = 0.67 
[0.60–0.76]) and the adjusted models, which accounted 
for factors like age, gender, and BMI (OR [95% CI] = 0.62 
[0.54–0.72]) as demonstrated in Table 4.

Figure  2 displays the ROC curve analysis, revealing a 
CCN6 threshold value of 1527.95 pg/mL for discrimi-
nating T2DM patients from the control group. The sen-
sitivity (86.3%) and specificity (73.8%) of the study were 
excellent. At a 95% confidence level, the computed area 
under the curve was 0.88 (0.83–0.93, p < 0.001). These 
results suggest that CCN6 shows potential as a prospec-
tive diagnostic indicator for T2DM, demonstrating favor-
able precision in distinguishing between T2DM patients 
and individuals without the condition.

Machine learning modeling and evaluation
Figure  3 illustrates the relative weight of factors associ-
ated with T2DM. Among these factors, HOMAIR, IL6, 
and CCN6 exhibit the highest weighting on T2DM. Also, 
Fig. 4 shows the Decision Tree Model.

The performance comparison of the models is depicted 
in Table 5. The Random Forest model demonstrates the 
highest performance across multiple metrics, making it 
the best model for T2DM classification in this compari-
son. The Random Forest model has the highest overall 
correctness in predicting cases of type 2 diabetes, with 
an accuracy of 92.50% +/- 3.95%. It also demonstrates a 
high degree of agreement between its predicted classifi-
cations and the actual T2DM labels, with a kappa value 

Table 2  The correlation analysis of various variables with CCN6 
in the control group. Pearson correlation analysis was utilized 
to evaluate the relationship between CCN6 and continuous 
variables
Variables Pearson correlation (r) P-value
Age -0.05 0.62
BMI -0.29** 0.007
SBP -0.20 0.07
DBP -0.12 0.26
Creatinine -0.06 0.56
AST -0.19 0.08
ALT -0.09 0.40
TG -0.01 0.86
TC -0.06 0.55
LDL-C 0.01 0.86
HDL-C 0.05 0.65
FBG -0.12 0.26
Insulin -0.23* 0.04
HOMA-IR -0.24* 0.03
Adiponectin 0.10 0.37
TNF-alpha -0.17 0.12
IL-6 -0.21 0.06
BMI: Body mass index, SBP: Systolic blood pressure, DBP: Diastolic blood 
pressure, FBG: Fasting blood glucose, IL-6: Interleukin-6, TNF-alpha: Tumor 
necrosis factor α, HOMA-IR: Homeostatic Model Assessment for Insulin 
Resistance, AST: Aspartate transaminase, ALT: Alanine transaminase, TG: 
Triglycerides, TC: Total cholesterol, LDL-C: Low-density lipoprotein cholesterol, 
HDL-C: High-density lipoprotein cholesterol. Note: *<0.05, **<0.01.

Table 3  The correlation analysis of various variables with CCN6 
in the T2DM group. Pearson correlation analysis was utilized 
to evaluate the relationship between CCN6 and continuous 
variables
Variables Pearson correlation (r) P-value
Age 0.12 0.26
BMI -0.25* 0.02
SBP 0.09 0.41
DBP 0.001 0.99
Creatinine -0.10 0.34
AST 0.02 0.79
ALT -0.01 0.91
TG -0.15 0.17
TC -0.12 0.27
LDL-C -0.16 0.14
HDL-C 0.01 0.91
FBG -0.17 0.11
Insulin -0.33** 0.002
HOMA-IR -0.34** 0.002
Adiponectin 0.18 0.10
TNF-alpha -0.25* 0.02
IL-6 -0.40** < 0.001
BMI: Body mass index, SBP: Systolic blood pressure, DBP: Diastolic blood 
pressure, FBG: Fasting blood glucose, HOMA-IR: Homeostatic Model Assessment 
for Insulin Resistance, AST: Aspartate transaminase, ALT: Alanine transaminase, 
TG: Triglycerides, TC: Total cholesterol, LDL-C: Low-density lipoprotein 
cholesterol, HDL-C: High-density lipoprotein cholesterol, IL-6: Interleukin-6, 
TNF-alpha: Tumor necrosis factor α. Note: *<0.05, **<0.01.
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of 0.850 +/- 0.079 when accounting for the likelihood of 
agreement by chance. This implies that it successfully dif-
ferentiates between positive (T2DM) and negative cases 
and that its predictions are highly reliable. The Random 
Forest model also demonstrates excellent performance 
in correctly identifying positive instances (T2DM) while 
minimizing false positives and false negatives. Its F-Mea-
sure of 92.39% +/- 4.27% shows that precision and recall 
are well balanced. The Random Forest model exhib-
its remarkable performance in terms of sensitivity and 
specificity.It exhibits a sensitivity of 92.50% +/- 8.74%, 
reflecting its ability to accurately identify T2DM cases. 
Simultaneously, it achieves a specificity of 92.50% +/- 
6.45%, indicating its capability to correctly identify non-
T2DM cases.

The Random Forest model performs well on several 
criteria, such as sensitivity, specificity, accuracy, kappa, 
AUC, and F-Measure. Its strong performance places it 
at the top of this comparison of T2DM classifications, 

indicating that it can be used to forecast T2DM instances 
with high accuracy and dependability.

Discussion
It has been established that adipokines, like hepatokines 
and myokines [30–32], play critical roles in the regulation 
of metabolic parameters [3, 7]. Accordingly, the objec-
tive of our study is to investigate, for the first time, the 
association between serum levels of CCN6 and T2DM 
disease. Previous studies have explored the relationship 
of CCN6 with breast cancer, skeletal disorders like rheu-
matoid arthritis and pulmonary fibrosis [33–35]. Addi-
tionally, the association of other members of this family, 
such as CCN1, CCN2, and CCN3, has been studied in 
conditions like obesity, insulin resistance, and diabetic 
wound healing [36–40]. Nevertheless, the relationship 
between serum CCN6 levels and type 2 diabetes has not 
yet been investigated. Consequently, our research offers 
a fresh look at serum CCN6 levels in T2DM patients and 

Table 4  Binary logistic regression for odd ratio of T2DM status according to 100-unit change in CCN6
Model B S.E. Wald df P. Odd ratio (B) 95% CI.for odd ratio (B)

Lower Upper
Crude model -0.39 0.06 41.59 1 < 0.001 0.67 0.60 0.76
Adjusted* -0.46 0.07 40.38 1 < 0.001 0.62 0.54 0.72
* Adjusted for age, sex and BMI

Fig. 2  ROC curve for diagnosis of T2DM according to CCN6 serum levels. A cut-off value of CCN6 (1527.95 pg/mL) was identified to distinguish between 
T2DM patients and the control group, demonstrating good sensitivity and specificity (86.3% and 73.8%, respectively). The area under the curve was 
calculated as 0.88 [0.83–0.93 (95% Cl), p < 0.001]
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explores how they relate to TNF-α, IL-6, and other bio-
chemical markers.

Our study revealed that, in contrast with the control 
group, those with type 2 diabetes had significantly lower 
serum levels of CCN6. This discovery suggests a potential 

link between lower CCN6 levels and the onset of T2DM. 
Notably, the established cutoff value has proven effective, 
with sensitivity and specificity exceeding 70%, in accu-
rately distinguishing T2DM patients from the control 
group. These results are consistent with previous studies 

Table 5  The T2DM classification models performance comparison
Model Accuracy Kappa AUC F-Measure Sensitivity Specificity
Decision Tree 89.38% +/- 5.93% 0.787 +/- 0.119 0.852 +/- 0.155 88.51% +/- 6.83% 83.75% +/- 10.29% 95.00% +/- 6.45%
Gradient Boosted Trees 88.75% +/- 5.74% 0.775 +/- 0.115 0.953 +/- 0.050 88.46% +/- 6.17% 87.50% +/- 10.21% 90.00% +/- 7.91%
Random Forest 92.50% +/- 3.95% 0.850 +/- 0.079 0.989 +/- 0.017 92.39% +/- 4.27% 92.50% +/- 8.74% 92.50% +/- 6.45%
Naïve Bayes 90.00% +/- 6.04% 0.800 +/- 0.121 0.967 +/- 0.032 89.69% +/- 6.44% 88.75% +/- 10.94% 91.25% +/- 8.44%
KNN 81.88% +/- 12.31% 0.637 +/- 0.246 0.874 +/- 0.129 80.89% +/- 12.07% 76.25% +/- 12.43% 87.50% +/- 15.59%

Fig. 4  Decision tree model for classifying T2DM cases

 

Fig. 3  Factors weight on T2DM calculated by gini index
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that have emphasized the role of CCN6 in metabolic 
disorders.

For instance, research findings have indicated that 
WISP1/CCN4 may play a role in the development of dia-
betes and obesity. WISP1 has thus been established as 
a viable clinical marker for the assessment of metabolic 
diseases and diabetes as a result of these findings [41]. 
As well as, in an animal-based investigation, it was dem-
onstrated that the expression levels of CCN1 and CCN2 
exhibited a substantial increase within the retinal tissues 
of diabetic mice as compared to their non-diabetic coun-
terparts [42].

In addition, in a study conducted in 2023 by Song and 
colleagues, they demonstrated that serum levels of CCN6 
have decreased in patients and mice models afflicted with 
NASH. They also found that an increase in this adipokine 
leads to reduced inflammation, steatosis, and hepatic 
fibrosis in NASH-affected mice [14].

Consistent with our study, in 2019, Yang Li and fellow 
researchers demonstrated that individuals with T2DM 
exhibited elevated levels of CCN3 in their serum when 
contrasted with the control group. Furthermore, they 
established a positive association between the serum lev-
els of this adipokine and inflammatory markers, includ-
ing CRP, TNF-α, and IL-6 [38].

In our study, we observed a significant negative corre-
lation between CCN6 and inflammatory factors such as 
IL-6, TNF-α. Also, we noticed a negative and notewor-
thy correlation between CCN6 and indicators of insulin 
resistance, specifically insulin levels and HOMA-IR. This 
discovery implies that CCN6 may have the potential to 
serve as a therapeutic target for enhancing insulin sen-
sitivity in individuals diagnosed with T2DM. Previous 
researches also demonstrated a correlation between 
serum levels of CCN6 and insulin resistance. They 
indicated that increased CCN6 expression in NAFLD-
afflicted mice inhibits the Ask1-p38MAPK/JNK signaling 
pathway in adipose tissue, leading to reduced inflam-
mation and insulin resistance [14]. Moreover, in animal 
hepatic cells and human muscle cells, CCN4 acts as an 
inhibitor of phosphorylation of Akt and its glycogen 
synthase kinase 3β substrates, insulin receptor, FOXO1, 
p70S6 kinase, suppression of gluconeogenic gene expres-
sion, and inhibition of insulin-stimulated glycogen syn-
thesis. This has led to disruptions in insulin functionality 
[43, 44].

As evidenced, in 2019, Klimontov and colleagues iden-
tified CCN4 as a potential biomarker for obesity in indi-
viduals with Type 2 Diabetes. Their research revealed a 
connection between CCN4 serum levels, central abdom-
inal fat mass, and dysfunction of adipose tissue [43]. In 
line with these findings, our study also demonstrated a 
significant negative correlation between CCN6 serum 

levels and BMI within both the patient and control 
groups.

Furthermore, inhibition of WISP3 expression was 
shown to enhance the effects of the IGF-1 factor and 
neoplastic progression in breast epithelial cells [45]. In a 
separate study in 2018, the impact of CCN6 inhibition on 
apoptosis of pulmonary cells under hypoxic conditions 
was investigated, and their results indicated that CCN6 
can inhibit the extrinsic apoptosis pathway by suppress-
ing caspase 8, thereby safeguarding pulmonary cells [46].

It’s worth highlighting that our research did not 
uncover any substantial or statistically significant link 
between CCN6 serum levels and the serum lipid profile 
or FBG in individuals diagnosed with T2DM. However, 
a different research investigation documented a notable 
and positive correlation between CCN3 levels and TG as 
well as FBG [38].

On the other hand, the Gini Index indicated that the 
levels of CCN6 in the serum play a significant role in 
identifying patients with T2DM. The random forest 
model demonstrated the highest performance in this 
study, which is consistent with a previous study that 
also showed the Random Forest model outperforms the 
Decision Tree model for T2DM prediction. In a study, 
a random forest model was proposed with an accuracy 
of 71.1%, while our study reported a model with 92.50% 
accuracy. This improvement in accuracy indicates that 
the current study successfully selected suitable features 
for the T2DM prediction.

In another recent study [47] the random forest model 
achieved an accuracy of 94.4% and outperformed both 
the decision tree and multiple logistic regression models 
for T2DM classification. The improved performance in 
this study may be attributed to the implementation of the 
SMOTE (Synthetic Minority Over-sampling Technique) 
technique, which aims to balance the number of records 
in the minor class with those in the majority class [48]. By 
applying the SMOTE technique and conducting tests on 
the synthetic records generated by SMOTE, the models 
achieved higher performance compared to their real per-
formance on the original dataset.

The random forest model could serve as a viable 
approach for predicting the risk of T2DM by considering 
various factors such as, IL6, CCN6, Adiponectin, TNF, 
HDL, TG, LDL, TC, BMI, SBP, and DBP. Moreover, this 
model might be employed in decision support systems to 
assist clinical professionals.

Conclusion
Our results reinforce the idea that CCN6 serum con-
centrations was decreased in individuals with T2DM, 
and also, exhibited correlations with TNF-α, IL-6, BMI, 
insulin and HOMA-IR measurements. This implies 
that CCN6 may serve as a prospective biomarker for 
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anticipating the onset of T2DM. Nonetheless, additional 
research is imperative to establish definitive conclusions.
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