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Abstract 

Purpose Assessing risk factors and creating prediction models from real-world medical data is challenging, requir-
ing numerous modelling decisions with clinical guidance. Logistic regression is a common model for such studies, 
for which we advocate the use of Bayesian methods that can jointly deliver probabilistic risk factor inference and pre-
diction. As an exemplar, we compare Bayesian logistic regression with horseshoe priors and Projective Prediction 
variable selection with the established frequentist LASSO approach, to predict severe COVID-19 outcomes (death 
or ICU admittance) from demographic and laboratory biomarker data. Our study serves as guidance on data curation, 
variable selection, and performance assessment with cross-validation.

Methods Our source data is based on a retrospective observational cohort design with records from three National 
Health Service (NHS) Trusts in southwest England, UK. Models were fit to predict severe outcomes within 28 days 
after admission to hospital (or a positive PCR result if already admitted) using demographic data and the first result 
from 30 biomarker tests collected within 3 days after admission (or testing positive if already admitted).

Results Patients included hospitalized adults positive for COVID-19 from March to October 2020, 756 total patients: 
Mean age 71, 45% female, 31% (n=234) had a severe outcome, of whom 88% (n=206) died. Patients were split 
into training (n=534) and external validation groups (n=222). Using our Bayesian pipeline, we show a reduced vari-
able model using Age, Urea, Prothrombin time (PT) C-reactive protein (CRP), and Neutrophil-Lymphocyte ratio (NLR) 
has better predictive performance (median external AUC: 0.71, 95% Quantile [0.7, 0.72]) relative to a GLM using all 
variables (external AUC: 0.67 [0.63, 0.71]).
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Introduction
Estimating predictive risk factors for disease outcomes 
with explainable statistical models is desirable for clinical 
use and decision making. Clinical resources are typically 
limited, and variable selection techniques that can reduce 
complex multivariate models to ones with a smaller sub-
set are useful as they can offer similar performance with-
out the resource cost of collecting additional test results. 
We provide a guide for modern Bayesian approaches for 
joint risk factor analysis and variable selection demon-
strated in a patient dataset obtained from UK hospitals 
during the first wave of the COVID-19 pandemic.

We analyze a range of laboratory blood marker values 
across metabolic pathways affected by COVID-19 infec-
tion and evaluate predictive models of severe outcomes. 
We: (a) Examine statistical associations of routinely 
measured blood biomarkers, and age and gender, to 
predict severe COVID-19 outcomes; (b) Develop cross-
validated logistic regression prediction models using the 
candidate biomarkers, highlighting biomarkers worthy of 
future research. (c) Employ variable selection techniques, 
comparing the least absolute shrinkage and selection 
operator (LASSO) frequentist method [1] to the recent 
Projective Prediction approach [2] on Bayesian logistic 
regression models with horseshoe priors to illustrate the 
process of creating a reduced model that maintains simi-
lar performance while being more feasible to implement 
clinically; (d) We demonstrate a balance between best 
analytic practices and pragmatic solutions for clinical 
data curation and statistical modelling decisions empha-
sizing the benefits of the proposed Bayesian workflow.

While our paper is methodological, we detail sev-
eral aspects of COVID-19 and surrounding research to 
motivate circumstances around the dataset we obtained 
and the types of clinical decisions made. Further, clini-
cal considerations motivate why variable selection can 
play a crucial factor in modeling. Globally, COVID-19 
has resulted in hundreds of millions of cases and mil-
lions of deaths (WHO Coronavirus (COVID-19) Dash-
board https:// covid 19. who. int/). COVID-19 has a wide 
spectrum of clinical features ranging from asymptomatic 
to severe systemic illness with a significant attribut-
able mortality, while clinical manifestations are variable 
especially in the most vulnerable groups and immuno-
compromised people [3]. COVID-19 is a multi-system 

disease resulting in the derangements of homeostasis 
affecting pulmonary, cardiovascular, coagulation, hae-
matological, oxygenation, hepatic, renal and fluid balance 
[4–6]. During the first wave of the pandemic, the major-
ity of people with COVID-19 had mild or no symptoms, 
but an estimate of one in five to one in 10 needed hospi-
talisation [7]. Early identification of hospitalised COVID-
19 patients who are likely to deteriorate, i.e. transfer to 
ICU or who may die, is vital for clinical decision making.

Several prediction models have evaluated case-level 
factors that might predict poor outcomes (critical illness 
or death). A recent living systematic review [8] identified 
265 prognostic models for mortality and 84 for progres-
sion to severe or critical state. The majority of the studies 
looked at vital signs, age, comorbidities, and radiological 
features. According to the review, models were unlikely 
to include a broad range of variables concerning co-
infection, biochemical factors (outside of C-reactive pro-
tein), and other haematological factors on an individual 
patient level. Further, most prognostic models did not 
describe the target population or care setting adequately, 
did not fully describe the regression equation, showed 
high or unclear risk of bias and/or were inadequately 
evaluated for performance. These drawbacks highlight a 
need to demonstrate sound practices for severity predic-
tion modeling. Collins et al. and Riley et al. have written 
a compelling series of such recommendations on many 
shortcomings of clinical prediction models and steps to 
remedy [9–11].

We compiled a COVID-19 dataset that is novel in the 
broad number of blood biomarkers included from clinical 
laboratory testing, supported by routine patient demo-
graphic information. Our dataset was captured with the 
intent to create a clinical severity score to complement 
those using physiological data for use during the pan-
demic, but it became apparent that the dataset was not 
adequately powered to definitively answer this question. 
We deviate from suggestions from Riley et al. and Collins 
et  al. concerning sample sizes for data as our dataset is 
limited in the number of severe outcome examples. We 
emphasize that the work here is primarily a guide and 
not intended to make a definitive statement for COVID-
19 prediction models. The experiences gained over the 
course of this research led us to refocus our attention on 
demonstrating our statistical workflows for this complex 

Conclusion Urea, PT, CRP, and NLR have been highlighted by other studies, and respectively suggest that hypov-
olemia, derangement of circulation via clotting, and inflammation are strong predictive risk factors of severity. This 
study provides guidance on conventional and Bayesian regression and prediction modelling with complex clinical 
data.

Keywords Projective prediction, Bayesian, Logistic regression, Risk factors, COVID-19
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data. We highlight two methodologically sound con-
temporary models from Knight et al. and Carr et al. [12, 
13] with better powered studies, but neither record the 
same biomarkers as each other or our dataset (making 
direct comparison difficult), nor do they use Bayesian 
approaches for modeling or variable selection, the pre-
sent work’s strength.

Methods
Overview
Using complex clinical data, we use logistic regression 
to predict the likelihood of a severe outcome (death or 
transfer to ICU) for a patient based on demographic 
information and any available patient biomarker data col-
lected during a 3-day time window starting from being 
admitted to hospital with COVID-19 or testing positive 
if already admitted. If a patient transferred to ICU dur-
ing the 3-day window, we only consider data collected 
prior to transfer. We highlight the benefits of a Bayesian 
approach and then focus on variable selection. Clini-
cians must balance time, money, and equipment access 
all while trying to deliver high quality patient care. Mod-
els that deliver good prediction performance with a small 
amount of biomarker data are valued for their efficiency.

Study cohort and demographics
Following a retrospective observational cohort design, 
anonymized data were obtained from Laboratory Infor-
mation Management Systems (LIMS) linking patient data 
for laboratory markers to key clinical outcomes. Three 
hospitals in the Southwest region of England, UK, par-
ticipated in the study, two of which were tertiary teach-
ing hospitals and the third was a district general hospital 
(DGH).

The study underwent a rigorous ethical and regula-
tory approval process, following an Integrated Research 
Application System application [IRAS project ID: 
283439], a favourable written authorization was gained 
from NHS Research Ethics Service, Wales Research Eth-
ics Committee 7, c/o Public Health Wales, Building 1, 
Jobswell Road, St David’s Park, SA31 3HB on 11/09/2020. 
Our research complies with the declaration of Helsinki 
with anonymized data and ethical review, as explained 
below informed consent for data sharing was waived due 
to overriding public interest. See: https:// www. hra. nhs. 
uk/ about- us/ commi ttees- and- servi ces/ res- and- recs/

The requirement for informed consent was waived 
by NHS Research Ethics Service, Wales Research Eth-
ics Committee 7 (see above), given overriding public 
interest in the research. Furthermore, during project 
development prior to ethics review, a public and patient 
involvement meeting conducted at North Bristol NHS 
Trust by author MH received similar support. North 

Bristol NHS Trust and University Hospitals Bristol and 
Weston NHS Foundation Trust signed data sharing 
agreements confirming this waiver. See: https:// www. 
engla nd. nhs. uk/ publi cation/ infor mation- shari ng- policy 
All data were fully anonymized before they were trans-
ferred to the research team for analysis.

A system-wide data search was conducted on the LIMS 
for all patients who tested positive for SARS-CoV-2 by 
polymerase chain reaction (PCR) at these three hospi-
tals during the first wave of COVID-19 pandemic. Data 
were collected from records between March 1, 2020 to 
October 31, 2020, with research data access authorized 
from January 1, 2021 to present day. Serial laboratory 
data collected as a part of standard of care of patients 
admitted with/for COVID-19 were included: bacteriol-
ogy, virology, mycology, haematology, and biochemistry. 
All patients testing negative for SARS CoV-2 by PCR 
were excluded. All laboratory markers including clinical 
outcomes from LIMS were extracted and the final dataset 
was anonymized with no patient identifying data to link 
back.

Inclusion and exclusion criteria
To be included in the study we had several manda-
tory criteria. We included all adult patients admitted to 
the study’s hospitals between March to October 2020 
and tested positive for SARS CoV-2 by PCR. Pediatric 
patients (<18 years old) were excluded. Hospital staff/
healthcare workers and their house-hold contacts were 
excluded prior to data transfer (as it was marked on 
COVID-19 test requests). Figure  1 depicts the decision 
flow for inclusion and exclusion of patient data. Further-
more, all patients required age, gender, complete admis-
sion/discharge records, and records of their outcome 
with COVID-19. If a patient had multiple admissions, 
only the most recent admission since a positive COVID-
19 test was considered. Despite our data request con-
straints, the data transferred contained records outside 
our criteria. For example, not all patients had records 
indicating a positive COVID-19 test; we speculate there 
was a data processing or human error. When combined 
with restrictions on biomarker data, this considerably 
narrowed our data set from 1159 patients to 736 who met 
all criteria, as detailed in the flow chart.

Predictors (data covariates)
Our dataset includes a variety of clinical severity indices, 
microbiological, immunological, haematological and bio-
chemistry parameters used as predictive variables in the 
regression models. A full list of recorded data items is 
shown in Table 1

https://www.hra.nhs.uk/about-us/committees-and-services/res-and-recs/
https://www.hra.nhs.uk/about-us/committees-and-services/res-and-recs/
https://www.england.nhs.uk/publication/information-sharing-policy
https://www.england.nhs.uk/publication/information-sharing-policy
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Outcomes
For all sites, the primary prediction outcome was death 
or transfer to the ICU within 28 days after the key date. 
This key date was either the point of admission to hospi-
tal, or the date of the first positive COVID-19 PCR test 

result if the patient was already admitted. 28 days was 
chosen due to clinical convention and advice from our 
clinical colleagues, using a different time window may 
be justified in other circumstances. The distribution of 
severe outcomes after the key date is right skewed, with 

Fig. 1 Flowchart of patient exclusion and inclusion criteria. The initial set of 1159 candidate patients was narrowed to a training set (n=534) 
and an external validation set (n=222)
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Table 1 Variables recorded in the study dataset, including plain text description, abbreviation, place of record, frequency in the 
dataset, and criteria used for converting continuous readings into categorical values
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75% occurring within 10 days, with a mean of 7.6 days 
and standard deviation of 5.5.

Patient timelines
The collected laboratory biomarkers are continuous 
measures and provide a time-series representation of the 
course of a patient’s admission. Figure 2 shows an exam-
ple of a single patient’s readings over the course of 18 
days between testing positive for COVID-19 and being 
released from hospital care. This provides a representa-
tive example of the heterogeneity seen in our dataset, i.e. 
not all tests are taken and others are taken regularly or 
intermittently (further examples in Supplementary Mate-
rials A2-A6).

Transformation of biomarker data
Prediction modelling of irregularly sampled time-series 
data is a challenging open research question [14]. In this 
study we focused on established and available tools for 
conventional and Bayesian prediction. To balance inclu-
sion of biomarker data not available on the day of admis-
sion and the need for clinical decisions to be guided 
soon after admission, we chose to consider the first value 
recorded for each biomarker within three days after 
their ‘key date’. We additionally considered the worst or 
best readings within 1, 5 or 7 days after the key date, and 

found the first reading within 3 days after the key date to 
offer a reasonable compromise between prediction per-
formance and speed to inform decision making. System-
atic exploration of these parameters would be worthwhile 
to optimize performance in coordination with clinical 
needs, but is the beyond the scope of this paper.

In addition, we transformed continuous biomarkers 
into categorical variables via reference ranges for clinical 
use in the typical healthy population ranges, see Table 1. 
These categories are actively in use at laboratories at the 
participating trusts and were arrived at through a combi-
nation of clinician advice, handbooks [15], and guidance 
from lab test manufacturers. Such transforms are not a 
trivial decision and there are merits to both hand-crafted 
transforms informed by domain experts (as we have cho-
sen) versus data driven approaches. On one hand, clinical 
experience has delineated useful categories of biomarker 
readings, but it is not evident a priori that such categories 
are removing nuance present in a continuous measure, 
especially in the case of a novel disease. Furthermore, a 
transform could be learned across studies or tuned for 
a particular dataset. However, this requires sufficient 
representative data and may require further choices of 
transformation or non-linear modelling approaches. As 
an example, Fig.  3 shows the histogram of readings for 
all values recorded for Neutrophils, including clinical 

Fig. 2 Example of a single patient’s time series laboratory biomarker data. Covid +ve indicates the time of a COVID-19 positive test. See Table 1 
for biomarker abbreviations. Biomarkers vary widely in units of measurement. As a simple indication of upward and downward movement 
of readings, variation in biomarker measures are visualised from low (purple/black) to high (orange/yellow) created by subtracting the minimum 
value and normalizing the readings to span 0 to 1
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thresholds to transform into categorical data. No missing 
data imputation was performed, instead missingness was 
coded as as an additional category ‘Test not taken’. The 
distribution of how many patients fell into each category 
per biomarker can be found in Table 2

For further elaboration of these modelling choices and 
the challenges, please see the Discussion.

Statistical analysis
Analytics were carried out using the R statistical language 
(v4.4.1) and R Studio (2024.09.0). We used the following 
packages: Standard logistic regression analyses used the 
R Stats GLM package (v4.4.1); LASSO analyses, GLMnet 
(v4.1.8); and for Bayesian analyses, BRMS (v2.22.0) and 
ProjPred (v2.8.0). Source code for this analysis pipeline 
can be found at https:// github. com/ biospi/ LABMA RCS.

Analysis of individual biomarkers
Before running full regression models, we examined the 
independent contribution of individual biomarkers in the 
training dataset predicting ICU entry or death via stand-
ard logistic regressions and Bayesian logistic regressions 
with either a flat (aka uniform) or horseshoe prior. This 
allowed calculation of p-values and odds ratios for each 
biomarker. A 5-fold cross-validation (repeated 20 times 
was run for each biomarker to estimate median AUC 
and 95% interquartile intervals. Stratified cross-valida-
tion data shuffling was pre-computed per biomarker 

so models used the same starting data. When perform-
ing basic cross-validation, it is possible that some folds 
end up with few or zero data-points for an outcome so 
that convergence becomes poor or impossible (which is 
exacerbated by some biomarkers having few readings). 
Conversely, stratified cross-validation guarantees that 
the outcome occurs in the same proportion in each fold 
and in the same proportion as in the overall training data 
distribution for that biomarker. To achieve this, per bio-
marker, patients with and without the outcome were sep-
arated and then these groups were shuffled and split into 
5 equal subgroups. These groups can then paired at ran-
dom, ensure training and test datasets have the same pro-
portion of patients with a severe outcome as in full the 
sample for that biomarker. This substantively improves 
the chance of convergence for biomarkers with high data 
missingness.

Here, only complete cases of training data available for 
each biomarker were considered, i.e. we did not include 
data for variables marked ‘Test not taken’, to focus on 
the predictive power of observed test results. The pre-
diction power of the underlying test can be confounded 
by the clinical decision to order the test only in certain 
patient circumstances. However, in some cases ‘Test Not 
Taken’ is much more common (and as described in the 
results motivating exclusion of the biomarker) and would 
not represent the predictive power of the biomarker 
result. In proceeding sections, we allow for a ‘Test not 

Fig. 3 Example distribution of biomarker readings for Neutrophil training and external validation data. Vertical lines indicate clinical thresholds 
for bounds on Normal, Mild, Moderate, and Severe categorization

https://github.com/biospi/LABMARCS
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taken’ category, effectively removing the complete cases 
requirement. Each individual biomarker model includes 
age and gender (except univariate age and gender models) 
and were compared against a standard model including 

only age and gender. Regressions were fit using all associ-
ated dummy variables for a given biomarker (e.g. ‘Mild’, 
‘Moderate’, ‘Severe’) using ‘Normal’ as the reference.

Table 2 Individual biomarker evaluation including descriptive statistics, unadjusted p-values, and logistic regression model outcomes 
(Standard, Bayesian with flat prior, and Bayes with horseshoe prior), including age and gender (except univariate age and gender 
models)

* Biomarkers not included in subsequent models due to small sample size, and recorded only in ICU (PCT)

 The True and False columns describe the number/percentage of severe outcomes for cases where the particular biomarker or demographic reading is true or false. 
For example, there were 257 patients who were women who had a severe outcome, and conversely there were 333 patients who were not women (i.e. men) who 
had a severe outcome. Regressions were fit using all associated dummy variables for a given biomarker (e.g. normal, mild, moderate, severe) and using only complete 
cases of training data, i.e. not using a variable for ‘Test not taken’. Categorical variables use a reading of ‘Normal’ as a reference in the fitted model, except ‘Male’ used as 
the reference category for gender
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Analysis using all valid biomarker data
After individual biomarker evaluation, logistic regression 
models considering all valid biomarkers (Prediction using 
individual variables section) and demographic variables 
were fit to the data. Their predictions were tested via 
internal and external validation using the stratified cross-
validation procedures detailed above, except models were 
fit using all available training data using ‘Test Not Taken’ 
for absent data. The models include a standard logistic 
regression, a logistic regression regularised with LASSO, 
and two Bayesian models using a flat and a horseshoe 
prior [16].

Analysis using reduced variable models
While a model using all biomarker data may have strong 
predictive power, it is clinically desirable to have a strong 
prediction with the least amount of biomarkers possible 
to save on time, money and other resources devoted to 
biomarker collection and analysis [17, 18]. We used two 
methodologies to choose reduced variable models to pre-
dict COVID-19 severe outcomes, LASSO and Bayesian 
Projective Prediction.

LASSO is an optimization constraint that shrinks 
parameters according to their unexplained variance with 
respect to the outcome variable, reduces over-fitting, 
and enables variable selection [1]. The optimal degree 
of regularisation is determined by tuning parameter � 
within each cross-validation fold through a nested cross-
validation step. LASSO has a drawback of having biased 
coefficient and log-odds estimates, as such after evalu-
ating LASSO models there is a need to run a standard 
logistic regression model on the reduced biomarker 
panel selected with the LASSO in order to reduce bias in 
reporting risk factor effect sizes.

To evaluate LASSO coefficient estimates, we performed 
repeated nested stratified cross-validation (5-folds for 
the inner LASSO loop; 5-folds for the outer loop, and 20 
repeats). For a particular dataset fit, LASSO optimises for 
a sparse representation with many coefficients set to zero. 
Across cross-validated trials these variables will vary. 
LASSO fits are statistically biased and are better suited 
as a guide for variable selection, with a reduced variable 
standard logistic regression used to infer odds ratios. As 
recommended in Heinze et al. [19], we consider the fre-
quency of how often a particular biomarker has non-zero 
log-odds coefficients and count across cross-validation 
trials. There is no set rule for how to translate these fre-
quencies into a set of reduced variables. We suggest to 
only consider variables that have non-zero coefficients at 
least 50% of the time, but this is merely a heuristic.

For determining unbiased effect sizes for the reduced 
variable set with a standard GLM, it was decided that 

if at least one categorical level for a particular bio-
marker (e.g. ‘Severe’) was selected by the LASSO, all 
levels for that biomarker were included in the model. 
This resulted in a final set of ‘LASSO inspired’ variables 
that were then fit with standard logistic GLM. Note this 
approach, and more generally fitting multiple models to 
the same dataset, is subject to the problem of selective 
inference (aka multiple comparison error), see [20, 21] 
and the related R package [22]. This is a limitation that 
is improved by the Bayesian approach described below.

The second variable selection method explored was 
Bayesian Projective Prediction [2], a technique for 
assessing reduced variable models against a complete 
‘reference’ model, which in our case is a Bayesian logis-
tic regression with a horseshoe prior [16]. Priors such 
as the horseshoe can be applied to provide adaptive 
shrinkage to covariates in Bayesian models directly so 
that full posterior distributions of odds estimates can 
be generated in an unbiased way. Unlike the LASSO, 
this does not shrink coefficients to zero exactly as the 
inherent uncertainty is not ignored. To perform hard 
variable selection, the recent approach of Projective 
Prediction can be used to compare the fit of sub-models 
of the reference model through projections and approx-
imate leave-one-out (LOO) cross-validation. Under 
the hood, Projective Prediction uses forward search to 
select submodels for comparison, but retains the Bayes-
ian inference for coefficient ranking and odds-ratio 
estimates. The projective prediction package allows 
systematic evaluation of the trade-off between AUC 
performance and the ranked contribution from the 
variables included in the model. The experimenter must 
decide at what performance level to cut-off the ranked 
variables. We chose to examine when increases in AUC 
asymptoted and used any biomarkers that did not have 
‘Test Not Taken’ as the highest ranked predictor. This 
reduced set of variables was used for the submodel pro-
jection. Projective prediction allows the flexibility to 
train one model on all valid available data, perform var-
iable selection, and then use any projected sub-model 
with reduced variables to predict outcomes for novel 
data. Projective prediction models were evaluated using 
cross-validation procedures described in prior sections. 
Note, the analysis of the projective prediction model 
using all training data uses LOO for variable selec-
tion, which is computationally intensive. To speed vari-
able selection computation during our cross-validation 
analysis, we used ‘naive’ variable selection, which only 
considers the training data from current fold as is, and 
does not perform any further internal cross-validation 
(the projective prediction package allows naive, k-fold, 
and LOO).
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Results
Cohort description
756 of 1159 patients (73%) patients testing positive for 
SARS-CoV-2 were eligible given our inclusion criteria, 
see Fig.  1. Of these patients, 57% were hospitalised for 
COVID-19 (n=433), the remainder (n=323) had noso-
comial infection. For our statistical models, the train-
ing cohort (n=534) was defined as all adults admitted to 
hospital and testing positive for SARS-Cov-2 by PCR, or 
testing positive while already admitted between March 1 
to October 31, 2020. For external validation, we held the 
DGH cohort (n=222) out of training. This cohort was 
selected as the hospital is in another county compared to 
the trusts used in the training data. To avoid over-fitting 
to local idiosyncrasies, ideally, the external validation 
data set would differ on a national or international level. 
Given our limited data, this was the best external valida-
tion possible. Patients in the training set had a mean age 
of 70, were 44% female, and 28% had severe outcomes. 
The external validation set had a mean age of 74, were 
47% female, and 37% had a severe outcome. There were 
statistically significant differences (tested via Wilcoxon 
Mann-Whitney U test evaluated at a significance level of 
0.05), with the external validation set having a larger inci-
dence of severe outcomes (W = 64296, p-value = 0.02), 
and an older population (W = 68074, p-value < 0.001). 
Gender was statistically similar (W = 57480, p-value = 
0.44)

Prediction using individual variables
Table  2 shows descriptive statistics on individual bio-
marker readings and their odds ratio contributions in 
a 5-fold 20-repeat stratified cross-validated logistic 
regression including the particular biomarker and age 
and gender. Our approach uses complete cases to esti-
mate the predictive capacity of biomarker test results 
(avoiding ‘Test Not Taken’) but this may introduce bias 
as discussed. Table 3 details performance using the area 
under the receiver operating characteristic curve (AUC) 
metric, comparing biomarker models (a particular bio-
marker plus age and gender) to a model using only age 
and gender. A simple age and gender model acts as a foil 
to illustrate the worth of a biomarker over easily collected 
but often predictive variables. Due to the categorical 
representation of the biomarkers, individual levels may 
be significant while another is not (e.g. ‘Severe’ is a pre-
dictor, but ‘Mild’ is not). Statistically significant predic-
tors (i.e. odds ratios deviating from one with p-value at 
0.05 or lower) associated with increasing risk of a severe 
outcome (as shown in Table 2) include age, and the bio-
markers: Activated Partial Thromboplastin Time (Mild), 
Prothrombin time (Abnormal), blood pH (Abnormal), 

Haemoglobin (Severe), Platelet count (Moderate), Lym-
phocytes (Moderate, Severe), Neutrophils (Severe), 
Neutrophil-Lymphocyte Ratio (Mild, Moderate, Severe), 
C-Reactive Protein (Abnormal), Urea (Abnormal), and 
Troponin-T (Abnormal). Nosocomial transmission was 
included due to the high number of cases in our cohort 
but was not a significant predictor and excluded from 
further analyses. Due to small numbers preventing cross-
validation, Triglycerides, Glycated Haemoglobin, Procal-
citonin (also invalid due to being recorded only in ICU), 
Fibrinogen, and Lactose Dehydrogenase were excluded 
from further analysis and require future research.

Regression models using all valid biomarker data
Each model was evaluated via 5-fold stratified cross-val-
idation with 20 repeats (100 models total). As such, each 
model is trained with a randomised sample of 80% of 
the training data set (n=427). Internal validation evalu-
ates model predictions on the 20% (n=107) held out. 
External validation uses the same model, but is instead 
tested on the never trained on external validation data 
set on recorded a separate hospital (n=222). Missing data 
for each biomarker is coded as ‘Test Not Taken’ and is 
included as a predictor variable. Table 4 shows the per-
formance of these models (AUC, Sensitivity, Specificity).

To estimate variability in model performance and allow 
comparison between models, we compute inter-quantile 
AUC difference ranges using 5-fold 20-repeat cross-val-
idation of models. While Delong’s method [23] is also 
be used to compare between models, it tests only for a 
significant difference between the AUCs of two trained 
models. Conversely, cross-validation (or bootstrap) con-
siders also variability in model training due to sample 
variance by providing a comparison across models for 
each of many data splits. For each data split, we compute 
the AUC for a given model and then compute the delta 
to the reference model (Bayesian horseshoe), thus allow-
ing the comparison of 95% intervals. Cross-validation 
results provide 95% inter-quantile ranges that clearly 
illustrate that in general, all models perform similarly, 
with a median AUC ranging from 0.76–0.82 in internal 
validation, and ranging from 0.67–0.71 in external vali-
dation. While the LASSO inspired GLM model has the 
best median internal AUC difference (0.02 better than 
the Bayesian horseshoe reference), all models overlap in 
their 95% AUC difference intervals. When considering 
external validation, the median AUC difference tends 
to be smallest or even slightly positive for the Bayesian 
methods, but all models overlap within the 95% bounds 
of the reference model, except the LASSO model. Note 
the LASSO model also has higher variation in AUC dif-
ference indicating the model’s performance is not very 
consistent across cross-validation folds. The calibration 



Page 11 of 17Sullivan et al. BMC Medical Informatics and Decision Making          (2025) 25:123  

of the models is varied on the internal training data, 
with the GLM with LASSO regularization and Bayesian 
and projective prediction models having the best perfor-
mance. However, the flat and horseshoe Bayesian models 
appear to overestimate the presence of severe events as 

indicated by the calibration-in-the-large values. External 
validation calibration is worse across models with most 
underestimating the presence of severe events. While 
the 4-biomarker projective prediction model has good 
AUC performance the external calibration slope is quite 

Table 3 Predictive performance of the individual biomarker models in Table 2 as described by the median area under the curve (AUC) 
in receiver operating curve (ROC) analysis and median difference between an Age and Gender reference model and the same model 
(negative values indicate the reference has worse performance) with the particular biomarker included (except univariate age and 
gender models)

* Biomarkers not included in subsequent models due to small sample size, and recorded only in ICU (PCT)

 Regressions were fit using all associated dummy variables for a given biomarker (e.g. mild, moderate, severe) and using only complete cases of training data (n=590), 
i.e. not using a variable for ‘Test not taken’. 95% inter-quantile ranges calculated via 5-fold cross-validation with 20 repeats (100 models total). Categorical variables use 
a reading of ‘Normal’ as a reference in the fitted model, except ‘Male’ used as the reference category for gender
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low (0.19) which appears to be due to poor estimates for 
patients with high probabilities of a severe outcome, see 
Supplementary Materials A9.

Reduced variable models
The models detailed above are moderately good predic-
tors of severe COVID-19 outcomes, but for clinicians 
with limited time and resources, reduced models can bal-
ance predictive performance with ease of clinical use by 
using only the most informative biomarkers. To address 
this, we use two variable selection approaches, LASSO 
and projective prediction, that allow the creation of 
reduced models with fewer biomarkers but similar per-
formance to the larger models.

LASSO models
After performing 5-fold 20 repeat cross-validation we 
examined the frequency of how often a particular bio-
marker has a coefficient greater than zero and count 
across cross-validation trials. Supplementary Figure A10 
shows the frequency of variables having a coefficient 
great than zero in the cross-validated LASSO analysis. If 
we select variables that appear at least 50% of the time, 
our reduced model would include: Age, BE (abnormal), 
CRP (abnormal), eGFT (abnormal), HB (severe), PLT 
(mild, moderate), Lymphocytes (Severe), Neutrophils 
(Mild, Severe), NLR (Severe), APTT (mild, moderate), 
0xygen (abnormal), PT (abnormal), blood pH (abnor-
mal), Urea (abnormal), and positive viral, respiratory, and 
blood culture co-infections.

For the LASSO inspired reduced variable standard 
GLM, this resulted in a model using the 16 biomarkers 
above and age for all categorical levels, and was evaluated 

via both cross-validation and as fit to all available training 
data. This model had performance similar to the models 
using all valid biomarker data, with a median external 
validation AUC of 0.68 [0.67, 0.69], see Table 4.

Note, ‘Test Not Taken’ was a significant predictor for 
some biomarkers on over 50% of cross-validation trials 
(see Supplementary Figure A10). The potential signifi-
cance of missing data is complex and is addressed in the 
Discussion section. Due to this confounding, biomarkers 
whose top predictive contribution was from ‘Test Not 
Taken’ were excluded from both LASSO reduced vari-
able models and projective prediction models described 
below.

Projective prediction models
When all biomarkers are considered, projective predic-
tion ranks all variables in descending order of contri-
bution to AUC performance. We considered the top 20 
including: Urea (abnormal), Age, PT (abnormal), CRP 
(abnormal), NLR (Severe), APPT (moderate), PLT (mild, 
moderate), Neutrophils (mild, severe), Lymphocytes 
(severe), blood co-infection, hemoglobin (severe), blood 
pH (abnormal). Thus age and 11 biomarkers were candi-
dates for a reduced model. Several predictors of ‘Test Not 
Taken’ were in the AUC ranking. However, as mentioned 
above, these biomarkers are set aside due to this con-
found. Supplementary Figure A11 shows the projective 
prediction ranking the AUC contribution. A model using 
a projection incorporating all biomarker and demo-
graphic data is equivalent to the standard Bayesian GLM 
we evaluated in the prior section, see Table 4.

Reduced variable projections were evaluated by man-
ual inspection of AUC performance among groups of 

Table 4 Internal and external cross-validated performance of models trained using valid biomarker data

95% inter-quantile ranges are presented for each estimate. Specificity is obtained by evaluating at a set sensitivity of either 90% or 95%. All reduced variable models 
include age, and a stated number of biomarkers. The reduced variable standard GLM uses age and 16 biomarkers that had non-zero coefficients on >=50% LASSO 
Cross-validation trials. If at least one categorical level for a particular biomarker (e.g. severe) met this requirement, all levels for that biomarker were included in the 
model. The 4 biomarker projective prediction model uses all categorical levels for Urea, PT, CRP, and NLR. Pairwise AUC difference is presented in comparison to the 
Bayesian (Horse shoe prior) model
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models using the top biomarkers. Guided by the pro-
jective prediction ranking, we ran a model using only 
the top biomarker, using only the top two, the top 
three, and so on. As described above, we omit biomark-
ers with significant contributions from ‘Test Not Taken’ 
and include all categorical levels for a given biomarker 
as long as one level is highly ranked. Ultimately, we 
found a four biomarker projective prediction model 
using age and including urea, prothrombin time, neu-
trophil-lymphocyte ratios, and C-reactive protein had 
similar performance to larger models with a median 
internal validation AUC of 0.8 [0.79, 0.8], and external 
validation AUC of 0.71 [0.7, 0.72], as shown in Table 4. 
Odds ratios for the full Bayesian model and the reduced 
4-biomarker model can be found in Supplementary 
Materials A12.

The 11 coefficients and intercept present can be sub-
stituted into a standard logistic equation. The calibra-
tion of the model is reasonably good on the training 
data but has poor calibration on the external validation 
set, see Supplementary Figure A13.

Discussion
Summary
Building prediction models using real world clinical 
data offers many challenges. There are numerous deci-
sion points required to curate data and many choices 
that require domain expertise. We use a COVID-19 
dataset with novel biomarker data to illustrate many of 
these challenges. Furthermore, if models are to be used 
clinically they must be feasible given the many resource 
constraints clinicians face. In principle, a model like 
ours (with a larger training set, testing, and translation 
into a clinical score) could have been used to guide cli-
nicians on how to triage patients and direct prophylac-
tic measures (though these were minimal at the time) 
and help anticipate which patients would be more at 
risk. While our model is not of use at this stage with 
COVID-19, our methodology would generalise to other 
infectious diseases.

We demonstrate methods for Bayesian variable selec-
tion in logistic regression using projective prediction 
and compare to a LASSO approach. While Bayesian 
models and projective prediction are more computa-
tionally intensive than standard approaches, they offer 
small but consistent AUC gains. A Bayesian approach 
also provides unbiased coefficients compared to 
LASSO, and projective prediction provides a system-
atic method to evaluate the contribution of model vari-
ables by AUC contribution and guide variable selection. 
Below we detail many of the methodological challenges 
faced.

Challenges of complex medical data
Data curation is challenging as clinical data are hetero-
geneous in multiple ways. Biomarkers are recorded for 
different reasons, e.g. routine upon admission, investiga-
tory tests, or tests primarily or exclusively taken in ICU. 
Further, some biomarkers are typically recorded together 
(but not always) as part of a test suite, including: Urea 
and electrolytes, full blood count, COVID-19 and co-
infection swab test, blood clotting, and blood gas tests 
(arterial or venous). The schedule when these markers 
are recorded varies by patient and clinical decision, lead-
ing to records being present in highly varying amounts, 
e.g. only 3% up to 100% of patients depending on the par-
ticular biomarker, see Supplementary Materials A1.

Modelling choices
When constructing and evaluating models, there are 
many choice points that should be explicitly highlighted 
with justification, be it based on convenience, compu-
tational complexity, clinical advice, or a heuristic. We 
regularly consulted our clinical partners for choices on 
the transformation of variables, the time window to con-
sider, why data was missing and patient inclusion crite-
ria. Complex data sets can be modelled with a variety of 
approaches, as described below we considered a number 
of time windows, ways to aggregate multi-day data, and 
data imputation procedures before forming a consensus 
with the presented models. Our approach emphasizes 
explainable risk factors, predictive performance and 
highlights the benefits of the Bayesian variable selection 
technique projective prediction for practical clinical use. 
However, non-linear approaches such as decision forests, 
boosting, or neural networks are all valid options if these 
features are not prioritized.

Missing data
Missingness, in the context of this study and in health-
care data more generally, can sometimes be informative 
and missing not at random, with the presence or absence 
of a test correlated with the its measurement or the study 
outcome. Imputation of missing data relies on key statis-
tical assumptions that imputed variables are missing at 
random (MAR) or missing completely at random. Con-
versations with our clinical co-authors established some 
routinely collected biomarkers might be inferred to be 
MAR. However, the routines identified were specific to a 
small a subset of our cohort and not likely to extrapolate. 
Clinicians advised that tests not being taken are almost 
always a clinical decision and therefor not random, as 
such we ultimately erred to be conservative and avoid all 
imputation, and instead include the presence/absence of 
missing values as a covariate itself [24, 25]. As such, in 
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the current study we chose to use placeholders for ‘Test 
not taken’ if there was no recorded value for a particular 
biomarker within the evaluated 3-day window after the 
key date.

This approach allows the possibility that a ‘Test Not 
Taken’ may be a significant predictor. This has many 
potential meanings, as it may convey that when a patient 
is doing well and unlikely to experience a severe out-
come, clinicians are unlikely to request some biomarker 
tests. Alternatively, if a patient is in palliative care and has 
a poor prognosis, a clinician may consider further test-
ing unnecessary. As such, the likelihood of a test being 
administered may follow an inverted-U function as 
patients to healthy or too ill may not have tests adminis-
tered. Furthermore, as our data was collected early in the 
pandemic, there may be other underlying clinical deci-
sions or resource limitations that drove why some tests 
were taken but not others. Lastly, because we only con-
sider results from within the first 3 days after a patients 
date, it may be that some tests were simply taken later in 
a patient’s stay due to operational constraints, and hence 
may be more predictive as they were taken closer to the 
outcome. When these instances occurred, we were con-
servative and excluded biomarkers with ‘Test Not Taken’ 
as the most informative category from our reduced vari-
able models.

Data transforms ‑ time windows
In the early days of the COVID-19 pandemic clini-
cians desired a way to triage patients near admission to 
help manage resources. If a good prediction on patient 
outcome could be made on or near the time of admis-
sion, this could greatly help divert resources to the cor-
rect patients. However, not all tests are administered on 
admission. To balance inclusion of test data not available 
on the day of admission and the need for clinical deci-
sions to be guided soon after admission, we chose to con-
sider the first value recorded for each biomarkers within 
three days after their ‘key date’, i.e. date of admission if 
already COVID-19 positive, or if already in hospital, 
the date of testing COVID-19 positive. However, given 
the richness of the time series data collected, further 
research into models that leverage this extra information 
is needed.

Focusing on early detection reflects the intent for the 
model to improve early stage clinical decision mak-
ing when potential treatments or changes in care may 
be introduced. This focus on the first reading in a 3-day 
interval loses information, but greatly simplifies the mod-
elling approach. Note, this choice is not without risk of 
reducing statistical power, increasing the risk of false 
positives, and underestimation of the extent of variation 
in biomarker readings and outcomes between groups 

[26]. It is likely that representing biomarker data as time-
series (assuming regular measures across patients) would 
add considerable information for continuous monitoring.

Data transforms ‑ continuous vs. categorical
A key modelling decision must be made on whether to 
use continuous data or transformed categorical data. 
Clinicians often use biomarker thresholds to provide 
semantic categories (e.g. normal, mild, moderate, severe) 
which sometimes use non-linear or discontinuous map-
pings that require special care if using continuous data. 
While clinical thresholds are likely established with evi-
dence, it may be the case that thresholds for one use may 
not apply to a novel use. This led [12, 27] to use machine 
learning approaches to build categorisation models on 
continuous biomarker data dependent on the training 
data at hand. However, using machine learning to estab-
lish categorisation thresholds on our biomarker data is 
difficult with a small training data set and the heteroge-
neity of biomarker recordings. If missing data imputation 
is performed, it raises another decision point on whether 
to impute the continuous or the transformed categorical 
data.

Another important factor to recognise is that some bio-
markers lack a linear relationship between a reading and 
a semantic category. Biomarkers can have a lower and 
upper bound for what is considered normal, and both 
below and above this range reflects clinically meaning-
ful yet sometimes separate abnormalities. The modelling 
needs to factor in non-linearity when persevering contin-
uous data or trying to map to a categorical space. In our 
position, categorical transformation had an advantage, 
as they allowed us to collaborate with ICU consultants 
while using pre-established clinically acceptable ranges 
to define our categorisation, see Table 1. Categorization 
is worth critical consideration in model planning and 
potentially worth revisiting. For example, with eGFR we 
simply consider kidney function as normal or abnormal, 
but test results can be put into more fine-grained catego-
ries to label the severity of kidney failure.

Training and external validation data selection
There are multiple ways that our data set could be split 
between training and external validation sets, e.g. ran-
domly sampling 1/3 of the data to hold out as an external 
validation set. Random selection of training data should 
in principle generate data more representative of the 
external validation set left out. However, hospitals may 
have differing practices and non-stratified randomization 
may inflate performance at the cost of real world gener-
alisation. We chose to separate our training and exter-
nal validation datasets by hospital to provide a stronger 
test of generalisation that should mimic generalisation to 
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novel hospitals completely outside the original training 
data .

Model performance evaluation and dissemination
There are a variety of ways statistical model performance 
can be evaluated. Here we have chose here to emphasize 
cross-validated estimates of AUC, sensitivity, and speci-
ficity. Inter-quartile intervals over these measures reveal 
that the variety of models perform in similar ways. With 
a larger data set, trade-offs may become more apparent. 
Model calibration on the external validation set is a clear 
weak point. While the models have a reasonable calibra-
tion for training data, generalization performance is weak 
and suggestive of the lack of sufficient data.

Comparison to contemporary models
We found several biomarkers previously highlighted 
by other groups to have significant predictive power, 
including: Urea, Neutrophil-Lymphocyte Ratio (NLR), 
Lymphoctyes, PT, eGFR, and CRP. Our highly reduced 
3-biomarker model (plus age) uses Urea (highlighted by 
all prior models), NLR (highlighted by [13, 27, 28]), and 
PT (highlighted by [27, 29]). These biomarkers highlight 
aspects of hypovolaemia (UREA), inflammation (NLR 
and CRP), and blood clotting factors (PT) that are con-
sistently altered in patients with severe outcomes. A 
direct comparison with other models is not possible due 
to differing variables, but our external validation perfor-
mance (Full model AUC: 0.7, 3-biomarker model AUC: 
0.67) suffers compared to Knight et al (AUC: 0.77) and is 
similar to Carr et al (AUC: 0.69 to 0.79 dependent on the 
training dataset). While our current model is not state of 
the art, with a larger more diverse dataset, our methods 
should achieve such results and allow possible inclusion 
of some biomarkers not included in the present model, as 
well physiological bedside measures captured by Knight 
et al. and Carr et al. but not present in our own.

Advantages of Bayesian modelling
While the predictive performance across models pre-
sented here is generally similar within 95% bounds, the 
Bayesian horseshoe model has slightly better median 
AUC difference cross-validated predictive performance. 
Reasons for researchers to favor Bayesian approaches 
should include that coefficients estimated via Bayes 
should on average deliver better predictive performance 
than standard GLM [30]. Additionally, if a sparse model is 
needed, a horseshoe prior can provide advantages similar 
to LASSO without biased coefficient estimates enabling 
joint probabilistic modelling of prediction and risk fac-
tor inference. Computationally, Bayesian techniques can 
be slow due the Hamiltonian Monte Carlo used to sam-
ple the coefficient space. If one is interested in variable 

selection, projective prediction offers the ability to take 
a single Bayesian model fit, run a variable selection algo-
rithm to rank variable contributions, and then arbitrar-
ily create sub-model projections with any number of 
original variables. While the initial model fit and variable 
selection are computationally intensive, sub-model pro-
jections are fast to create and performance test. Bayesian 
logistic regression with variable selection has the flex-
ibility of providing both conventional risk factor analysis 
and prediction, but approaches like deep learning [31] 
or ensemble methods [32] can offer superior predic-
tion performance due to their non-linear nature. How-
ever, there are trade-offs, deep learning works best with 
large datasets (unlike ours) and does not have intuitive 
regression coefficients for explainability. Ensemble meth-
ods (e.g., gradient-boosted decision trees) can achieve 
high performance with smaller datasets but also with 
some sacrifice in explainability. Further, neither of these 
approaches have a statistically rigorous variable selection 
method similar to projective prediction, though models 
can be augmented with regularization terms to encour-
age sparsity. However, tools like SHAP [33] are becom-
ing more mature and can offer a model agnostic way to 
view contribution of both variables and samples to model 
performance, and is well worth exploring. Ultimately, 
we favored the clinical explainability offered by logistic 
regression and ease of use with the ProjPred package for 
variable selection, even if it does sacrifice some perfor-
mance compared to non-linear techniques. We encour-
age researchers to try a variety of models depending on 
requirements for balancing data set size, performance, 
and explainability.

Conclusion
Limitations: This is a retrospective cohort study in South-
west England where case numbers have varied widely, 
and were below national incidence rates during the first 
wave. This results in less precise parameter estimates for 
prediction models (less power/smaller sample size) and 
likely reduced generalizability of the model to other set-
tings. The timing of biomarker collection was highly var-
ied both within and between patients, with many types of 
readings missing.
Strengths: The primary strength of our study is the 

granularity of serial laboratory data available linked to 
clinical outcomes. This study was performed during the 
first wave where there was the original Wuhan strain 
circulating amongst the unvaccinated naïve population 
without any specific immunomodulating therapies such 
as steroids or antiviral agents, reflecting the “true” home-
ostasis derangements at a population level.

In particular, this study describes the variety of chal-
lenges present in complex medical data sets and how 
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researchers need to balance the aim of statistically 
sound practices with the pragmatics and limitations 
of observational datasets like these. We highlight the 
benefits of recent Bayesian methodology for variable 
selection. Our study reiterates the predictive value 
of previously identified biomarkers for COVID-19 
severity assessment (e.g. age, urea, prothrombin time, 
c-Reactive protein, and neutrophil-lymphocyte ratio). 
Both the full and reduced variable models have moder-
ately good training performance, but improved external 
validation is needed for all models to be clinically via-
ble. The methods presented here should generalize well 
to a larger dataset and serve as a guide.
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