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Abstract

Explainable Artificial Intelligence (XAl) enhances transparency and interpretability in Al models, which is crucial

for trust and accountability in healthcare. A potential application of XAl is disease prediction using various data
modalities. This study conducts a Systematic Literature Review (SLR) following the PRISMA protocol, synthesizing
findings from 30 selected studies to examine XAl's evolving role in disease prediction. It explores commonly used XAl
methods, such as Shapley Additive Explanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME),
and their impact across medical fields in disease prediction. The review highlights key gaps, including limited data-
set diversity, model complexity, and reliance on single data types, emphasizing the need for greater interpretability
and data integration. Addressing these issues is crucial for advancing Al in healthcare. This study contributes by out-
lining current challenges and potential solutions, suggesting directions for future research to develop more reliable

and robust XAl methods.

Keywords Explainable artificial intelligence, XAl, Healthcare Al, Machine learning, Disease prediction, Disease
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Introduction

Artificial intelligence (AI) has been at the forefront in
transforming several aspects of healthcare such as diag-
nosis, treatment, and disease prevention. Al can detect
patterns, predict, classify, and learn from large-scale
and high-dimensional data, and show remarkable per-
formance in analyzing complex data such as medical
images, multimodal physiological features, and genomic
sequences. These capabilities, coupled with promising

fRazan Alkhanbouli and Hour Matar Abdulla Almadhaani contributed equally
to this work and share first authorship.

*Correspondence:

Mecit Can Emre Simsekler

emre.simsekler@ku.ac.ae

! Department of Management Science & Engineering, Khalifa University
of Science & Technology, Abu Dhabi, UAE

2 Department of Biomedical Engineering & Biotechnology, Khalifa
University of Science & Technology, Abu Dhabi, UAE

B BMC

accuracies, have given Al models the potential to assist
physicians and healthcare experts in making more
informed decisions. However, the accuracy of the Al
models often stems from an increase in model complex-
ity hence resulting in a black-box label [1]. The black box
term is used in Al to describe models that are very com-
plex and difficult to interpret. One of the biggest chal-
lenges of Al models is that they produce outputs without
stating the logic behind them. The logic then becomes
hard to interpret and explain making it difficult to iden-
tify errors, biases, or inconsistencies [2]. This challenge
makes it hard for healthcare professionals to trust the use
of Al in healthcare settings and it also raises ethical con-
cerns, such as accountability and responsibility of the Al
models [3].

Al models, including Machine Learning (ML) and
Deep Learning (DL) algorithms, might have limited
transparency and interpretability in the rationale of their
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output hence the growing shift to Explainable Artifi-
cial Intelligence (XAI). There has been a notable surge
in publications in XAI in the past decade [3]. XAl is a
subfield of AI that incorporates transparency, interpret-
ability, and explainability of the outcomes. Interpretable
in the context of XAl is defined by Doshi-Velez and Kim
as “the ability to explain or to present in understandable
terms to a human” [1, 4]. Explainability is then defined
as the understanding of the internal processes and steps
taken by the model for it to come to a specific conclusion
[1]. However, it is important to highlight that the explain-
ability of the model heavily depends on the given task [3].

XAI methods enhance the understanding of AI mod-
els allowing users to have a comprehensive understand-
ing of the strengths, limitations, and assumptions of the
model. Furthermore, XAI could potentially have a signifi-
cant impact on disease prediction by providing clearer
insights into how Al models arrive at their conclusions,
thus enabling healthcare professionals to make more
informed decisions based on these predictions. Exam-
ples of XAI applications in healthcare include colorectal
cancer diagnosis from histopathological images, in which
important features are extracted and analyzed, and the
early detection of Parkinson’s Disease using DaTSCAN
imagery [5, 6]. Despite the potential of XAl in facilitat-
ing decision-making in healthcare settings, the overall
integration of XAl in clinical practice has been slow and
limited due to the lack of trust and understanding of the
models. Hence, addressing the limitations of these mod-
els could further enhance the trust and understanding of
clinicians and healthcare professionals.

While there are few review articles addressing explain-
ability, it is important to highlight that none focuses on
disease prediction and recognition applications in health-
care, a significant area with potential Al implications. For
instance, a recent study emphasizes comorbidity rather
than the prediction of individual diseases [7]. Further-
more, previous literature reviews on XAI have covered
broader applications in healthcare, such as those in the
medical domain [8, 9], while others have focused on spe-
cific diseases like Alzheimer’s disease [10]. Our review
specifically targets XAl for disease prediction across vari-
ous diseases. This focus allows us to provide a more com-
prehensive analysis of XAIs role in enhancing disease
prediction across multiple medical conditions. There-
fore, there is a gap in the literature to conduct a compre-
hensive review of the current literature concerning XAI
methods utilized in disease prediction.

Al is increasingly transforming healthcare, especially
in diagnosis, treatment planning, and disease prediction.
However, most Al models operate as “black boxes,” mak-
ing it challenging for healthcare professionals to com-
prehend the decision-making process. This concerns
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accountability, explainability, usability and trust in essen-
tial medical circumstances [1, 3]. As a result, there is an
increasing interest in Explainable AI (XAI), which aims
to enhance the transparency and comprehensibility of Al
decisions for medical professionals [4].

Insights into Al-driven predictions can be obtained
through XAI, which will ultimately improve the safety
and reliability of AI in healthcare by enabling physi-
cians to more reliably adopt and evaluate model outputs
[2]. Despite its potential, XAl is still not extensively uti-
lized in clinical practice, especially concerning disease
prediction [5]. This review focuses on applying XAI in
healthcare, particularly enhancing the comprehension
and applicability of Al-based disease prediction models
for medical professionals. This review aims to identify
and analyze the existing gaps and limitations within this
domain. This systematic literature review aims to explore
the existing literature on the usage of XAI methods in
predicting diseases where different modalities are used,
such as medical images and signals. The research ques-
tions of this study are as follows:

Q1. What are the key XAI methods currently applied
in disease prediction across different medical modali-
ties (e.g., imaging, physiological signals)?

Q2. What are the major limitations and challenges of
existing XAl methods in enhancing transparency and
interpretability in disease prediction models?

The systematic literature review is organized as fol-
lows: The theoretical background and related work on
XAI in predicting diseases is included in “Theoretical
background” section, highlighting previous studies and
foundational concepts to frame the research context.
“Research methodology” section describes the research
methodology, including the search strategy, selection cri-
teria, and data extraction and analysis methods. “Results
and findings” section presents the results and findings
of the literature review addressing the research ques-
tions. “Discussion and implications” section discusses the
implications and limitations of the literature review as
well as the directions for future research. “Gaps and solu-
tions” section concludes the paper and summarizes the
main contributions.

Theoretical background

Related work on XAl in predicting diseases

The theoretical background of existing literature on
XAI in predicting disease encompasses various method-
ologies and applications. XAI has become increasingly
vital in healthcare as Al models become more complex
and integral to disease prediction and diagnosis. The
overarching goal of XAl is to make Al decision-making
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processes transparent and understandable, which is cru-
cial in a field as sensitive as healthcare [7]. In disease
prediction, XAI addresses the challenge of the nature of
many Al models. This involves developing methods that
can explain, in human-understandable terms, how Al
models arrive at their conclusions. Such transparency is
essential for gaining healthcare professionals’ trust and
adhering to regulatory standards and ethical considera-
tions in medical practice.

The literature reveals a diverse range of XAI methods.
While SHAP and LIME are prominent for their ability to
provide local and global interpretability, other methods
like Gradient-weighted Class Activation Mapping (Grad-
CAM), Partial Dependence Plots (PDP), and Counter-
factual Explanations also contribute to understanding
Al decisions [11]. Each method offers unique insights,
with some providing visual explanations or highlighting
specific features that influence model predictions. The
importance of XAl in healthcare is further underscored
by its application across various diseases. From cancer
detection to cardiovascular diseases, using XAI meth-
ods is instrumental in elucidating Al predictions, aiding
in more accurate diagnoses and tailored treatments. This
is particularly crucial in personalized medicine, where
understanding the specific factors influencing a model’s
prediction can lead to more effective patient-specific
interventions.

Among the various methodologies, LIME (Local
Interpretable Model-Agnostic Explanations) and SHAP
(Shapley Additive explanations) have emerged as promi-
nent tools for deciphering complex models. These meth-
ods provide insights into how Al models, especially those
based on DL, arrive at their predictions, thereby address-
ing the ‘black box’ nature of such models [8]. In [12], a
web and mobile-based platform for diabetes diagnosis
using LIME and SHAP showcases the integration of XAl
into practical healthcare applications. LIME excels at pro-
viding local interpretability by approximating a model’s
predictions in a specific instance, but it may struggle with
consistency across different datasets and can be compu-
tationally expensive for large models [3]. LIME was also
used in an EEG-based machine learning model for stroke
prediction, focusing on brain wave analysis, demonstrat-
ing its utility in making complex models interpretable
in neurological contexts [13]. SHAP, on the other hand,
provides a consistent method for calculating the contri-
bution of each feature to the model’s output, making it
particularly useful for feature attribution, though it can
be computationally intensive [1]. For example, SHAP
has been applied to early Parkinson’s Disease detection,
where it highlighted significant biomarkers, aiding in
the interpretability of gene expression data models [6].
Recent studies have increasingly applied both LIME and
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SHAP concurrently to enhance the interpretability of Al
predictions in medical diagnostics. This dual approach
leverages the strengths of both methods—LIME’s capac-
ity to offer local interpretability and SHAP’s ability to
assign consistent feature importance values across the
model. Table 1 shows the objectives of the existing SLR
on the XAI method.

Rather than concentrating on a particular disease,
this systematic literature review distinguishes against
addressing an extensive spectrum of conditions for XAI
application in prediction. This comprehensive approach
allows us to identify unique gaps and propose special-
ized solutions across various medical domains. We delve
into the methodological aspects of XAI, emphasizing
the distinctive opportunities and challenges involved
in using these technologies for various kinds of disease
predictions. Our review broadens the scope of research
in the field through the integration of solutions from
diverse conditions. It also provides a solid framework
for addressing the identified gaps and specific needs for
more targeted and effective XAl solutions in healthcare
diagnostics.

Research methodology

Several health journals and databases are rich literature
sources on XAIT’s role in predicting diseases. A system-
atic search was essential to identify reliable studies from
credible authors, focusing on studies published in the
last decade. In this context, the search prioritized stud-
ies published in the previous five years, marked by the
upsurged uptake of Al technologies in healthcare to pre-
dict disease occurrence. Also, significant consideration
was given to the authors’ credentials, sample size, study
methodologies employed, theoretical frameworks used,
and thematic focus to enhance the data’s relevance, valid-
ity, and reliability. This study utilized a Systematic Lit-
erature Review (SLR), which employs a transparent and
rigorous approach to synthesize findings to assess and
reduce bias in the data.

In this context, the review was conducted through
scholarly synthesis of evidence about XAI predicting dis-
ease using critical methodology to identify, define, and
assess related themes. SRV was the most preferred study
design for studying XAI in predicting disease because
of the significance attached to its use. For instance, the
research scope requires proper canvassing of past and
existing findings to unearth the strengths of XAI and
other Al applications in healthcare. Specifically, SLR
adopts a more scientific, reproducible, and transparent
approach to data collection and analysis and offers more
specific and clear guidelines to researchers in reviewing
and presenting outcomes. On the same note, it is marred
with fewer mistakes and biases than other study designs
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because it offers high-quality evidence while leaving a
transparent audit trail of the researcher’s methods, infer-
ences, and methods. Thus, it extracted data from pub-
lished studies followed by analysis, description, critical
appraisal, and summary interpretation into solid evi-
dence-based conclusions.

The SLR approach facilitated a deeper understanding
of the evolving landscape of XAl in healthcare. It allowed
for the exploration of how different research method-
ologies and theoretical frameworks have influenced the
development and application of XAI in disease predic-
tion. This comprehensive review highlighted the current
state of the art and identified gaps in the existing litera-
ture, suggesting areas for future research. The diverse
methodologies and varied thematic focuses of the studies
reviewed underscored the multifaceted nature of XAI in
healthcare, pointing towards a future where AI’s role in
disease prediction is not only technologically advanced
but also ethically sound and widely accepted in clinical
practice.

A thematic approach was implemented for data col-
lection and analysis, with research categorized accord-
ing to its contribution to disease prediction, methods in
which it utilized XAI techniques (e.g., SHAP, LIME), and
clinical application. This method ensured that the results
were accurate, consistent, and relevant to the study’s
objectives.

Planning the review

Researchers dedicated considerable time to a thorough
brainstorming session, looking into existing methodolo-
gies for conducting systematic literature reviews. This
task was achieved through extensive reading and consul-
tation with peers engaging in similar studies to warrant
uttermost adherence to the steps and processes required
for conducting a systematic literature review.

During this stage, particular emphasis was placed on
research ethics, especially concerning the respect for
the intellectual property rights of previous research-
ers (proper citations to prevent plagiarism). The ses-
sion succeeded by protocol review, research questions,
and objectives documentation. As a best practice, the
review protocol was outlined before the start to mini-
mize the risk of unplanned research duplication and fos-
ter consistency and transparency between protocol and
methodology.

Search string

A systematic literature review was performed to identify
relevant studies on XAl in disease prediction. The review
emphasized research published between 2014 and 2023
that indicated how Al is currently used in healthcare and
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how it has developed recently. A ten-year search was
conducted to identify the most recent advancements in
the field of XAI applications in healthcare diagnostics.

To address RQ1 and RQ2, we conducted a systematic
literature review (SLR) using the PRISMA guidelines.
Our search included databases such as Scopus, PubMed
and Web of science, targeting studies published between
2018 and 2023 that applied XAI in disease prediction.
The databases were prioritized because they compre-
hensively cover review papers, peer-reviewed articles,
and conference proceedings. The search queries included
combinations of keywords related to XAI and disease
prediction, such as: “disease diagnosis” AND “machine
learning,” “XAI” AND “healthcare Al and “Explainable
Artificial Intelligence” AND “disease prediction” another
search keywords applied were predicting disease, disease
diagnosis, disease recognition, XAl in disease diagnosis,
and predictive Al by adopting Boolean expressions ‘OR’
and ‘AND?

Using XAI techniques, articles were assessed accord-
ing to the extent to which they contributed to the pre-
diction of disease, with a focus on Grad-CAM, SHAP,
LIME, and other techniques. This approach ensured
that we obtained appropriate studies to investigate XAI’s
advantages and disadvantages. This planning phase laid a
solid foundation for the literature review. It ensured the
research was grounded in the latest and most relevant
studies, providing a contemporary perspective on XAI
in healthcare. The use of renowned databases like Pub-
Med and Scopus guaranteed access to high-quality and
peer-reviewed articles, enhancing the credibility of the
research findings. Furthermore, carefully selecting search
keywords and strategically using Boolean expressions
enabled a comprehensive and focused literature retrieval
process. This approach streamlined the review process
and ensured that a broad spectrum of perspectives and
findings related to XAI in disease prediction was cap-
tured for a rich and insightful analysis.

Conducting the review
Researchers thoroughly searched databases, initially
identifying 76 articles. This initial selection served as a
broad pool to refine and select the most relevant studies.
To ensure alignment with the research objectives, each
article was scrutinized based on its abstract, title, and
keywords. This screening process was critical to establish
each study’s relevance to the review’s overarching theme.
Subsequently, researchers applied specific inclusion
and exclusion criteria to refine the selection of articles
further. As a result of this rigorous filtering process, a
total of 46 papers were excluded for various reasons.
Eight of these papers were removed because they
were not found in the Scopus and PubMed databases,
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Identification of Studies via database and registers

Records identified
through database
searching: Total =76
PubMed = 29
Scopus =1
Web of science = 30

|

Records screened
(n=60)

Identification

Screening

eligibility (n=41)

Studies included in
review=30

Included

Fig. 1 Flowchart of the research methodology

indicating they might need to meet the required aca-
demic standards or relevancy. Additionally, seven
papers were excluded because they were confer-
ence papers, which may have undergone a different
level of peer review than journal papers. Two papers
were excluded as they did not contain results. Twelve
papers were deemed unrelated to the central theme
of predicting disease, demonstrating the importance
of thematic alignment in systematic reviews. Lastly,
three papers were excluded because they were written
in languages other than English, possibly hindering a
thorough and accurate analysis due to language barri-
ers. Figure 1 describes including and excluding articles
during the evaluation and selection of studies.

Reporting and dissemination

This stage focused on presenting the literature review
report based on the summarized findings in the results
and discussion section. The collected papers were
grouped and tabulated based on the paper’s authors
and date of publication, journal, country, disease, data

v
Reports assessed for

l

Records removed before
screening: Duplicate
records removed (n = 16)

Records excluded (n=18)
Unlisted in selected databases=8
Conference papers=7
Paper in Spanish=2
Paper in French=1

Records excluded (n=11)
Paper does not focus on predicting disease= 9
No results provided = 2

modality, data type, AI model, XAI method, and con-
tribution (see Table 1).

Results and findings

Descriptive analysis of the reviewed articles

An analysis of the papers shows that 30 articles were
published across 26 different journals. This is reflected
in Fig. 2, which illustrates the number of publications per
journal. The journal Computers in Biology and Medicine
published three articles, while Nature Communications
and Nature Portfolio Scientific Reports published two
articles each. The remaining 23 journals published one
article each.

Furthermore, the number of published articles
increased from 2019 to 2023, as shown in Fig. 3, with the
peak in 2023 at 13 publications, followed by 9 in 2022.
Only one article was published in 2019, reflecting a grad-
ual increase from 2019 to 2023 (1 in 2019, 5 in 2020, 2 in
2021, 9 in 2022, and 13 in 2023). Overall, the years 2022
and 2023 were particularly prolific, accounting for 80% of
the publications in the review period.
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Cancers

European Federation for medical informatics (EFMI)...

Radiation Oncology

Genes

The Journal of Supercomputing

Annals of Translational Medicine

Journal of Biomedical Informatics

Nature research Scientific Reports

IEEE Transactions on Biomedical Engineering
Computer Methods and Programs in Biomedicine
Journal of Medical Systems

Diagnostics

Computers in Biology and Medicine

BMC Med Inform Decis Mak

Computational Intelligence and Neuroscience

Journal

Sensors journal

Healthcare Technology Letters
Nature portfolio Scientific reports
Clinical Medicine Insights Cardiology
Comput Methods Programs Biomed
NPJ Digit Medicine.

Frontiers

Frontiers in Neuroscience

Front Cardiovasc Med

JACC Cardiovasc Imaging

Nature Communications

Fig. 2 Publications by journal

NUMBER OF PUBLICATIONS

—
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Fig. 3 Number of publications in years

The distribution of publications before 2019 was
notably sparse, with only 3.33% of papers published by
that time. A significant uptick in interest was observed
starting in 2020, with 16.67% of the papers published
that year. The subsequent years showed a fluctuat-
ing but generally increasing trend in publication vol-
ume: 10% in 2021, a notable jump to 30% in 2022, and
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peaking at 40% in 2023. This trend underscores a grow-
ing engagement with XAI technologies in medical diag-
nostics over the last few years.

Authors from 29 countries across six continents pub-
lished articles related to XAI. Figure 4 shows the per-
centage of publications based on the country of the
author, with the United States contributing the highest
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Fig. 6 Categories of diseases

at 7.5%, followed by Egypt, India, Saudi Arabia, Bangla-
desh, UK, Italy, and China at 6%. Most countries con-
tributed between 2% and 5.5%, with the majority at 2%.

Findings and analysis

This section synthesizes findings from a systematic lit-
erature review (SLR) of 30 peer-reviewed articles on
XAI in medical diagnostics. Figure 5 displays the various
XAI methods used across the reviewed studies. SHAP
was the most frequently employed method, account-
ing for 38% of the publications, followed by LIME at
26%. Other methods, including Grad-CAM, Fuzzy logic,
and Partial Dependence Plots (PDP), were each used in
5% of the studies. Additionally, a few methods—such as
Eli5, Genetic Programming, GSInquire, Visualization
of learned deep representations, CAD attention maps,
Layer-wise Relevance Propagation (LRP), and DALEX
were employed minimally, representing only 1% of the
publications each.

Figure 5 highlights the dominant roles of SHAP and
LIME in improving AI model interpretability for condi-
tions like Diabetes, Ischemic Stroke, and various cancers.
Moreover, the surveyed literature indicates an explora-
tion of alternative XAI techniques, which contribute to
the refinement of diagnostic precision. Notably, genetic
programming, as reported in [15] has shown promise in
the diagnosis of sarcoidosis, while the implementation of
Fuzzy logic has been instrumental in evaluating Alzhei-
mer’s Disease, as discussed in [21].

Table 1 presents a comprehensive overview of AI mod-
els applied to disease diagnosis across different data
modalities, including EEG signals for Ischemic Stroke,
chest X-rays for COVID-19, and gene expression pro-
filing for Prostate Cancer. Each study, such as [12] for

diabetes diagnosis [16], predictive model for Coronary
Artery Disease, and [26] prognostic method for cervical
cancer, showcases Al's adaptability in healthcare.

Figure 6 categorizes the diseases studied into seven
principal groups: cardiovascular, cancers and tumors,
neurological, infectious, metabolic and endocrine, res-
piratory, and other conditions. Cardiovascular diseases
include Ischemic Stroke, Coronary Artery Disease, and
Myocardial Infarction, while cancers cover conditions
like Leukemia, Breast, Colon, and Prostate cancers. Neu-
rological disorders such as Parkinson’s and Alzheimer’s
are also prominent. Infectious diseases include COVID-
19, Pneumonia, Tuberculosis, and Hepatitis. Other
diseases such as Sarcoidosis and Acute Critical Illness
further underscore the broad scope of XATI’s application.

This synthesis, as shown in Fig. 6, showcases both the
complexity inherent in medical research and the expan-
sive potential of XAI in addressing diverse diagnostic
challenges. It reflects the wide range of health issues
impacting humans, emphasizing the need for adaptable
and innovative approaches in health sciences. This com-
prehensive categorization highlights the significant role
XAI can play in transforming diagnostics across a broad
spectrum of medical domains, enhancing the accuracy
and interpretability of Al-driven solutions in healthcare.

According to our review, the most widely used XAI
algorithms for disease prediction, particularly for diag-
nosing cancer and cardiovascular diseases, are SHAP
(38%) and LIME (26%). While LIME has been applied in
neurological and cancer studies, including imaging data,
SHAP has often been used in gene expression studies for
diseases like Parkinson’s.

Our review has identified several sets of limitations
in the reviewed papers. One of the most significant
problems is the lack of different datasets—most models
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depend on single-modality data, which reduces the con-
clusions’ generalizability. Furthermore, clinicians have
reported challenges in understanding the outcomes of
XAI models [40]. This underscores the urgent need for
more approachable tools and improved instruction in
XAI techniques.

The review discovered a growing trend of XAI inte-
gration with multi-modal inputs such as genetic, physi-
ological, and imaging data, as well as complicated
medical datasets. In order assist with personalised treat-
ment decisions, a study on prostate cancer that used
SHAP demonstrated how the approach may highlight
significant components from patient data. The findings
did, however, also indicate a variety of gaps in the litera-
ture, including the lack of diverse datasets and the need
for improved user interfaces so that physicians can suc-
cessfully understand Al outputs.

Discussion and implications

The descriptive analysis of the reviewed papers reveals a
significant and growing interest in XAI within the medi-
cal field, as demonstrated by the steady increase in pub-
lications from 2019 to 2023. This surge underscores the
healthcare sector’s pressing need for transparent Al sys-
tems, particularly for disease prediction and diagnosis.
The global recognition of XAI's importance is evident
from the diverse range of journals and the wide geo-
graphical spread of authors, with contributions spanning
Asia, Europe, and the United States. This suggests that
XAl is becoming an essential tool across different health-
care systems, with SHAP and LIME emerging as the
most prominent methods, used in over half of the stud-
ies reviewed. Their effectiveness in enhancing AI model
interpretability is well-established, but the continued
exploration of other methods reflects the evolving nature
of XAI, highlighting room for innovation and improve-
ment in achieving optimal explainability.

The concentration of publications in recent years, par-
ticularly in 2022 and 2023, signals a rapid response to
the growing complexity of Al technologies in healthcare.
This shift indicates that the field is maturing, but it also
points to the need for further refinement and develop-
ment of XAI models to ensure their practical applica-
tion in clinical settings. The geographical distribution of
research highlights how healthcare systems globally are
acknowledging the potential of XAl yet it also empha-
sizes the disparities in research outputs between regions,
with Asia and Europe leading, while other continents
remain underrepresented. This calls for more collabora-
tive efforts to ensure equitable access to XAI advance-
ments across all regions.

The implications of these findings are significant. The
increasing volume of literature reflects a readiness within
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the healthcare sector for wider adoption of XAI tech-
nologies, but challenges remain. There is a clear need
for standardization in XAI methodologies and the devel-
opment of comprehensive guidelines to facilitate their
integration into clinical workflows. Moreover, as XAI
becomes more embedded in healthcare, educational ini-
tiatives must be implemented to equip clinicians with
the skills to interpret Al-assisted diagnostics effectively
[7]. The variety of XAI methods utilized across studies
suggests that the field is poised for further research and
development. Future innovations could focus on improv-
ing model accuracy, reducing computational overhead,
automation bias, and targeting specific medical condi-
tions to enhance diagnostic precision [41].

As Al continues to play an increasing role in healthcare,
the establishment of robust policy frameworks and regu-
latory guidelines will be critical to ensuring the ethical
and safe deployment of XAI technologies. Without clear
standards, the integration of these tools could face signif-
icant barriers. The findings from this review highlight the
urgent need for ongoing research, regulatory oversight,
and cross-disciplinary collaboration to advance XAIs
role in transforming healthcare delivery.

Gaps and solutions
The systematic literature review conducted on the appli-
cation of XAI in medical diagnostics has revealed several
gaps in current methodologies and their implementation.
These gaps span the scope of XAI models, their interpret-
ability in clinical practice, the technologies underpinning
them, and their integration into healthcare systems. As
illustrated in Table 2, our findings indicate the necessity
for XAI models to align closely with medical diagnostic
processes, ensuring that the outputs are transparent and
interpretable for medical professionals. These models
must consider the complex nature of medical data and
elucidate reasoning that builds clinician trust and sup-
ports clinical decision-making.

To address the identified gaps, our review recommends
a comprehensive strategy. Assembling diverse datasets
is essential to reduce bias and enhance the generaliz-
ability of XAI in healthcare. This includes global partner-
ships for data collection and techniques like SMOTE/
ADASYN for balancing datasets. Additionally, achieving
a balance between model complexity and interpretability
is critical. Methods such as SHAP and LIME can enhance
user engagement and improve understanding of the algo-
rithms. From a technological standpoint, deploying XAI
effectively relies on big data analytics to uncover deeper
insights from complex medical data. This approach can
improve diagnostic accuracy and patient outcomes.
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Table 2 Gaps and potential solutions for XAl applications in disease prediction

Gaps

Solutions

Model Scope Limited datasets affecting model diversity and bias

Data imbalance skewing predictive outcomes

Inadequate development of explainable, transparent models

Modeling Approach

Dependency on single data types of limits prediction scope
Narrow performance metrics focus, overlooking comprehensive

assessment
Technology

Single-data modality fails to offer a complete diagnostic picture
Al interpretability not aligned with clinical reasoning

Implementation Al interfaces lack accessibility for medical staff

Complex Al tools challenge clinical workflow integration

Struggle to balance complex models with user interpretability

"Black box"models obscure operational understanding

Partner globally for diverse datasets; use synthetic data
to mitigate bias

Employ SMOTE/ADASYN techniques for balanced datasets

Adopt XAl frameworks, conduct audits, and provide training
for healthcare providers

Use SHAP and LIME for interpretability
Support interdisciplinary innovation for data integration
Tailor metrics to clinical outcomes and provider needs

Build transparent XAl models

Create simulation tools for single-modal data insights

Use Al coaching to enhance clinical reasoning

Design user-centered Al interfaces with customizable options

Create modular Al tools for seamless workflow integration
and training

Simulation tools should also be developed for deeper
insights using single-modal data.

For successful implementation, creating user-friendly
Al interfaces is vital. These interfaces should be designed
with a user-centered approach, providing clear explana-
tions of AI's reasoning. Al ‘coaching’ systems can fur-
ther enhance healthcare providers’ clinical reasoning.
By implementing these strategies, the potential of XAl
in medical diagnostics ensure that Al applications are
transparent, verifiable, and fully integrated into patient
care, thus enhancing the overall quality and efficiency of
healthcare delivery.

Conclusion

In conclusion, this systematic literature review has pro-
vided a detailed analysis of the current state of XAl in
disease prediction within the healthcare sector. The
review highlights the growing adoption of methodolo-
gies such as SHAP and LIME, which play a crucial role
in enhancing the interpretability and transparency of Al
models used in complex medical diagnostics.

Our findings indicate a significant increase in rel-
evant publications from 2019 to 2023, reflecting the
rising demand for explainable Al systems in healthcare.
This trend underscores the importance of XAl in sup-
porting more informed and accountable decision-mak-
ing in medical practice. Despite these advancements,
challenges remain—particularly regarding the need for
more diverse and comprehensive datasets to improve
the generalizability and fairness of XAI models. The
trade-off between model complexity and interpretabil-
ity also persists, requiring ongoing efforts to develop
Al systems that are both sophisticated and accessible to
healthcare practitioners. While XAI is rapidly gaining

traction in the healthcare domain, its full potential has
yet to be realized. Future research should focus on clos-
ing these gaps by exploring more diverse data sources,
simplifying the complexity of AI models, and ensuring
their practical integration into clinical settings without
compromising performance. Additionally, continued
evaluation of XAI’s real-world applications will be cru-
cial in determining its long-term impact on healthcare.

This review contributes to a better understanding of the
current landscape of XAl in healthcare, offering a foun-
dation for future studies and guiding healthcare profes-
sionals and AI developers in the responsible and effective
implementation of Al technologies in disease prediction
and diagnosis. It aims to guide healthcare profession-
als and AI developers toward responsible and effective
implementation of Al technologies, ultimately enhancing
the quality and efficiency of healthcare services.

One notable limitation of this review is the exclusion
of large language model (LLM)-based explanation meth-
ods, which have gained traction in recent years. Given
that our study is based on literature published within a
specific timeframe, many advancements in LLM-driven
explainability were not yet reflected in our dataset. Future
research should explore the role of LLMs in enhancing
interpretability, particularly in multimodal healthcare
applications, to assess their impact on trust, usability, and
clinical decision-making.
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