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Abstract
Background The clinical information housed within unstructured electronic health records (EHRs) has the potential 
to promote cancer research. The National Cancer Center Hospital (NCCH) is widely recognized as a leading institution 
for the treatment of thoracic malignancies in Japan. Information on medical treatment, particularly the characteristics 
of malignant tumors that occur in patients, tumor response evaluation, and adverse events, was compiled into the 
databases of each NCCH department from EHRs. However, there have been few opportunities for integrated analysis 
of data on both the hospital and research institute.

Methods We developed a method for predicting tumor response evaluation and survival curves of drug therapy 
from the EHRs of lung cancer patients using natural language processing. First, we developed a rule-based algorithm 
to predict treatment duration using a dictionary of anticancer drugs and regimens used for lung cancer treatment. 
Thereafter, we applied supervised learning to radiology reports during each treatment period and constructed a 
classification model to predict the tumor response evaluation of anticancer drugs and date when the progressive 
disease (PD) was determined. The predicted response and PD date can be used to draw a survival curve for the 
progression-free survival.

Results We used the EHRs of 716 lung cancer treatments at the NCCH and structured data of the cases as labels for 
the training and testing of supervised learning. The structured data were manually curated by physicians and CRCs. 
We investigated the results and performance of the proposed method. Individual predictions of tumor response 
evaluation and PD date were not extremely high. However, the final predicted survival curves were nearly similar to 
the actual survival curves.
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Introduction
Cancer is one of the major causes of death in the world 
[1] and particularly the most common cause of death 
in Japan [2]. The treatment of cancer has advanced sig-
nificantly as a result of constant basic research, transla-
tional research, and clinical research. In clinical research, 
randomized trials are the most important. However, 
the results obtained from randomized trials have often 
diverged from actual clinical practice. In this context, 
clinical research using real world data (RWD) is attract-
ing attention, since RWD can reflect treatment efficacy 
and adverse events in actual clinical practice that can-
not be obtained in randomized trials. The widespread 
use of electronic health records (EHRs) is a major driver 
in making RWD creation possible. However, the data in 
EHRs themselves are not structured. There is a great deal 
of interest in how to change unstructured EHR data into 
a form that can be used for clinical research.

The National Cancer Center Hospital (NCCH) is widely 
recognized as a leading institution for the treatment of 
thoracic malignancies in Japan [3]. Information on medi-
cal treatment, such as the characteristics of malignant 
tumors that occur in patients and tumor response evalu-
ation, was individually structured and compiled into the 
databases of each NCCH department from EHRs. The 
structured data were used for various studies using the 
EHRs information on the laboratory side, such as sur-
vival analysis. However, there have been few opportuni-
ties for integrated analysis of data on both the clinical 
and laboratory sides. This is because the database sys-
tems are managed by each department, and data is not a 
subset of EHRs and need to be built. In addition, another 
reason is that EHRs exist within a closed network for 
the protection of personal information. Physicians and 
clinical research coordinators (CRC) manually collected 
and structured the EHRs data, which is a burdensome 
task. Particularly, the tumor response evaluation of can-
cer treatment was difficult because they determined the 
tumor response evaluation comprehensively by reading 
radiology reports.

In this study, we aimed at developing a supporting tool 
for conducting studies using the EHRs more efficiently. 
Specifically, treatment periods, tumor response evalua-
tion, dates that progressive disease (PD) was confirmed, 
and survival curves are utilized for various clinical stud-
ies using the EHRs. An automated system or a suggestion 
system for providing these information help physicians 

and CRCs curating the structured database. Note that 
this study did not intend to affect the clinical decision. 
We proposed a method comprising a series of analyses 
for predicting treatment periods, tumor response evalua-
tion, and survival curves of drug therapy for patients with 
lung cancer from the real EHRs using natural language 
processing (NLP). The proposed method provided such 
clinical information to help researchers find out a chance 
of clinical studies.

Related work
NLP is an instrumental technology for clinical decision 
support aimed at helping medical workers make deci-
sions [4]. Some medical information, such as impres-
sion in the EHRs and interventions of a clinical trial, is 
unstructured and described in free-text format. Informa-
tion extraction and structuring from such unformatted 
data using NLP strongly supports advanced analyses [5, 
6].

Unstructured data in clinical studies often contain key-
value data. Kumamaru proposed a general approach that 
can efficiently extract a broad range of numeric human 
physiological data such as blood pressure, EF, and labora-
tory values from narrative notes [7]. Cai et al. also devel-
oped and published a tool for extracting EHRs numerical 
data [8]. Their rule-based approach achieved high accu-
racy for capturing numerical vital sign values. The key-
value data are relatively easy to be manipulated by the 
rule-based algorithm.

Clinical variables in cancer treatment, such as tumor 
response evaluation, are not directly represented in 
EHRs. Recently, machine learning (ML) algorithm, par-
ticularly deep learning, has received considerable atten-
tion because of its performance and flexibility. Liao et 
al. predicted Crohn’s disease using the adaptive LASSO 
penalized logistic regression [9]. Zhang et al. developed 
a semi-supervised phenotyping pipeline, PheCAP, using 
ML approaches that produced the probability of the phe-
notype [10]. Yuan et al. used an ML algorithm for a lung 
cancer prognosis [11]. Kehl et al. assessed whether deep 
natural language processing can extract relevant cancer 
outcomes from radiologic reports of the English EHRs 
at the United States [12]. Araki et al. developed models 
based on Bidirectional Encoder Representations from 
Transformers (BERT) to extract some outcomes from 
Japanese EHRs [13].

Conclusions Although it is difficult to construct a fully automated system using our method, we believe that it 
achieves sufficient performance for supporting physicians and CRCs constructing the database and providing clinical 
information to help researchers find out a chance of clinical studies.

Keywords Electronic health records, Natural language processing, Deep learning, Tumor response evaluation, 
Survival curve
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Although there are some studies that achieve high 
performance using EHRs and NLP, few studies focus on 
actual medical analyses in an actual medical field. Over-
all analysis process using real EHRs is more important 
for promoting clinical studies using the EHRs. The struc-
tured clinical database in actual field included mistakes, 
spelling inconsistencies, various formats, omissions, and 
wrong decisions because operations compiling from the 
EHRs into the database were burdensome tasks.

Methods
Data
In this study, we selected the EHRs of 716 treatments for 
lung cancer at the Department of Thoracic Oncology, the 
NCCH. Each treatment had a single regimen consist-
ing of one or more anticancer drugs. Although a patient 
could have several treatments, the treatments did not 
performed simultaneously. The 716 treatments informa-
tion also existed in the structured database of the Depart-
ment of Thoracic Oncology and was well-reviewed and 
reliable for evaluating our method. Incomplete cases 
were excluded in advance, and the EHRs and the struc-
tured data of the 716 treatments had no missing data. 
Patients were aged 24–91 years at enrollment for recruit-
ment from 1998 to 2019. We used injection records, pre-
scription records, and radiology reports in the EHRs. The 
injection records included a date and an anticancer drug 
injected into the patient, and the prescription records 
included a date and an oral anticancer drug. Radiol-
ogy reports included the date, a method, findings, and 
impression of a radiation examination.

Additionally, we used structured data of the 716 lung 
cancer treatments as labels for the training and testing 
of supervised learning. The structured data were manu-
ally curated by physicians and CRCs in the Department 
of Thoracic Oncology at the NCCH. The structured 
data comprised patient information, treatment records, 
and hospital records. We used treatment records that 
included treatment periods, tumor response evaluation, 
and dates that progressive disease (PD) was confirmed. 
The clinical information in this study was determined by 
physicians and CRCs only for easily reference from clini-
cal studies.

Fig. 1 shows examples of the EHRs and the structured 
data used in this study. The examples are dummy data 
similar to the original data because the original data are 
protected and are not publicly available.

Method overview
Our method comprised three sequential analyses: predic-
tion of treatment periods, prediction of tumor response 
evaluation and PD date, and survival analysis (Fig.  2). 
We developed a rule-based algorithm to predict treat-
ment duration using a dictionary of anticancer drugs and 
regimens used for lung cancer treatment. Thereafter, we 
applied supervised learning to radiology reports during 
each treatment period and constructed a classification 
model to predict the tumor response evaluation of anti-
cancer drugs and the date when the PD was determined. 
The predicted response and PD date can be used to plot 
a survival curve for the progression-free survival (PFS) 
period.

Fig. 1 Examples of the electronic health records (EHRs) and the structured data used in the study. Red texts are translations into English
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Although the EHRs data and the structured data used 
in this study are protected and are not publicly avail-
able, our code used to train and evaluate the models with 
dummy data is available on GitHub ( h t t p  s : /  / g i t  h u  b . c  o m /  
x c o o  / j  p - c  a n c  e r - e  h r  s - a n a l y s i s). The EHRs and structured 
data in the public code are dummy, whereas the ML 
models were trained with the real EHRs data. Predictions 
of treatment periods and tumor response evaluation 
described later are able to be tried with the dummy data.

Rule-based prediction of treatment periods
The duration of treatment with injectable and oral anti-
cancer drugs was predicted from injection and prescrip-
tion records. The treatment period was defined as the 
duration between the first injection/prescription and last 
injection/prescription. In this step, we adopted a rule-
based algorithm because people’s decisions do not inter-
vene during the treatment period.

Algorithm S1 is pseudocode of the main routine of the 
rule-based algorithm for predicting the treatment peri-
ods. First, we extracted only anticancer drugs from the 
injection and prescription records (line 3). We prepared 
and used a dictionary of anticancer drugs based on the 
NCI Drug Dictionary, DrugBank [14], and Interlanguage 
links of Wikipedia. Some anticancer drugs are used alone, 
whereas others are used simultaneously. 42.5% of treat-
ments of our dataset used regimens including multiple 
anticancer drugs. For instance, gefitinib for lung cancer is 
mainly used without other anticancer drugs. In contrast, 
pemetrexed (PEM) is frequently used with other drugs; 
thus, we grouped the anticancer drugs based on an injec-
tion/prescription date (line 12). Additionally, the anti-
cancer drug group was converted into a regimen name, 
such as CDDP + PEM and CBDCA + PEM, using a regi-
men dictionary. Finally, we obtained the treatment period 
consisting of the first and last injection/prescription dates 

Fig. 2 Overview of the proposed method
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and the regimen name (line 25). The predicted treatment 
periods were used for the trailing steps.

Prediction of tumor response evaluation and PD date using 
machine learning
The tumor response evaluation comprises complete 
response (CR), partial response (PR), stable disease (SD), 
and PD [15]. The tumor response evaluation in this study 
was assigned to each clinical treatment, and individual 
evaluation of each radiology report was not provided. 
Among the four responses, PD is the most important 
response in clinical treatment because it provides impor-
tant information for determining the next treatment, and 
the date of the PD is frequently used for survival analysis. 
The data in this study used not evaluable (NE) in addition 
to the four responses. The percentage of each response 
in our dataset was CR 1.2%, PR 30.0%, SD 28.8%, PD 
20.0%, and NE 20.0%. CR cases are extremely rare in 
lung cancers and are insufficient for training a model. We 
used the four responses except for CR (that is, PR, SD, 
PD, and NE) and the date that the PD of a treatment was 
confirmed.

Fig.  2 contains the full neural network constructed 
in this study. The input is a series of radiology reports 
related to a pharmacotherapy treatment. A radiology 
report includes an examination date, a locus, a diagnosis, 
a purpose, findings, an impression, and other miscella-
neous information. We particularly selected the findings 
and the impression as input to our model because clues 
to evaluate the tumor response evaluation such as 
changes of tumor size and tumor spreads were found 
in the findings and the impression. Each input free text 
is conjunction of findings and impression of the radiol-
ogy report. The input text is tokenized using a Japanese 
tokenizer included in Stanza [16]. The tokens were con-
verted into word-embedding representations of fastText 
[17]. We rebuilt and used the Japanese model of fastText 
with Stanza tokenizer.

The characteristics of the network is two different Long 
Short-Term Memory (LSTM) layers [18, 19]. LSTM is a 
recurrent neural network (RNN) architecture that has 
been successfully used for sequence prediction tasks. 
LSTM is frequently used for NLP because texts written in 
a natural language can be treated as a sequence of words 
or characters. We used PyTorch [20] to implement the 
neural network. The first LSTM layer considers a single 
free text in the radiology report and the second consid-
ers a sequence of multiple radiology reports. The num-
ber of features in the hidden state was set to 32 for the 
first LSTM and 16 for the second LSTM. The log-softmax 
function is used as the activation function.

The network finally outputs two different predictions: 
tumor response evaluation and PD date. We treated the 
prediction of tumor response evaluation as a multiclass 

classification problem and that of PD date as multiple 
binary classifications. This problem design is similar to 
many-to-one model of LSTM resolving the text classi-
fication [21] and many-to-many model of that resolving 
the Part-of-Speech (POS) tagging [22]. We applied a lin-
ear layer to the final hidden states of the second LSTM 
layer for transforming the states to four classes, that is, 0 
(PR), 1 (SD), 2 (PD), and 3 (NE). We applied another lin-
ear layer to a hidden state of each step and transformed 
the state to two classes, that is, 0 (not PD) and 1 (PD).

Additionally, we adopted multi-task learning (MTL) 
[23] to improve performance. MTL is known as a method 
to leverage the related and useful information con-
tained in multiple learning tasks. In our method, tumor 
response evaluation and PD date were simultaneously 
trained.

Survival analysis using predicted data
PFS was defined as the time from randomization or ini-
tiation of treatment to the occurrence of disease progres-
sion or death. PFS is widely used as a surrogate endpoint 
in oncological clinical trials [24–26]. We plotted Kaplan-
Meier curves [27] of PFS from the PD date predicted by 
the method in the Prediction of Tumor Response Evalua-
tion and PD Date Using Machine Learning.

An event of PFS is the date on which progression or 
death is detected, and censoring of PFS is the end date of 
the treatment or the last follow-up date [28]. We used our 
PD date prediction as the progression event and referred 
to the structured database to obtain the death date and 
the last follow-up date. We used a Python library, lifelines 
[29], to plot the Kaplan-Meier curves.

Results
We split the actual EHRs of 716 lung cancer treatments 
into 573 treatments (80%) for training and 143 treatments 
(20%) for testing. Moreover, we used 10% of training data 
for parameter optimization using grid search. Although 
some ML studies additionally prepared validation data 
for early stopping [30], we used fixed epochs because the 
EHRs data were not sufficiently large in this study. We 
located a dropout layer just after the second LSTM layer 
to prevent overfitting during training. We used the nega-
tive log likelihood loss for loss function and RAdam for 
optimization. ML model training and statistical analy-
ses were performed using Python v3.9.13, CUDA v11.8, 
PyTorch v2.4.0, stanza v1.4.2, scikit-learn v1.5.0, and life-
lines v0.27.3.

Treatment periods
Fig.  3(a) shows the accuracy of the predicted treatment 
periods. We used treatment periods in the structured 
data as a baseline. The accuracy of the prediction cor-
responding to the ground truth is 0.564. The accuracy 
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increased to 0.644 with a one-day margin, 0.796 with a 
two-weeks margin, and 0.862 with a one-month mar-
gin. The accuracy of the start date was 0.887, with only a 
one-day margin. The reason for significant increase with 
a one-day margin is that we cannot detect a patient tak-
ing medicine, whether on a prescription date or not, from 
the prescription records. The start date of the treatment 
period is easily predicted because it is only an injection 
date or the day following a prescription in most cases. 
However, the precise end date of the treatment period is 
uncertain because the patient’s last dose is not logged by 
a hospital. To obtain a precise end date, we must refer to 
information from a medical interview. In this study, how-
ever, the following steps use only the start date of each 
treatment period; thus, the accuracy of 0.9 of the start 
date prediction is sufficient.

Tumor response evaluation
Table  1 lists the precision, recall, and f1-score for the 
prediction of tumor response evaluation. The perfor-
mance of PR was highest and that of SD was lowest. The 
former reason was that texts of PR case probably tended 
to include specific phrases such as “decrease.” However, 
such specific phrases were not included in the texts of 
SD case. The micro averages of the precision, recall, and 

f1-score were 0.72, which was equivalent to accuracy. The 
macro averages were also 0.72 in this case.

Next, we compared our method with two other meth-
ods: LSTM + CNN and a single task. LSTM + CNN is 
a method in which the second LSTM layer in Fig.  2 is 
changed to a convolutional neural network (CNN) layer 
[31]. CNN is not an RNN architecture and is not as 
strong for sequence prediction tasks as LSTM. We used 
the CNN architecture proposed by Zhang et al. [32] 
instead of the second LSTM layer. In contrast, a single 
task is a method that trains tumor response evaluation 
and PD date individually. We attempted to confirm the 
sequence relation in radiology reports by comparing our 
method to LSTM + CNN and the task relation by com-
paring our method to a single task. 

Table  2 summarizes the results of the comparison 
between LSTM + CNN and a single task. Comparing the 
micro/macro averages, the proposed method showed 
higher performance than the two other methods. Par-
ticularly, the performance of LSTM + CNN was low-
est; thus, we found that the second LSTM layer in Fig. 
2 made a significant contribution to the prediction of 
tumor response evaluation. From the result of single task, 
MTL also increased the performance in the prediction of 
tumor response evaluation.

Table 1 Precision, recall, and f1-score of the prediction of tumor response evaluation

Fig. 3 Accuracy of (a) the predicted treatment periods and (b) the predicted PD dates. The x-axis shows approval margins within which the predicted 
date is considered as correct if the difference from an answer date is within the margin days
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PD date
Fig. 3(b) shows a plot of the accuracy of the predicted PD 
dates. The accuracy of the proposed method in which the 
prediction corresponds only to the ground truth is 0.728. 
The accuracy increased to 0.771 with a one-day margin, 
0.818 with 43 days margin, and 0.882 with 100 days mar-
gin. The long margins such as 43 days and 100 days are 
permissible for speedup of survival analysis described 
later because the time scale of survival analysis is months 
or years. In comparison with LSTM + CNN and a single 
task, the accuracy of LSTM + CNN is lower and that of 
the model learned with a single task is higher than that of 
our method. The effect of MTL on the PD date prediction 
conflicted with that of the tumor response evaluation 
prediction. We chose different weights of loss functions 
of the tumor response evaluation task and PD date task 
for balancing performance of each task in MTL. Conse-
quently, the weights were a bit more optimized for the 
tumor response evaluation task than the PD date task. 
We thought the balance of weights was better because 
a bit of degradation of the PD date prediction did not 
severely affect the following survival analysis.

Progression-free survival curves
Fig. 4 shows survival curves of PFS for all treatments and 
each regimen. We selected the top six regimens in the 
order of the number of patients because regimens with 
few treatment records were not reliable. The PFS curves 
of CDDP + VNR, CDDP + PEM and CBDCA + PEM were 
significantly precise; however, those of gefitinib and erlo-
tinib were different when using the actual PD date and 
the predicted PD date. Although the PFS curves of PEM 
relatively corresponded within a year, there was a signif-
icant difference after more than a year. The PFS curves 
of cytotoxic anticancer drugs tend to be highly accurate, 
and those of molecularly targeted drugs tend to have low-
accuracy. According to a survey of our dataset, 67.9% 
of treatments used only cytotoxic anticancer drugs and 
32.1% of treatments included molecularly targeted drugs. 

The molecularly targeted drugs have become popular 
since around 2010 in Japan and thus, data of the molecu-
larly targeted drugs were small compared to the cytotoxic 
cancer drugs. We think PFS prediction of the molecu-
larly targeted drugs can be improved as more treatments 
using the molecularly targeted drugs are conducted in 
the future.

We also performed a survival analysis for all treat-
ments. Although the two PFS curves are nearly similar, 
they are slightly different from 15 months to 35 months 
and from 40 months to 60 months. The median survival 
time of the predicted PFS was approximately two months 
longer than that of the actual PFS.

Discussion
Individual predictions of tumor response evaluation and 
PD date were not extremely high. We think the perfor-
mance limitation is mainly caused by small data size. 
Although 573 training data are relatively small to train 
a deep neural network model, the EHR data are not 
easily available due to problems of private information 
and patient consent. A joint research of multiple medi-
cal institutions would be ideal to collect large dataset 
of EHRs. However, the final predicted PFS curves were 
nearly similar to the actual PFS curves. Although it is 
difficult to construct a fully automated system using our 
method, our results show performance for supporting 
the structured database creation aimed at efficient clini-
cal studies. The tumor response evaluation and the detec-
tion of PD date are difficult and burdensome tasks even 
for physicians and CRCs because they need to refer to 
both complicated texts in a radiology report and RECIST 
guideline. Displaying predictions of our method quickly 
provides them first impression of a treatment case. 
Although the PFS analysis requires complete treatment 
periods and PD dates, our method can generate PFS 
curves roughly without waiting for curation of the struc-
tured database.

Table 2 Precision/Recall/F1-scores of the predictions of tumor response evaluation
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Figures S2 and S3 show the findings and impression of 
the radiology report highlighted by integrated gradients 
(IG) algorithm [33]. IG is a technique that explains the 
relationship between a model’s predictions and its fea-
tures. The tumor response evaluation in the ground truth 
and predicted tumor response evaluation in Figure S2 are 
both PR. The words related to PR in the radiology report 
A1 and A2, such as 縮小 (decrease in size) and 腫大な
し (no evidence of cancerous lesion), are strongly high-
lighted, indicating that our model was correctly trained. 
In contrast, though the tumor response evaluation in the 
ground truth of Figure S3 is the PD, the predicted tumor 
response evaluation of Figure S3 is the PR. Words related 
to PD, such as 増大 (increase in size), are strongly high-
lighted in the radiology report B3. However, the words 
related to PR, such as 縮小 (decrease in size) and 縮小
を維持 (maintained decreased size), are found in the 
radiology report B1 and B2. Our model detected tumor 
response evaluation as PR based on the latter words. Fig-
ure S3 is a complex case, and it is difficult to evaluate the 
response even for physicians and CRCs who created the 
structured database.

Although each analysis step in our method can be 
improved or replaced with other models, the sequen-
tial analyses are essential to create structured database 
for clinical studies. The real-world EHRs include dirty 
data such as incomplete sentences and meaningless cop-
ies, and there are no public EHR datasets reflecting such 
dirty data. Therefore, using real-world EHRs is important 
to develop a method for real clinical environment. We 
think future studies of this study should focus on evalu-
ating utilization of our method in real clinical research 
environment instead of performance improvement on 
the method. Our method compared to recent general 
models, such as large language models (LLMs), is naive 
but easy to introduce in terms of computer hardware 
cost. Spread of the lightweight AI in clinical environ-
ments is also important to promote clinical studies. The 
training/testing datasets used in this study had the same 
information categories, and neither data leakage nor tar-
get leakage occurred. Input features used in our model 
such as findings and impression in a radiology report are 
common for other types of cancer or at the same clini-
cal department of other hospitals. Thus there is no data 

Fig. 4 PFS curves of all treatments and treatments by regimen. The orange line denotes the PFS curve drawn with the predicted PD dates, and the 
blue line denotes the PFS curve drawn with the actual PD dates. The term n next to the title denotes the number of patients to whom the treatment is 
administered

 



Page 9 of 11Takeuchi et al. BMC Medical Informatics and Decision Making           (2025) 25:85 

leakage between our model and such external data, and 
we can adopt our model as it is to the EHRs of patients of 
other cancers or the same department of other hospitals 
if the data are available. However, there were no appro-
priate external validation datasets that were easily avail-
able, had identical clinical information, and were written 
in the same language. Validation of our model and con-
firmation of the model robustness by using the EHRs of 
other hospitals in the future research indicates spread of 
our model in real clinical research environment. How-
ever, the diseases except for cancer and other depart-
ments of hospital might not be able to use our model 
because the input data are different.

The rapid evolution of AI-enhanced medical decision 
support systems require ethical considerations, includ-
ing patient privacy, data security, transparency, account-
ability, fairness, and bias mitigation [34]. Moreover, in 
recent years, LLMs have been widely spread over vari-
ous domains counting medicine, and concerns that the 
LLMs could disrupt trust factors like factual consistency 
and process transparency were raised [35]. Utilization 
environment of our method is supposed to be a research 
department of a hospital; thus our method does not 
cause patient-side ethical considerations like patient pri-
vacy and data security. Our method used the rule-based 
algorithm and the LSTM-based model, and the model 
outputs were fixed values. Consequently, our method 
does not generate violation of the factual consistency 
like hallucination. In contrast, the LSTM-based model is 
disadvantageous for the transparency and the account-
ability. Although the end-user of our method is a medical 
researcher, the acceptability of the AI prediction is also 
an issue. The model interpretability techniques like IG 
algorithm used for visualizing the relationship between 
the model’s predictions and words in a radiology report is 
useful for understanding the model behavior.

Conclusions
We developed a method comprising three sequential 
analyses: a rule-based algorithm to predict treatment 
duration using a dictionary of anticancer drugs and regi-
mens used for lung cancer treatment, a classification 
model to predict the tumor response evaluation and the 
date when the PD was determined, and survival analysis 
of PFS. We implemented the method with the data of the 
corresponding cases from the Thoracic Oncology data-
base of the NCCH. We believe that the accuracy of each 
analysis step is not extremely high, and that the final PFS 
curve can be used for supporting researchers conduct 
studies using EHRs.

The usefulness of our method in actual practices and 
robustness to data of other clinical affiliations have not 
been confirmed. Input features used in our model such 
as findings and impression in a radiology report are 

common for other types of cancer or at the same clini-
cal department of other hospitals. We hope to adapt our 
method to the EHRs of other cancers and other hospitals 
to confirm its robustness.
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