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Abstract
Background Duration of surgery (DOS) varies substantially for patients with hip and knee arthroplasty (HA/KA) and 
is a major risk factor for adverse events. We therefore aimed (1) to identify whether machine learning can predict DOS 
in HA/KA patients using retrospective data available before surgery with reasonable performance, (2) to compare 
whether machine learning is able to outperform multivariable regression in predictive performance and (3) to identify 
the most important predictor variables for DOS both in a multi- and single-hospital context.

Methods eXtreme Gradient Boosting (XGBoost) and multivariable linear regression were used for predictions. Both 
models were applied to both the whole dataset which included multiple hospitals (3,704 patients), and a single-
hospital dataset (1,815 patients) of the hospital with the highest case-volumes of our sample. Data was split into 
training (75%) and test data (25%) for both datasets. Models were trained using 5-fold cross-validation (CV) on the 
training datasets and applied to test data for performance comparison.

Results On test data in the multi-hospital setting, the mean absolute error (MAE) was 12.13 min (HA) / 13.61 min 
(KA) for XGBoost. In the single-hospital analysis, performance on test data was MAE 10.87 min (HA) / MAE 12.53 min 
(KA) for XGBoost. Predictive ability of XGBoost was tended to be better than of regression in all setting, however not 
statistically significantly. Important predictors for XGBoost were physician experience, age, body mass index, patient 
reported outcome measures and, for the multi-hospital analysis, the hospital.

Conclusion Machine learning can predict DOS in both a multi-hospital and single-hospital setting with reasonable 
performance. Performance between regression and machine learning differed slightly, however insignificantly, while 
larger datasets may improve predictive performance. The study found that hospital indicators matter in the multi-
hospital setting despite controlling for various variables, highlighting potential quality differences between hospitals.

Trial registration The study was registered at the German Clinical Trials Register (DRKS) under DRKS00019916.
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Background
Extended duration of surgery (DOS) for hip or knee 
arthroplasty (HA/KA) patients has been associated with 
adverse outcomes such as increased risk of revision [1], 
readmission, minor or major complications [2], surgi-
cal site infection [3], periprosthetic infection [4], deep 
infection [5] and renal impairment [6]. Identification of 
patients at risk of high DOS through accurate DOS pre-
diction would support medical decision-making. For 
patients with high predicted DOS, countermeasures to 
reduce DOS may be introduced to mitigate abovemen-
tioned risks. In addition to patient safety, accurate DOS 
prediction can increase hospital operating room (OR) 
scheduling efficiency. When patients were previously 
known to have low DOS, schedules can be tightened, 
and throughput increased. When patients were known to 
have high DOS, schedules can be adapted, waiting times 
reduced, and shifts of planned surgeries prohibited.

Yet data-driven DOS planning is rarely performed in 
orthopedic clinics. However, advanced analytics could 
support DOS prediction and improve OR optimization. 
Recently, machine learning (ML), a subbranch of artificial 
intelligence (AI), has been successfully applied in the field 
of knee and hip arthroplasty for binary [7–9], multiclass 
[10–12], or regression prediction tasks [9, 13, 14]. Spe-
cifically supervised ML, a set of methods that learn from 
data where the outcome is labelled (i.e. the values of the 
outcomes are known during model training) [15], could 
be applied in such a task. ML differs from classical sta-
tistical methods such as regression in that it can handle 
very high-dimensional data, variable selection, complex 
interactions and non-linear relationships between vari-
ables without human specification [16].

Two recently published studies from Germany aimed 
to develop ML models for pre-operative binary predic-
tion of DOS for total knee arthroplasty (TKA) or total 
hip arthroplasty (THA) patients [17, 18]. Both studies 
predicted whether patients were at risk of ‘irregular sur-
gery time’ (longer or shorter than normal) [17]. Although 
the studies reported high predictive performance of the 
models, it remained unclear whether a patient was at risk 
of low or high DOS due to the authors definition of ‘irreg-
ular surgery time’. Yeo et al. [19] predicted TKA patients 

at risk of long duration of surgery time with good per-
formance, however did not describe how exactly long 
duration was defined. Although binary prediction studies 
are helpful in detecting patients at risk of, e.g., high DOS, 
they are of limited practical relevance with respect to OR 
scheduling. Therefore, studies with DOS as continuous 
outcome are of more practical relevance [20].

That said, this study aimed to overcome shortcomings 
of previous research. We applied ML to perform a con-
tinuous outcome prediction (i.e. “regression task” [21]) 
for DOS. Here, we intend to perform a proof-of-concept 
study to test how prediction models can perform and 
ascertain whether practical testing and potential imple-
mentation may be useful. Because such an application 
for DOS prediction can be run for single-hospital set-
tings, but also for providers that operate multiple hospi-
tals (both private as in Germany, but also public as e.g. 
the National Health Service in England), we demonstrate 
the performance for both single- and multi-hospital set-
tings. As part of the multi-hospital setting, we show how 
individual hospitals influence predictions, demonstrat-
ing how hospital operators may use such an approach 
also to benchmark their hospitals for quality or efficiency 
improvements.

To make predictions, we trained an eXtreme Gradient 
Boosting (XGBoost), a state-of-the art (ML) algorithm 
[22] that performed well in previous research [17, 18] and 
tested it on unseen test data (development and valida-
tion study). We compare the performance of all XGBoost 
models to linear multivariable regression models. Our 
results may help to optimize OR utilization by predicting 
DOS, potentially supporting OR resource planning deci-
sions and enhancing patient safety by identifying patients 
at risk of long surgery.

Data and methods
Data source and missing data
We used data from the PROMoting Quality study, a 
randomized controlled trial which is described in detail 
in Kuklinski et al. [23]. The study was approved by the 
Charité’s Ethics Committee, Berlin (EA4/169/19). Fur-
ther responsible ethical review committees of partici-
pating hospitals (Medical Chamber Hamburg, Medical 
Chamber Schleswig-Holstein, Hannover Medical School, 
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Friedrich-Schiller University Jena, and Medical Chamber 
Brandenburg) agreed with the decision. The study was 
designed as a multi-centered, single-blinded randomized 
controlled trial that included nine German hospitals. The 
initial aim of the PROMoting Quality study was to iden-
tify whether patients that used post-discharge patient-
reported outcome measures and received an alert when 
they are on an unfavorable trajectory improve outcomes 
of these patients one year after surgery, and therefore, 
sample size determination and power were derived (see 
Kuklinski et al.). All patients that underwent KA or HA 
at the respective clinics from 2019 to 2021 were eligible 
for the study. Patients were excluded if they were younger 
than 18, came through an emergency admission, had a 
tumor endoprosthesis, osteopathic neoplasm(s) or revi-
sion. As the RCT intervention started after hospital dis-
charge, we were able to include both intervention and 
control group patients in this paper, since peri-operative 
data were unaffected by the intervention. Hence, this 
paper reflects a secondary analysis of the data generated 
in the PROMoting Quality study.

Originally, the dataset included 7,827 hip and knee 
arthroplasty patients. After removing observations of 
patients with cancelled surgery (n = 574), missing data on 
procedure (n = 7) and missing consent for hospital data 
usage (n = 985), the sample included 6,261 patients. Of 
those, 3,411 patients underwent HA and 2,850 patients 
underwent KA. We found that in two hospitals, data on 
DOS was not well distributed, with certain values (“60” 
and “90” min. in hospital 4; only 10-min. distances in 
hospital 9) occurring in unnatural frequency due to unre-
liable reporting of DOS by the two clinics (see Supple-
mentary File 1). Therefore, we excluded these hospitals 
from further analysis, leaving 2,104 HA and 1,600 KA 
patients in our final sample (Fig. 1).

Missing data of any type were imputed with random 
forest imputation using the missForest package in R [24]. 
After assessment of medical professionals, we excluded 
extreme outliers of DOS (i.e. DOS > 180; DOS < 20) since 
their DOS values were assumed to be unreasonable (and 
extremely rare).

Input variables
As predictors, we included all variables available in our 
dataset that we assume to be known prior to surgery at 
the time of model application in practice, namely more 
than 230 variables (see Supplementary File 2). These 
comprised sociodemographics, surgical history of the 
joint, prior diagnosis of arthrosis, previous therapy of 
the joint, behavioral variables (e.g. smoking), baseline 
PROM scores (PROMIS depression, PROMIS fatigue, 
EQ-5D-5  L, EQ-VAS, HOOS-PS/KOOS-PS), surgery 
team related variables (e.g. number of specialists (i.e., 
surgeons who have completed their residency training in 

the specific field) or number of surgeries performed by 
the surgeon) and dummy variables indicating the hospital 
to control for hospital effects on DOS (only in the multi-
hospital analysis). All predictors of categorial nature were 
transformed into dummies via one-hot encoding.

Study sample characteristics
Of the 3,709 included patients, 57% underwent HA, and 
43% underwent KA. On average, patients in both indi-
cations were relatively similar with respect to age (HA: 
66.3 years; KA: 67.0 years), gender (HA: 46% male; KA: 
47% male) and Charlson weighted comorbidity score 
(HA: 0.42; KA: 0.42). Body mass index (BMI) was slightly 
higher for KA patients (BMI = 30.6  kg/m²) compared 
to HA patients (BMI = 28.0  kg/m²), as also indicated by 
higher weight (HA: 83.4 vs. KA: 90.9 kg) despite having 
the same average height (172 centimeters). Pre-oper-
ative PROM scores were slightly better for KA than for 
HA patients. KA patients had higher EQ-VAS scores 
(HA: 56.0; KA: 57.8) and higher EQ-5D-5 L scores (HA: 
0.59; KA: 0.62) compared to HA patients. Mean HOOS-
PS was 47.3 (HA), and mean KOOS-PS was 42.5 (KA). 
DOS was shorter for HA (55.9 min) than for KA patients 
(62.0 min) (Table 1).

Outcome definition
As outcome, we used DOS in minutes. DOS was reported 
from all clinics using routinely available surgery time col-
lection data of the hospitals enterprise resource planning 
systems. Specifically, DOS was reported as surgeon-con-
trolled-time, which is the difference between “close time” 
(i.e. incisions made during surgery have been closed) and 
“surgical incision time” (i.e. time of first surgical cut) [25].

Predictive modeling
As machine learning prediction methods, we applied 
XGBoost and linear multivariable regression. XGBoost is 
a tree-based ML algorithm and a further development of 
the original gradient boosting developed by Friedmann 
2001 [26]. This machine learning method is open-source 
and known for its typically very high performance. 
XGBoost is designed for speed and performance, incor-
porating several innovations such as a novel tree learn-
ing algorithm for handling sparse data, weighted quantile 
sketch for approximate tree learning, and a block struc-
ture for parallel learning. These optimizations make 
XGBoost not only robust and accurate but also extremely 
fast, often outperforming other gradient boosting meth-
ods by an order of magnitude in terms of computational 
speed [22]. Linear multivariable regression was used 
as a non-ML baseline comparison method to compare 
whether an advanced ML algorithm such as XGBoost is 
able to outperform a traditional regression method.
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We used the TRIPOD Checklist: Prediction Model 
Development in order to ensure high-quality prediction 
model development.

Data split and hyperparameter selection
The dataset in each analysis (multi- and single-hospital) 
was split into 75% training and 25% test data. Hyper-
parameter tuning was performed on the training data-
set using 5-fold cross-validation (CV) [27] and random 
search [28] to optimize the XGBoost model for the 
given problem. The fine-tuned XGBoost model was 
then applied to the test dataset for performance assess-
ment on unforeseen data. Linear multivariable regression 

performance was also reported on the training dataset 
using CV and on unforeseen test data.

All analyses were conducted using R version 4.0.0 (R 
Foundation for Statistical Computing) and RStudio. For 
the XGBoost algorithm, the package ‘xgboost’ was used. 
For linear multivariable regression, the basic ‘lm’ function 
in R was applied.

Performance measurement
Performance was evaluated on training (with CV) and 
test data for both the full sample analysis and the single 
hospital deep dive using the same set of performance 
measures. As a result of predicted and observed outcome, 
we were able to compute several metrics commonly 

Fig. 1 Patient selection flowchart
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applied in prediction tasks for continuous outcomes. As 
main metric, we used the mean absolute error (MAE). 
The MAE is derived as

 
MAE = 1

n

∑n

i=1
|obsi − predi|, (1)

where obsi is the observed outcome value, and predi is 
the predicted outcome by the respective model. We fur-
ther report the root mean squared error (RMSE), which 
is derived as

 
RMSE =

√
1
n

∑n

i=1
(obsi − predi)2

. (2)

The RMSE is commonly reported in prediction studies 
with continuous outcomes [29]. As a measure of percent-
age deviation of predictions from the actual values, we 

report mean absolute percentage error (MAPE), which is 
formally defined as

 
MAPE = 1

n

∑n

i=1

∣∣∣∣
obsi − predi

obsi

∣∣∣∣. (3)

The MAPE acts as a relative performance indicator, so 
that the performance of our models can be interpreted 
with respect to average DOS, and understand the devia-
tion in terms of percentage.

Feature importance
Feature importance was derived using SHapley Additive 
exPlanation (SHAP) analysis. SHAP analysis is a game-
theory-based approach that illustrates how predictor 
variables influence predictions in ML studies [30]. SHAP 
analysis is therefore a method to overcome the “black-
box” problem of AI and a step towards explainable AI. 
SHAP decomposes individual prediction differences 
from the expected value additive into features contribu-
tions [31].

Results
The distribution ofDOS was skewed to the left for both 
KA and HA patients (Fig. 2). For HA patients, the lower 
quantile was 40 min and the upper quantile 67 min. For 
KA patients, the lower quantile was 47 min and upper 
quantile 72 min.

Multi-hospital analysis
Performance on training data (multi-hospital analysis)
The XGBoost model with the selected hyperparam-
eters achieved a cross-validated performance of MAE 
12.60 min (12.10–13.11 min), RMSE 17.53 min (16.64–
18.46 min), and MAPE 22.55% (21.6–23.52%) in the HA 
sample. In the KA sample, it achieved MAE 13.21 min 
(12.64–13.79 min), RMSE 18.04 min (17.11–19.00 min), 
and MAPE 20.94% (20.07–21.84%).

Linear multivariable regression performed slightly 
worse, yielding an MAE of 13.26 min (12.72–13.81 min), 
RMSE 18.52 min (17.56–19.50 min), and MAPE 24.56% 
(23.50–25.66%) in the HA sample. In the KA sample, 
it achieved an MAE of 14.05 min (13.43–14.67 min), 
RMSE 19.24 min (18.19–20.34 min), and MAPE 22.96% 
(21.92–24.04%).

However, confidence intervals of XGBoost and linear 
multivariable regression overlapped in all cases (Table 2).

Performance on test data (multi-hospital analysis)
Performance on test data revealed comparable perfor-
mance of the models as on training data with CV.

For XGBoost, performance decreased slightly, with a 
MAE of 12.13 min (11.27–13.02 min), RMSE 17.18 min 
(15.42–19.00 min) and a MAPE of 22.66% (21.1-24.28%) 

Table 1 Characteristics of the study population grouped by 
indication

Hip arthroplasty
(N = 2,104)

Knee arthroplasty
(N = 1,600)

Age (years)
 Mean (SD) 66.3 (10.4) 67.0 (9.0)
 Median [Min, Max] 67.0 [20.0, 93.0] 67.0 [35.0, 87.0]
Male
 Mean (SD) 0.46 (0.50) 0.47 (0.50)
 Median [Min, Max] 0 [0, 1.00] 0 [0, 1.00]
Body mass index
 Mean (SD) 28.0 (5.6) 30.6 (5.9)
 Median [Min, Max] 27.0 [16.5, 114.0] 29.5 [8.0, 64.9]
Weight
 Mean (SD) 83.4 (18.6) 90.9 (19.5)
 Median [Min, Max] 81.0 [45.0, 193] 89.0 [45.0, 176]
Height
 Mean (SD) 172 (9.8) 172 (10.2)
 Median [Min, Max] 172 [81, 200] 172 [146, 250]
Charlson weighted score
 Mean (SD) 0.42 (0.82) 0.42 (0.76)
 Median [Min, Max] 0 [0, 6.0] 0 [0, 5.0]
EQ-5D-5 L
 Mean (SD) 0.59 (0.26) 0.62 (0.25)
 Median [Min, Max] 0.67 [-0.46, 1.00] 0.72 [-0.29, 1.00]
EQ-VAS
 Mean (SD) 56.0 (19.8) 57.8 (19.4)
 Median [Min, Max] 57.5 [0, 100] 60.0 [0, 100]
HOOS-PS/KOOS-PS
 Mean (SD) 47.3 (16.0) 42.5 (12.1)
 Median [Min, Max] 46.1 [0, 100] 40.3 [5.6, 100]
DOS (mins)
 Mean (SD) 55.9 (21.7) 62.0 (20.5)
 Median [Min, Max] 51.0 [24, 180] 58.0 [20, 180]
1As especially many patients had DOS of 90 min (upper quantile), the high DOS 
group was substantially smaller than the low DOS group
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in the HA sample, and a MAE of 13.61  min (12.56–
14.73 min), RMSE of 19.03 min (16.93–21.64 min) and a 
MAPE of 23.30% (19.96 − 23.61%) in the KA sample.

In contrast, the performance of linear multivariable 
regression was slightly better on test than on train-
ing data, with a MAE of 12.51  min (11.63–13.44  min), 
RMSE of 17.68 min (15.94–19.50  min) and a MAPE of 

23.89% (22.16–25.72%) in the HA sample, and a MAE of 
13.55 min (12.45–14.69 min), RMSE of 19.24 min (17.04–
21.64 min) and a MAPE of 21.51% (19.66 -23.49%) in the 
KA sample (Table 3).

Similar to the training data set, XGBoost achieved 
better point estimates for performance, but confidence 
intervals of XGBoost and regression were overlapping.

Fig. 2 Distribution of DOS in hip and knee arthroplasty patients
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Feature importance (multi-hospital analysis)
Feature importance for hip and knee arthroplasty 
revealed that the most important predictor was surgery 
performed in one specific hospital (“Hospital nr. 8”), with 
surgeries performed at this hospital resulting in reduced 
DOS. “Hospital nr. 3” also had a (smaller) negative impact 
on DOS.

Further, a higher number of performed surgeries by the 
leading physician, the involvement of a chief physician 
in the surgery, a lower number of specialist surgeons, a 
lower number of surgeons in training and a lower num-
ber of specialist surgeons, a lower BMI and a lower 
weight of the patient were associated with a lower DOS 
in HA patients.

In KA patients, in addition, lower PROMIS fatigue 
scores and a lack of joint-related pre-existing conditions 
in the right hip were associated with lower DOS (Fig. 3).

Single hospital deep dive
In practice, DOS prediction may be more relevant on 
the hospital-level than on the level of multiple hospitals. 
Therefore, we performed a deep-dive analysis of the same 
prediction task for the hospital (“Hospital nr. 8”) with the 
highest case-volumes in our dataset to demonstrate prac-
ticability of the potential operating room planning tool 
from a single-hospital perspective. In comparison to the 
multi-hospital setting, average DOS in the single-hos-
pital dataset was lower, with 46.1 min (SD: 16.9) for HA 
patients and 52.6 min (SD: 15.3) for KA patients.

Performance on training data (single-hospital analysis)
On training data, the performance of all models was 
slightly better compared to the multi-hospital setting. 
For hip arthroplasty, the MAE for XGBoost was 1.44 min 
lower than for linear multiple regression (10.89  min vs. 
12.33  min). Confidence intervals were not overlapping. 

For knee arthroplasty, the difference was even larger, with 
the MAE of XGBoost being 3.11  min lower than linear 
multiple regression (10.14 min vs. 13.25 min). Here, the 
difference was significant as confidence intervals were 
not overlapping (Table 4).

Performance on test data (single-hospital analysis)
On unforeseen test data, performance of all models 
decreased. In the hip arthroplasty sample, XGBoost’s 
MAE was 10.87 min and therefore 0.26 min lower than 
that of linear multiple regression (MAE = 11.13  min). 
For knee arthroplasty, the difference between XGBoost 
and linear multivariable regression was 1.11  min, with 
the MAE of XGBoost at 12.53  min. Confidence inter-
vals were overlapping both in the KA and the HA sample 
(Table 5).

Feature importance
Feature importance was mostly in line with the multi-
hospital setting. As hospital dummies were not present 
in the single hospital analysis, PROMs and self-reported 
pain gained importance. The number of performed sur-
geries was the most important predictor in both samples.

In the HA sample, the number of performed surger-
ies by the physician, high age, high self-reported pain in 
either hip, high height or BMI, a specific PROMIS fatigue 
answer, high weight and the absence of a chief physician 
were associated with increased DOS. For EQ-5D-5  L 
scores, the pattern was less clear with a tendency of lower 
scores being associated with increased DOS.

In the KA sample, a high number of surgeries per-
formed by the physician, high age, high PROMIS fatigue, 
pre-existing congenital or developmental diseases, high 
number of PROMIS depression, high height, arthro-
sis and high self-reported pain were associated with 

Table 2 Performance of the models on training data with cross-validation
Indication Model Mean absolute percentage 

error (%)
Root mean squared error 
(min)

Mean absolute 
error (min)

Hip (n = 1,578) XGBoost 22.55 (21.60-23.52) 17.53 (16.64–18.46) 12.60 (12.10-13.11)
Linear multivariable regression 24.56 (23.50-25.66) 18.52 (17.56–19.50) 13.26 (12.72–13.81)

Knee (n = 1,200) XGBoost 20.94 (20.07–21.84) 18.04 (17.11-19.00) 13.21 (12.64–13.79)
Linear multivariable regression 22.96 (21.92–24.04) 19.24 (18.19–20.34) 14.05 (13.43–14.67)

95% confidence intervals in parenthesis. Confidence intervals were derived using bootstrapping with 10,000 repetitions

Table 3 Performance of the models on test data
Indication Model Mean absolute percentage 

error (%)
Root mean squared error 
(min)

Mean absolute 
error (min)

Hip (n = 526) XGBoost 22.66 (21.10-24.28) 17.18 (15.42-19.00) 12.13 (11.27–13.02)
Linear multivariable regression 23.89 (22.16–25.72) 17.68 (15.94–19.50) 12.51 (11.63–13.44)

Knee (n = 400) XGBoost 23.30 (19.96–23.61) 19.03 (16.93–21.39) 13.61 (12.56–14.73)
Linear multivariable regression 21.51 (19.66–23.49) 19.24 (17.04–21.64) 13.55 (12.45–14.69)

95% confidence intervals in parenthesis. Confidence intervals were derived using bootstrapping with 10,000 repetitions

A) Hip arthroplasty
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Table 4 Performance of the models on training data with cross-validation
Indication Model Mean absolute percentage 

error (%)
Root mean squared error 
(min)

Mean absolute 
error (min)

Hip (n = 810) XGBoost 23.73 (22.28–25.20) 15.54 (14.26–16.81) 10.89 (10.25–11.55)
Linear multivariable regression 40.40 (29.52–55.74) 17.32 (16.01–18.63) 12.33 (11.63–13.04)

Knee (n = 550) XGBoost 19.07 (17.57–20.60) 14.92 (13.11–16.87) 10.14 (9.38–10.91)
Linear multivariable regression 35.35 (27.64–45.30) 19.26 (17.42–21.14) 13.25 (12.30-14.25)

95% confidence intervals in parenthesis. Confidence intervals were derived using bootstrapping with 10,000 repetitions

Fig. 3 SHAP analysis of DOS for the KA and HA sample on the test dataset for the multi-hospital analysis
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increased DOS. For KOOS-PS and BMI, a mixed pattern 
appeared (Fig. 4).

In Fig.  5 we see a SHAP waterfall plot, which illus-
trates how the top 10 features influenced predicted DOS 
for an individual patient. We observe that the expected 
value before conditioning on certain features was 46 min 
(i.e. average DOS for HA patients in hospital 8). For this 
patient, the surgeon had an experience of 150–300 sur-
geries. Therefore, DOS decreased by 3.59  min. Among 
the top 10 predictors, only self-reported pain of the 
patient in the left hip, as well as the patient’s height 
increased predicted DOS. All other features decreased 
predicted DOS (Fig. 5).

Discussion
We applied XGBoost, a state-of-the-art ML method, 
and linear multivariable regression as baseline compar-
ison model [7] in order to predict DOS in HA and KA 
patients, both in a multi-hospital as well as a single-hos-
pital setting. We found that DOS in the multi-hospital 
setting could be predicted with a MAE of 12.13 min for 
HA (XGBoost) and 13.55  min for KA patients (linear 
regression) on unforeseen test data. In the single-hospital 
setting, performance was better, with XGBoost as single-
best model in predicting DOS with a MAE of 10.87 min 
for HA and 12.53  min for KA patients. MAPE values 
were 22.66% (HA) and 21.51% (KA) in the multi-hospital 
setting on test data, and 21.04% (KA) to 23.30% (HA) in 
the single hospital setting for the best models. Although 
XGBoost performed overall slightly favorable in com-
parison to linear regression, statistically significant differ-
ences could only be detected with respect to MAE in the 
single-hospital training dataset CV application (Table 4). 
We observed, overall, that models did not overfit notably 
on the training data.

Comparing our results to other studies, we found that 
the precision of our prediction models was in an accept-
able range. One study predicting total procedure time 
(in contrast to our study, which predicted surgeon-
controlled time) reported a MAE of 31.3 min in a large 
population (> 80,000) with various diagnosis and an aver-
age duration of 150  min [20]. Percentagewise, MAPE 
was about +/- 21%, a value comparable to our applica-
tion, while MAE was substantially higher. Another study 

with heterogeneous procedures from Tel Aviv reported 
slightly better results regarding MAPE [32] compared 
to our application. However, given that their sample was 
much larger than ours, our MAPE appears to be low.

Different from previous classification studies [17–19], 
this is the first study in knee or hip arthroplasty patients 
that demonstrated reasonable performance on practically 
relevant metrics (MAE and MAPE) of high-dimensional 
prediction tools to forecast DOS as continuous out-
come. We argue that our results are of higher practical 
relevance than binary prediction studies, as only continu-
ous outcome predictions allow for accurate surgery plan-
ning. An accurate prediction and superior planning of 
OR capacity may allow for increased OR efficiency due 
to tighter OR scheduling for patients with low DOS (and 
therefore less idle time and increased throughput), as 
well as due to reduced waiting times or scheduling shifts 
in case of patients with high DOS. In practice, our pre-
diction models may improve OR scheduling efficiency, 
and support targeted staffing (or, if staffing is fixed, 
patient scheduling can be adapted for given staffing). 
Model-based OR planning that incorporates various fea-
tures and allows for complex interactions of variables in 
planning is more advanced than surgeon-based OR plan-
ning, for it was shown that surgeons systematically over-
estimate expected surgeon-controlled time [33]. Despite 
OR efficiency issues, accurately predicted DOS may also 
improve patient safety. Since long DOS is associated with 
increased risk of revision, readmission, complications, 
renal impairments and infections [1–6], patients with 
predicted long DOS can be treated in a more appropriate 
manner, e.g. through performance of surgery with more 
experienced surgeons / chief physicians, in order to pro-
actively reduce DOS. Therefore, adverse event risk may 
be mitigated, and patient safety increased.

In line with previous studies [17–19, 34, 35], we found 
that important predictors of DOS were surgeons’ experi-
ence, age, BMI, weight, and height. However, in contrast 
to previous studies, we did not find that gender or comor-
bidities (i.e. Charlson categories) were top predictors. 
Furthermore, we found that baseline PROMs, which aim 
to measure constructs such as quality of life or function, 
may serve as relevant features. This finding underlines 
the value of routinely collecting PROMs in patient care 

Table 5 Performance of the models on unforeseen test data
Indication Model Mean absolute percentage 

error (%)
Root mean squared error 
(min)

Mean absolute 
error (min)

Hip (n = 271) XGBoost 23.30 (20.89–25.92) 15.75 (13.53–18.02) 10.87 (9.76–12.05)
Linear multivariable regression 24.59 (21.83–27.61) 16.00 (13.65–18.49) 11.13 (10.02–12.29)

Knee (n = 184) XGBoost 21.04 (18.49–23.87) 17.91 (13.96–22.01) 12.53 (11.04–14.15)
Linear multivariable regression 27.08 (23.33–31.22) 20.23 (16.06–24.4) 13.64 (11.89–15.52)

95% confidence intervals in parenthesis. Confidence intervals were derived using bootstrapping with 10,000 repetitions

a) Hip arthroplasty
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as they may be of various practical relevance. In fact, we 
found that PROMs may be superior predictors of DOS 
compared to gender or Charlson comorbidities (however, 
PROMs may of course correlate with certain comorbidi-
ties). In addition, even after controlling for several peri-
operative variables, we found that hospital dummies 

absorbing other unobserved hospital characteristics have 
important predictive power in the multi-hospital setting. 
This may be strongly influenced by the quality of the sur-
gery department and the interaction between the hos-
pital and other included variables. For example, specific 
patient types may experience different DOS in different 

Fig. 4 SHAP beewswarm plot of DOS for the KA and HA sample on the test dataset for the single hospital deep dive
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hospitals due to better adaptation of a hospital to their 
needs. For example, previous evidence has found that 
operation room team characteristics are among the most 
important predictors of duration of surgery [35]. In the 
case of our study, certain operation team characteristics 
may have been even more important than the plain expe-
rience of the chief surgeon (see Fig.  3). This makes the 
case for further investigation of hospital-specific factors 
that are associated with DOS even after controlling for 
a broad set of patient-specific and surgery-team-specific 
variables, and potentially may provide insights into qual-
ity-differences of hospitals.

The multi-hospital analysis is further important 
because of the abovementioned aspects of risks for 
patients that are associated with increased DOS. Patients 
with high risk of high DOS may be allocated to hospitals 
with lower expected DOS to mitigate risks. Neverthe-
less, it should be noted that SHAP values do not identify 
causal effects of a given feature and the predicted output 
(i.e. DOS) [32, 36]. Therefore, results must be interpreted 
with caution. It could be, for example, that a high num-
ber of specialist surgeons is only associated with a higher 
DOS because of a special type of patient that is oper-
ated, and it may be not that the high number of specialist 

surgeons that causes the high DOS. Also, it may be that a 
higher number of specialists is related to practical train-
ing. Thus, further reasoning about the causes of a vari-
able’s influence on predictions is necessary.

Finally, this study has limitations. First, the dataset was 
relatively small for a ML application, especially as we 
needed to exclude two hospitals from the dataset for erro-
neous DOS reporting. Therefore, larger datasets are nec-
essary to identify whether predictive performance can be 
increased, and whether XGBoost may be able to outper-
form linear regression in larger applications. Second, the 
dataset included a large set of unique, not routinely avail-
able variables, especially PROMs. While a lot of these 
variables could be easily gathered through patient self-
reporting, PROMs require typically a fee for use. Further, 
we did not include sickness fund data in our predictive 
models. Sickness fund data may be an additional source 
of valuable information and should be included in future 
works (if available). Third, we could not provide a prac-
tical experiment on whether predictive performance will 
actually improve OR efficiency and patient safety. There-
fore, pilot projects may be initiated to test advanced ana-
lytics in OR planning for HA and KA patients. Fourth, we 
defined DOS as surgeon-controlled-time. Nonetheless, 

Fig. 5 SHAP waterfall plot for a random patient (example) for the top 10 features. The plot must be read from bottom to top. The expected value of DOS 
was E[f(x)] = 46 (i.e. “blank” expected DOS without features). After adjusting for features, the expected DOS (= f(x)) was 36 for this patient (see top). Variables 
other than the top 10 are summarized as “217 other features”– which collectively decreased DOS by 1.8 min
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there may be parts of operation room planning that are 
before and after this period which we do not cover. Prac-
tical testing may be necessary to determine if surgeon-
controlled time is the best metric for DOS prediction, or 
whether other measures, e.g. induction of anesthesia and 
time between surgeries, should be included. Fifth and 
finally, we could only identify association of predictors 
and DOS, but not causality. This may challenge practical 
implications on altering certain features to reduce DOS.

Conclusion
This ML application study demonstrated that DOS can 
be predicted with practical relevance for OR efficiency 
optimization. XGBoost generally perform slightly bet-
ter on point estimates but did not outperform traditional 
linear multivariable regression statistically significantly 
on unforeseen test data. Further research using larger 
datasets is required to improve performance. Practi-
tioners may explore whether DOS defined as surgeon-
controlled-time or another metric works best for OR 
planning optimization.
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