
Arends et al. 
BMC Medical Informatics and Decision Making          (2025) 25:115  
https://doi.org/10.1186/s12911-025-02897-w

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

BMC Medical Informatics and
Decision Making

Diagnosis extraction from unstructured 
Dutch echocardiogram reports using span- 
and document-level characteristic classification
Bauke Arends1*, Melle Vessies1, Dirk van Osch1, Arco Teske1, Pim van der Harst1, René van Es1 and Bram van Es2 

Abstract 

Background Clinical machine learning research and artificial intelligence driven clinical decision support models 
rely on clinically accurate labels. Manually extracting these labels with the help of clinical specialists is often time-
consuming and expensive. This study tests the feasibility of automatic span- and document-level diagnosis extraction 
from unstructured Dutch echocardiogram reports.

Methods We included 115,692 unstructured echocardiogram reports from the University Medical Center Utrecht, 
a large university hospital in the Netherlands. A randomly selected subset was manually annotated for the occurrence 
and severity of eleven commonly described cardiac characteristics. We developed and tested several automatic label-
ling techniques at both span and document levels, using weighted and macro F1-score, precision, and recall for per-
formance evaluation. We compared the performance of span labelling against document labelling methods, which 
included both direct document classifiers and indirect document classifiers that rely on span classification results.

Results The SpanCategorizer and MedRoBERTa.nl models outperformed all other span and document classifiers, 
respectively. The weighted F1-score varied between characteristics, ranging from 0.60 to 0.93 in SpanCategorizer 
and 0.96 to 0.98 in MedRoBERTa.nl. Direct document classification was superior to indirect document classification 
using span classifiers. SetFit achieved competitive document classification performance using only 10% of the train-
ing data. Utilizing a reduced label set yielded near-perfect document classification results.

Conclusion We recommend using our published SpanCategorizer and MedRoBERTa.nl models for span- and docu-
ment-level diagnosis extraction from Dutch echocardiography reports. For settings with limited training data, SetFit 
may be a promising alternative for document classification. Future research should be aimed at training a RoBERTa 
based span classifier and applying English based models on translated echocardiogram reports.

Keywords Clinical natural language processing, Echocardiogram, Entity classification, Span classification, Document 
classification

Background
Unstructured electronic health record (EHR) data con-
tains valuable information for a broad spectrum of clini-
cal machine learning applications, including the creation 
of clinical decision support systems, semi-automated 
report writing, and cohort identification. The extrac-
tion of accurate clinical labels is essential to realize these 
applications. Relying solely on structured data for this 
purpose often yields disappointing outcomes, primarily 
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due to two key reasons. Firstly, collecting structured data 
has only recently gained momentum in clinical practice, 
leaving a large volume of historical data underutilized. 
Secondly, the structured data that is collected, may suf-
fer from a lack of precision and reliability [1]. Interna-
tional Classification of Disease (ICD) coding specifically 
was identified as unreliable for phenotyping EHRs [2–4]. 
Data annotation is identified as one of the main obstacles 
in developing clinical natural language processing (NLP) 
applications [5]. Therefore, utilizing labels extracted from 
unstructured data has the potential to enhance both data 
volume and data quality.

Echocardiography, the most commonly performed car-
diac imaging diagnostic [6], provides a detailed anatomi-
cal and functional description of a wide range of cardiac 
structures. Data from echocardiography reports are con-
sequently used in many aspects of patient care, as well as 
many clinical trials. However, the heterogeneous format 
of the reports, as well as medical text characteristics such 
as abundant shorthand, domain-specific vocabularies, 
implicitly assumed knowledge, and spelling and grammar 
mistakes, make extracting accurate labels challenging. 
For label extraction, we often resort to automated tech-
niques, because manual extraction by domain experts is 
both costly and time-consuming.

Previous work on data extraction from echocardi-
ography reports has primarily focused on extracting 
quantitative measurement values from structured, semi-
structured and unstructured parts of the report using 
rule-based methods [7–10]. Rule-based text-mining sys-
tems such as MedTagger [11], Komenti [12], and cTAKES 
[13] are examples of low-code tools that allow clinicians 
to develop and apply rules for rule-based text min-
ing. These rule-based methods offer several advantages, 
as they are transparent, easily modifiable, and do not 
require large amounts of labelled training data. Further-
more, they can be quite effective despite their simplicity. 
While their performance can vary based on the devel-
oper’s expertise and attention to detail, a more specific 
downside of rule-based methods is their inherent inabil-
ity to generalize beyond the set of predefined rules.

NLP methods based on machine learning may over-
come some of these disadvantages, as they are able to 
learn rules implicitly from labelled data. In the biomedi-
cal field, several open-source systems, such as GATE [14] 
and cTAKES [13] are available to employ these methods. 
Additionally, an abundance of model architectures is 
available for label extraction, including token classifica-
tion models [15], conditional random fields (CRF) [16], 
recurrent neural network (RNN) such as long short-term 
memory (LSTM) [17] and transformers such as BERT 
[18], support vector machine (SVM) [19] and AutoML 
methods [20]. However, in the broader field of named 

entity recognition (NER) in medical imaging reports, 
there does not seem to be one overall best-performing 
method [17, 21, 22]. For span identification performance 
in particular, multiple factors may influence perfor-
mance, including model architecture and span character-
istics such as span frequency, distinctive span boundaries 
and span length [23].

NER in the medical imaging report domain has mostly 
been described in English texts [7, 10, 24]. There are lim-
ited studies in other languages, such as Dutch [25, 26], 
German [27], and Spanish [28]. Few publicly available 
pre-trained Dutch language models exist, and include 
BERTje [29] and RobBERT [30, 31]. Verkijk and Vossen 
recently created MedRoBERTa.nl, a version of RoBERTa 
[32] finetuned on Dutch EHR data [33]. Furthermore, 
Remy, Demuynck and Demeester developed a multilin-
gual large language model BioLORD-2023M using con-
trastive learning, which is able to identify biomedical 
concepts and sentences [34]. To the best of our knowl-
edge, none of these models have been finetuned with the 
goal of information extraction from Dutch echocardio-
gram reports.

In this work, we focus on span and document label 
extraction from unstructured Dutch echocardiogram 
reports for a wide range of clinical concepts. Both span 
and document classification can be used to extract labels 
for downstream machine learning tasks, though they 
address different levels of information and have distinct 
applications in clinical workflows. Span classification, 
for instance, can assist in biological entity linking tasks, 
whereas document classification is better suited for 
broader tasks like cohort selection. To capture the most 
meaningful clinical concepts, we constructed a custom 
ontology which incorporates most major cardiac abnor-
malities. We explicitly focused on extracting qualita-
tive labels from unstructured text, as several algorithms 
exist to extract measurement values from structured and 
semi-structured data. We evaluated three NLP methods 
for span-level label extraction, and six NLP methods for 
document-level label extraction. The best-performing 
span and document classification models are available 
on the Huggingface model repository.1 Additionally, the 
developed code is publicly available on GitHub.2

Methods
This section provides a detailed description of our data 
and the data annotation process, followed by an overview 
of our experiments. We employ several neural and sta-
tistical methods for extracting span and document-level 

1 https:// huggi ngface. co/ UMCUt recht
2 https:// github. com/ umcu/ EchoL abeler

https://huggingface.co/UMCUtrecht
https://github.com/umcu/EchoLabeler
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labels from Dutch echocardiogram reports. Additional 
information on model parameters is detailed in Addi-
tional file 1.

Data overview
Our dataset consisted of 115,692 unstructured echocar-
diogram reports collected during routine clinical care 
from 2003 to 2023, stored in the EHR at University Medi-
cal Center Utrecht (UMCU), a large university hospital 
in the Netherlands. Over this period, there has not been 
a universal standard for report writing. Reports contain-
ing fewer than fifteen characters were excluded, as were 
reports with fewer than thirty characters that lacked any 
description of a medical concept. These reports often 
contained only the phrase “For the report, see the patient’s 
chart”.

Data annotation
In a randomly selected subset of the unstructured text 
portions of these reports, we manually annotated eleven 
cardiac characteristics, which included left and right ven-
tricular systolic function and dilatation, valvular disease, 
pericardial effusion, wall motion abnormalities, and dias-
tolic dysfunction. These characteristics were chosen after 
consultation with two cardiologists, and are the most 
frequently described cardiac characteristics in Dutch 
echocardiogram reports. Figure  1 displays an exam-
ple report including annotations. We assigned mutu-
ally exclusive labels for each characteristic to the span/
document (Table  1). The hierarchical labeling scheme 
was selected to align with the terminology used in clini-
cal practice, which varies across different conditions. 
This resulted in a differing number of labels for each 
characteristic.

Annotations were checked sample wise by doctors. 
In cases of uncertainty, cases were jointly reviewed to 
achieve consensus. Several rounds of training iterations 

were completed before commencing the annotation task. 
To streamline the annotation process, each echocardio-
gram report was annotated for one characteristic at a 
time, resulting in eleven separate annotation files. For an 
overview of labelling instructions, see Additional file  2. 
Prodigy [35] was employed for the annotation task.

To ensure an adequate number of labels, we established 
the following requirements: for each characteristic, a 
minimum of 5000 documents were annotated, with the 
same documents used for each characteristic. In addi-
tion, to ensure sufficient training data, a minimum of 50 
span labels per class, per characteristic were required, 
resulting in more than 5000 annotated documents for 
several characteristics (Table  2). Document-level labels 
were constructed using the span-level labels to provide a 
summarized representation of the data. Given that mul-
tiple span labels could exist within a single document, 
we aggregated these span labels by selecting the most 
severe label for each characteristic. This ensures that the 
document-level labels reflect the most critical informa-
tion. For comparison we also employed a simplified label 
scheme with only three possible labels: not mentioned, 
normal, or present.

Span characteristics are summarized in Table  4. Span 
length is the average number of tokens per span. Span 
distinctiveness measures the uniqueness of tokens within 

Fig. 1 Example report with manual annotations. For presentation purposes, text has been translated to English

Table 1 Span and document label definitions

Label Description

No label No statement regarding this characteristic

Normal Normal function described for this characteristic

Mild Mildly abnormal function

Moderate Moderately abnormal function

Severe Severely abnormal function

Present Abnormal function, unspecified severity
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spans compared to the entire corpus, using Kullback-Lei-
bler divergence. A higher value indicates that spans con-
tain less frequent tokens, making them stand out from 
the rest of the text. Similarly, span boundary distinctive-
ness focuses on the uniqueness of boundary tokens at the 
start and end of spans. A high boundary distinctiveness 
suggests well-defined, distinctive span boundaries.

Data splits
We split the dataset in a training and testing set, allocat-
ing 80% and 20%, respectively. We used one train/test 
split for a simple practical reason: we developed regu-
lar expressions for identifying candidate spans, direct 
labelling and span classification only on the train split. 
To effectively conduct N-fold cross-validation with this 
method, we would need an independent developer for 
the regular expression patterns in each fold. This would 
ensure that new regular expressions are developed 
solely from the training data and then tested on genu-
inely unseen test data. However, we found that such an 
approach would be too time-consuming, leading us 
to choose a single 80%−20% split instead. We split all 
115,692 reports preemptively into either the training or 
test set. During the labelling process, we randomly sam-
pled documents from the entire corpus until we reached 
the prespecified requirements. Consequently, due to ran-
dom sampling, the training and testing splits may not add 
up to exactly the prespecified percentages. In Table 3, we 
report the distribution of span-level labels for each data 
split.

Span classification
We present three approaches for span classification. First, 
we employed a rule-based approach using regular expres-
sions as a baseline method. Second, we used a NER+L 
extractor, where clinical concept spans are identified 

and subsequently classified. Finally, we implemented a 
greedy span classification approach, where all possible 
spans are classified, and only those exceeding a thresh-
old model certainty are presented. An overview of these 
models including their advantages and disadvantages, is 
described in Table 5.

Approximate list lookup
Given a dictionary of lists containing phrases, where each 
list represents a target label, we built a simple rule-based 
model. This model uses token-based regular expres-
sions to match phrases in unseen texts, extracting rel-
evant spans based on the dictionary entries. We refer to 
this method as approximate list lookup (ALL). The main 
advantage of this approach is its transparency and flexi-
bility, phrases can easily be added or removed to improve 
performance. The rule-based algorithm was constructed 
as follows:

Table 2 Document label counts

Characteristic Cases Any label Normal Mild Moderate Severe Present

Aortic regurgitation 5615 2403 (42.8%) 1716 (30.6%) 505 (9.0%) 133 (2.4%) 49 (0.9%) 0 (0.0%)

Aortic stenosis 5000 1718 (34.4%) 1461 (29.2%) 108 (2.2%) 68 (1.4%) 81 (1.6%) 0 (0.0%)

Diastolic dysfunction 5000 1526 (30.5%) 521 (10.4%) 632 (12.6%) 243 (4.9%) 130 (2.6%) 0 (0.0%)

Left ventricular dilatation 5000 2402 (48.0%) 1870 (37.4%) 249 (5.0%) 91 (1.8%) 51 (1.0%) 141 (2.8%)

Left ventricular systolic dysfunction 5000 4503 (90.1%) 2881 (57.6%) 879 (17.6%) 378 (7.6%) 365 (7.3%) 0 (0.0%)

Mitral regurgitation 5000 2590 (51.8%) 1605 (32.1%) 733 (14.7%) 187 (3.7%) 65 (1.3%) 0 (0.0%)

Pericardial effusion 8686 1274 (14.7%) 973 (11.2%) 154 (1.8%) 55 (0.6%) 48 (0.6%) 44 (0.5%)

Right ventricular dilatation 8203 2718 (33.1%) 2137 (26.1%) 266 (3.2%) 125 (1.5%) 50 (0.6%) 140 (1.7%)

Right ventricular systolic dysfunction 5000 2462 (49.2%) 1807 (36.1%) 408 (8.2%) 188 (3.8%) 59 (1.2%) 0 (0.0%)

Tricuspid regurgitation 5000 1801 (36.0%) 1333 (26.7%) 262 (5.2%) 140 (2.8%) 66 (1.3%) 0 (0.0%)

Wall motion abnormalities 5000 1224 (24.5%) 389 (7.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 835 (16.7%)

Table 3 Number of characteristics in each dataset

Characteristic Train Test

Aortic regurgitation 2108 499

Aortic stenosis 1499 351

Diastolic dysfunction 1293 304

Left ventricular dilatation 2003 466

Left ventricular systolic dysfunction 4212 1035

Mitral regurgitation 2362 540

Pericardial effusion 1048 247

Right ventricular dilatation 2260 552

Right ventricular systolic function 2131 509

Tricuspid regurgitation 1574 380

Wall motion abnormalities 1075 259
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Algorithm 1 Rule-based look-up algorithm  (ALLrule)

MedCAT 
MedCAT is a semi-supervised NER+L extractor that 
supports bilateral LSTM (biLSTM) and transformer-
based span-classifiers [36] (Fig. 2). The benefit is that not 
all token spans are scanned. However, this requires train-
ing the MedCAT model to create a context-database that 
contains context vectors that are indicative for medical 
concepts. We performed unsupervised training on the 
training split and added the spans that were defined dur-
ing the manual labelling process to MedCAT’s vocabulary 
and context-database. The initial span-detector intro-
duces a selection bias compared to a greedy span-clas-
sifier. Consequently, we expected a higher precision but 
lower recall, as some spans may be missed. We trained a 
different span classifier for each characteristic where all 
classifiers were integrated into one MedCAT modelpack. 
To reduce the occurrence of false negatives, we explicitly 
added a negative label for each class, set to 1 whenever a 
class was otherwise unlabelled.

spaCy SpanCategorizer
Similar to MedCAT, spaCy’s SpanCategorizer [37] oper-
ates in two stages: tokenization and span suggestion, 
followed by span classification. It employs a rule-based 
Dutch text tokenizer from spaCy. Unlike MedCAT, 
SpanCategorizer’s default span suggester is greedy, sug-
gesting all n-gram spans within a prespecified range of 
span lengths (Fig. 3). The range for the n-gram suggester 
was set at 1–25, due to the expected lengthy sentences 
describing some of the characteristics. Compared to 
a pipeline with a stricter span suggester, this setup was 
expected to yield a higher end-to-end recall but a cor-
responding lower precision due to an increase in false 
positives.

The span classification pipeline employs a hybrid archi-
tecture, combining multiple neural network components 
to process and classify spans effectively. Tokens from 
suggested spans were first embedded using a multi hash 
embedding function based on a token’s lexical attributes, 
followed by encoding using max-out activation, layer 
normalization, and residual connections. These encoded 
representations underwent mean and max pooling before 
being passed through a hidden layer. Finally, single label 
classification was performed on these span vectors using 
a logistic loss function. Each span was classified into one 
of the labelled classes, or was classified with a negative 
label (i.e., no label).

Standard components and configuration files were 
predominantly used to prevent overfitting. However, for 
some characteristics, >70% of cases had only negative 
labels (Table 4). To address this imbalance and to prevent 
our model from solely predicting negative labels, dif-
ferent weights were assigned to negative labels (0.6, 0.8 
and 1.0). For each characteristic, models were trained 
with these weights, and the model yielding the highest 
weighted F1-score was selected. An overview of model 

Fig. 2 MedCAT pipeline for identifying and classifying medical concepts
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performance for each negative weight is presented in 
Additional file 4.

Document classification
For document classification, we used six methods. We 
implemented two baseline methods: one utilizing a bag-
of-words (BOW) approach with medical word embed-
dings, and the one using indirect document classification 
via a span-to-document label heuristic, where the best 
performing span classification method was used to aggre-
gate span-based classifications into document classifi-
cations. We also employed SetFit in combination with a 
pre-trained sentence encoder. Another method involved 
using RoBERTa, specifically the MedRoBERTa.nl model 
for this work. Additionally, we applied a RNN model, 
specifically a bidirectional GRU, and a bidirectional con-
volutional neural network (CNN). An overview of these 
models including their advantages and disadvantages, is 
described in Table 5.

Bag-of-words
Our baseline BOW approach involved several feature 
extraction steps, detailed in Fig.  4. First, the text was 
tokenized. Next, we applied term frequency-inverse 
document frequency (TF-IDF) weighting to each token 

within a document. We then enriched the features with 
topic modelling weighting, as described by Bagheri et al. 
[38]. Additionally, we augmented the features with latent 
Dirichlet allocation topic probabilities to capture under-
lying thematic structures. The resulting features were 
combined with a standard gradient-boosted classifier.

Span classifier heuristic
We selected the best performing span classifier based 
on its end-to-end performance. Then, we aggregated the 
span labels into a document label for each characteristic. 
The process is similar to how we constructed document 
labels: given a multitude of span labels within one docu-
ment, we aggregated them by selecting the most severe 
label per characteristic. This heuristic allowed for more 
granular analysis by indicating which spans lead to the 
document classification. However, we expected per-
formance loss due to the increased complexity of span 
classification.

SetFit
Reimers et  al. [39] employed Siamese networks with 
contrastive learning on similar and dissimilar sentences 
to produce transformer-based encoders that capture 
semantic information along different axes of similarity, 

Fig. 3 SpanCat pipeline for iterating and classifying n-gram spans using scanning windows of 1–25 tokens
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Table 4 Span characteristics

Characteristic Severity No. of spans Length SD BD

Aortic regurgitation Overall 2607 2.47 2.62 1.25

Normal 1849 2.48 2.42 1.28

Mild 562 2.39 3.08 1.05

Moderate 146 2.68 2.90 1.45

Severe 50 2.37 4.33 1.80

Aortic stenosis Overall 1850 2.48 2.60 1.35

Normal 1582 2.48 2.40 1.31

Mild 111 2.45 3.54 1.57

Moderate 73 2.53 3.43 1.71

Severe 84 2.39 4.33 1.52

Diastolic dysfunction Overall 1597 4.58 2.42 1.28

Normal 536 4.26 1.59 1.44

Mild 665 4.89 2.77 1.06

Moderate 263 4.73 2.92 1.41

Severe 133 3.96 3.01 1.46

Left ventricular dilatation Overall 2469 3.31 2.11 1.46

Normal 1925 3.42 1.80 1.30

Mild 256 3.21 2.98 1.88

Moderate 94 3.15 3.41 2.40

Severe 52 3.16 3.75 2.78

Present 142 2.19 3.35 1.75

Left ventricular systolic dysfunction Overall 5144 4.81 1.41 1.10

Normal 3113 4.85 1.28 1.01

Mild 1042 4.77 1.55 1.14

Moderate 495 4.82 1.53 1.28

Severe 494 4.64 1.82 1.39

Mitral regurgitation Overall 2902 2.56 2.56 1.33

Normal 1793 2.51 2.34 1.34

Mild 814 2.62 2.90 1.22

Moderate 228 2.74 2.82 1.46

Severe 67 2.71 3.31 1.69

Pericardial effusion Overall 1295 3.65 2.86 1.48

Normal 987 2.51 2.97 1.47

Mild 158 5.10 2.51 1.44

Moderate 55 11.50 2.15 1.70

Severe 50 12.81 2.21 1.65

Present 45 3.94 3.26 1.47

Right ventricular dilatation Overall 2812 3.54 2.06 1.40

Normal 2195 3.63 1.79 1.30

Mild 294 3.43 2.88 1.72

Moderate 132 3.30 3.28 1.91

Severe 50 3.43 3.52 1.97

Present 141 2.51 2.89 1.64

Right ventricular systolic dysfunction Overall 2640 4.34 1.70 1.37

Normal 1932 4.29 1.65 1.37

Mild 445 4.63 1.74 1.31

Moderate 199 3.98 2.05 1.44

Severe 64 5.11 2.07 1.51
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such as polarity and temporality. Tunstall et  al. [40] 
expanded on this approach with SetFit, a few-shot clas-
sification method that fine-tunes a pre-trained sentence 
encoder via contrastive learning based on label pairs. 
This fine-tuned encoder then supports a classification 
head, as shown in Fig. 5.

For our work, we used BioLORD-2023M developed 
by Remy et  al. [34], a multilingual sentence encoder 
designed to discriminate between medical concepts 
using existing ontologies, and a sentence encoder that 
was trained on top of the RobBERTv2 model (see [30, 
41]), a Dutch language model without specific domain 
knowledge. For the classification head we used a µ−
SVM model, a technique also applied by Beliveau et al. 
[42], who reported varying performance among state-
of-the-art classification models.

In training, we used SetFit with 500 randomly sampled 
documents, which constitutes approximately 10% of the 
total training dataset. The document set was transformed 
into pairs of positive-negative labeled samples, leading 
to a quadratic increase in the number of sample pairs. 
We limited the number of samples to 500 due to practi-
cal constraints and the observation that model perfor-
mance was not improving with increasing sample count. 
The sentence encoder demonstrating the highest perfor-
mance is highlighted in the Results section.

MedRoBERTa.nl
MedRoBERTa.nl is based on RoBERTa, a variant of BERT, 
originally developed by Devlin et al. [43], which itself is 
rooted in the transformer architecture (see Vaswani et al. 
[44]). BERT leverages the transformer’s bidirectional 

Abbreviations: SD span distinctiveness, BD span boundary distinctiveness

Table 4 (continued)

Characteristic Severity No. of spans Length SD BD

Tricuspid regurgitation Overall 1954 2.47 2.84 1.48

Normal 1422 2.48 2.57 1.49

Mild 294 2.46 3.34 1.40

Moderate 165 2.37 3.72 1.50

Severe 73 2.53 4.01 1.56

Wall motion abnormalities Overall 1334 3.81 2.33 1.10

Normal 421 3.42 2.38 1.09

Present 913 4.00 2.31 1.10

Table 5 Overview of all used models, including important advantages and disadvantages

Abbreviations: CNN convolutional neural network, GRU  gated recurrent unit, LSTM long-term short memory unit, MedCAT  medical concept annotation tool

Model Advantages Disadvantages

Span classification
 Approximate list lookup Transparency, flexibility, fast, easy to implement Time-consuming, operator-dependent, cannot generalize 

beyond provided list

 MedCAT (biLSTM) Can extract medical concepts and their relationships, 
leveraging knowledge from existing ontologies

Can have limited adaptability to new terms

 SpanCategorizer Uses pooling to make the model more robust, optimized 
for span classification

More complex model design may require tuning for opti-
mal results

Document classification
 Bag-of-words Works well with sparse data, simple, easy to implement Ignores word order and context, which can lead to loss 

of information

 Span classifier heuristic Allows span-level analysis of results Suboptimal performance due to the increased complexity 
of span classification

 SetFit Effective learning from limited data due to few-shot 
learning

May require hyperparameter tuning to yield optimal 
results

 MedRoBERTa.nl Pre-trained on Dutch medical text, provides a strong 
starting point. Capable of capturing context

Requires significant computational resources, may need 
further domain-specific adaptations

 Bidirectional GRU Captures context backward and forward May require extensive training to avoid overfitting

 Bidirectional CNN Effective at extracting local patterns and features May struggle with long-range dependencies
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Fig. 4 BOW pipeline involving tokenization, TF-IDF weighting, topic modelling and classification using a gradient-boosted classifier

Fig. 5 SetFit pipeline: fine-tuning the sentence encoder with label-based contrastive learning, followed by classification
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self-attention mechanism to capture contextual depend-
encies across words in a document. RoBERTa optimizes 
this approach by adjusting training objectives and hyper-
parameters, achieving enhanced performance on several 
NLP benchmarks. This optimization makes RoBERTa 
particularly effective for tasks such as classification and 
span identification, where the model identifies specific 
sections (spans) of text that correspond to relevant enti-
ties or phrases.

MedRoBERTa.nl, developed by Verkijk and Vossen 
[33], is a Dutch RoBERTa model trained specifically on 
clinical notes from the Amsterdam University Medical 
Center. With 125 million parameters, it is currently the 
only Dutch clinical language model available, and has 
demonstrated to be well suited for supervised finetuning 
on clinical data by Van Es et al. [26].

The MedRoBERTa.nl model processes input by first 
tokenizing the clinical text and embedding it as a sequence 
of tokens, including positional embeddings to capture 
word order within the text (Fig.  6). This tokenized input 
format enables MedRoBERTa.nl to analyze the text bidi-
rectionally, preserving the clinical context for each token in 
relation to others in the sequence. In this study, MedRoB-
ERTa.nl was finetuned on Dutch clinical text over three 
epochs, during which all model weights were updated.

Recurrent neural networks
RNNs, including LSTMs, gated recurrent units (GRUs), 
and quasi-recurrent neural networks (QRNNs), are com-
monly used for both span and document classification 
tasks due to its design for sequential data. We selected 

bidirectional GRU (biGRU) for its ability to capture bidi-
rectional context (left-to-right and right-to-left) in token 
sequences, which is important for understanding the full 
sequence context. Unlike standard RNNs, which suffer 
from vanishing gradients and struggle with long-term 
dependencies, GRUs and LSTMs handle these dependen-
cies much better. GRUs, have a simpler architecture than 
LSTMs, using only two gates (update and reset) instead 
of three, resulting in fewer training times while maintain-
ing comparable performance (Fig. 7).

Convolutional neural networks
CNNs are another powerful type of neural network, often 
used for span and document classification tasks. In our 
study, we utilised a bidirectional variant of CNN, which 
processes text sequences in both forward and backward 
directions. This bidirectional approach helps capture 
context from both ends of the sequence, similar to bidi-
rectional GRUs. CNNs excel at capturing local patterns 
in data, making them well-suited for text, where n-grams 
or small phrases can be crucial for understanding con-
text. Unlike RNNs, CNNs can process data in parallel, 
significantly speeding up the training process.

The primary advantage of CNNs is their ability to effi-
ciently capture spatial hierarchies in data through con-
volutional and pooling layers (Fig. 8). However, they may 
struggle with maintaining long-range dependencies com-
pared to RNNs like biGRU. Despite this, bidirectional 
CNNs are computationally efficient and less sensitive to 
hyperparameter tuning, making them a practical choice 
for many text classification tasks.

Fig. 6 MedRoBERTa.nl pipeline: input is first tokenized and embedded, then processed through the transformer layers for classification
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Performance evaluation
Span classification involves two distinct tasks, identi-
fying spans and subsequently classifying them. There-
fore, our performance evaluation included two aspects. 

We assessed span identification performance using a 
token-based coverage expressed using the Jaccard index. 
For span classification, we evaluated assuming the cor-
rect spans are identified. Additionally, we measured 

Fig. 7 biGRU pipeline: The input sentence is tokenized and embedded, passing through a bidirectional GRU layer to capture contextual 
information in both directions. The fully connected layer uses this information to produce a final classification output

Fig. 8 CNN pipeline: Text is tokenized and embedded, then passed through multiple convolutional layers with varying filter sizes. Outputs 
from each convolutional layer are pooled and concatenated before passing through a final softmax layer
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end-to-end performance, which combines both span 
identification and span classification. For both span 
and document classification, we reported weighted and 
macro precision, recall, and F1-score.

Finally, in clinical practice it is important to consider 
the number of false labels, i.e., the number of spans that 
are falsely labelled with any class value (other than “no 
label” or “normal”). We present the rate of false labelling 
relative to the total number of identified spans for our 
span classification task.

Results
This section provides the performance scores on the span 
and document-level label extraction tasks.

Span classification
Table 6 shows that for most characteristics, SpanCatego-
rizer achieved the highest weighted and macro F1-scores 
for the span classification task. However,  ALLrule per-
formed particularly well in classifying valvular disor-
ders. This high performance may be attributed to these 
disorders being often described with very short, distinct 
phrases (Table  4). Conversely, the remaining character-
istics are typically described using longer, less distinc-
tive spans, where SpanCategorizer demonstrated a better 
performance. MedCAT demonstrated a lower precision 
and recall in the span classification task. These results 
may be due to an imperfect span suggestion. This hypoth-
esis is supported by Tables  7 and  8, which illustrate a 
high performance in span classification when the exact 
spans containing a label are suggested, but a low Jaccard-
index when comparing MedCAT’s end-to-end predicted 
spans containing a label with the ground truth. In addi-
tion, Table 9 details that MedCAT has a high percentage 

of false positive span labels, leading to a reduced preci-
sion. This indicates that using MedCAT combined with a 
greedy span suggester could improve results even further.

Document classification
Results for the document classification task are presented 
in Tables  10 and 11. From these tables, MedRoBERTa.
nl outperforms all other models on weighted and macro 
F1-score, precision, and recall. Indirect document clas-
sification using span classifiers resulted in a suboptimal 
performance, highlighting the added value of direct doc-
ument classification models. BOW, our second baseline 
approach, performed quite well considering that we did 
not perform feature processing except TF-IDF and lem-
matisation. An explanation might be that, because we are 
dealing with short staccato notes, containing little elab-
orations, and primarily containing statements of facts. 
Another reason may be that the number of negations is 
limited in echocardiogram reports. We also applied a 
document averaging of clinical word embeddings, but 
this was not favorable with respect to BOW with TF-IDF.

For MedRoBERTa, we applied a de-abbreviation step 
to investigate whether the presence of several abbrevia-
tions, combined with the relative brevity of the notes, 
would undermine the model’s performance. MedRoB-
ERTa is competitive with methods like biLSTMs, espe-
cially in the case of larger contexts. However, we did 
not observe an improvement over the original texts. 
This could be due to the already high performance 
without de-abbreviation. For both biGRU and CNN 
models, the use of de-abbreviations also did not impact 
the performance favorably.

Additionally, we experimented with using pre-trained 
word vectors concatenated with the original trainable 

Table 6 Semantic end-to-end performance of span classification methods

Weighted and macro (in brackets) scores. The highest performance for each characteristic is denoted in bold

SpanCategorizer MetaCAT ALLrule

Characteristic F1 recall precision F1 recall precision F1 recall precision

Aortic regurgitation 0.90 (0.67) 0.85 (0.62) 0.94 (0.73) 0.49 (0.46) 0.54 (0.50) 0.50 (0.46) 0.92 (0.89) 0.90 (0.87) 0.94 (0.92)

Aortic stenosis 0.82 (0.74) 0.79 (0.67) 0.86 (0.85) 0.45 (0.38) 0.46 (0.51) 0.43 (0.40) 0.83 (0.75) 0.84 (0.75) 0.83 (0.77)

Diastolic dysfunction 0.87 (0.83) 0.85 (0.81) 0.90 (0.86) 0.55 (0.66) 0.69 (0.66) 0.60 (0.65) 0.60 (0.60) 0.60 (0.59) 0.61 (0.61)

Left ventricular dilatation 0.84 (0.89) 0.82 (0.85) 0.85 (0.93) 0.57 (0.65) 0.32 (0.46) 0.40 (0.53) 0.75 (0.85) 0.81 (0.86) 0.70 (0.86)

Left ventricular systolic dysfunction 0.77 (0.42) 0.75 (0.41) 0.79 (0.43) 0.33 (0.24) 0.69 (0.49) 0.44 (0.32) 0.21 (0.22) 0.16 (0.19) 0.33 (0.31)

Mitral regurgitation 0.93 (0.71) 0.90 (0.69) 0.97 (0.72) 0.63 (0.76) 0.59 (0.60) 0.61 (0.66) 0.92 (0.91) 0.91 (0.89) 0.93 (0.92)

Pericardial effusion 0.79 (0.28) 0.70 (0.25) 0.89 (0.32) 0.66 (0.35) 0.60 (0.26) 0.62 (0.29) 0.74 (0.21) 0.62 (0.19) 0.93 (0.26)

Right ventricular dilatation 0.90 (0.72) 0.88 (0.71) 0.93 (0.74) 0.26 (0.44) 0.23 (0.33) 0.25 (0.37) 0.77 (0.85) 0.80 (0.83) 0.75 (0.88)

Right ventricular systolic dysfunc-
tion

0.89 (0.64) 0.88 (0.66) 0.90 (0.62) 0.61 (0.60) 0.68 (0.51) 0.64 (0.54) 0.53 (0.48) 0.37 (0.33) 0.96 (0.95)

Tricuspid regurgitation 0.90 (0.83) 0.88 (0.81) 0.93 (0.85) 0.38 (0.40) 0.51 (0.58) 0.41 (0.44) 0.92 (0.83) 0.93 (0.91) 0.91 (0.82)

Wall motion abnormalities 0.60 (0.60) 0.61 (0.63) 0.59 (0.59) 0.24 (0.24) 0.51 (0.52) 0.32 (0.32) 0.16 (0.24) 0.18 (0.25) 0.15 (0.23)
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embedding layer for the CNN and biGRU models. We 
did not see a significant improvement in performance, 
but the added embeddings did incur increased compu-
tational cost. The benefit of such pre-trained embed-
dings might be more noticeable with smaller training 
sizes, adding contextual information that the model 
might not learn from a small dataset alone. We also 
experimented with stacked dilated CNNs and TextCNN, 
again with no noticeable performance improvement 
while incurring increased computational cost.

SetFit performed well considering that we used about 
10% of the samples resulting in about 12,000 contras-
tive examples. The sentence embeddings based on the 
BioLord2023 model are notably worse than the sen-
tence embeddings based on the more generic Rob-
BERTv2 model (Additional file 3). This can be explained 
by the fact that the SBERT model for RobBERTv2 was 
trained on a broad semantic range or sentences whereas 
BioLORD used the LORD training that seeks to maxi-
mize difference between medical concept definitions and 
i.e. is more suitable for named-entity-recognition tasks.

Retraining all models on a reduced label set improves 
performance markedly (Table  12). Using a further 
reduced label set only including the presence or absence 
of a mention of an characteristic yielded near-perfect 
results. This approach can be particularly useful in prac-
tical applications where high precision is required, and 
resources for manual data labelling are limited.

Discussion
This study aimed to explore and compare various NLP 
methods for extracting clinical labels from unstruc-
tured Dutch echocardiogram reports. We developed 
and evaluated several approaches for both span- and 

Table 7 Semantic performance of span classification methods, assuming matching spans

Weighted and macro (in brackets) scores. The highest performance for each characteristic is denoted in bold

SpanCategorizer MetaCAT ALLrule

Characteristic F1 recall precision F1 recall precision F1 recall precision

Aortic regurgitation 0.91 (0.54) 0.85 (0.50) 0.97 (0.58) 0.98 (0.92) 0.98 (0.89) 0.98 (0.94) 0.91 (0.89) 0.86 (0.87) 0.96 (0.92)

Aortic stenosis 0.88 (0.63) 0.79 (0.53) 1.00 (0.78) 0.97 (0.84) 0.98 (0.79) 0.97 (0.91) 0.84 (0.75) 0.83 (0.75) 0.85 (0.77)

Diastolic dysfunction 0.91 (0.70) 0.85 (0.64) 0.98 (0.77) 0.98 (0.94) 0.98 (0.95) 0.98 (0.93) 0.60 (0.60) 0.58 (0.59) 0.62 (0.61)

Left ventricular dilatation 0.90 (0.76) 0.82 (0.71) 1.00 (0.83) 0.97 (0.89) 0.97 (0.9) 0.97 (0.88) 0.82 (0.85) 0.79 (0.86) 0.85 (0.86)

Left ventricular systolic dysfunction 0.84 (0.41) 0.75 (0.36) 0.97 (0.49) 0.95 (0.64) 0.95 (0.65) 0.95 (0.63) 0.20 (0.22) 0.14 (0.18) 0.37 (0.31)

Mitral regurgitation 0.93 (0.57) 0.90 (0.55) 0.96 (0.59) 0.98 (0.94) 0.98 (0.93) 0.98 (0.95) 0.90 (0.91) 0.86 (0.89) 0.94 (0.92)

Pericardial effusion 0.76 (0.24) 0.70 (0.21) 0.85 (0.30) 0.97 (0.56) 0.97 (0.53) 0.97 (0.66) 0.74 (0.21) 0.62 (0.19) 0.93 (0.26)

Right ventricular dilatation 0.93 (0.62) 0.88 (0.59) 0.98 (0.65) 0.98 (0.92) 0.98 (0.94) 0.98 (0.91) 0.78 (0.85) 0.76 (0.83) 0.80 (0.88)

Right ventricular systolic dysfunction 0.91 (0.54) 0.88 (0.53) 0.94 (0.55) 0.97 (0.9) 0.97 (0.85) 0.97 (0.95) 0.52 (0.48) 0.36 (0.33) 0.97 (0.95)

Tricuspid regurgitation 0.92 (0.68) 0.88 (0.65) 0.97 (0.74) 0.98 (0.9) 0.98 (0.89) 0.98 (0.91) 0.90 (0.83) 0.89 (0.84) 0.91 (0.82)

Wall motion abnormalities 0.75 (0.51) 0.61 (0.42) 0.99 (0.66) 0.98 (0.96) 0.98 (0.96) 0.98 (0.96) 0.16 (0.24) 0.18 (0.25) 0.15 (0.23)

Table 8 Jaccard-index of span classification methods

The highest performance for each characteristic is denoted in bold

Characteristic SpanCategorizer MetaCAT ALLrule

Aortic regurgitation 0.96 0.56 0.99
Aortic stenosis 0.98 0.47 0.96

Diastolic dysfunction 0.98 0.78 0.85

Left ventricular dilatation 0.96 0.47 0.96
Left ventricular systolic dysfunc-
tion

0.95 0.74 0.84

Mitral regurgitation 0.99 0.64 0.99

Pericardial effusion 0.96 0.76 0.96
Right ventricular dilatation 0.99 0.32 0.93

Right ventricular systolic dys-
function

0.99 0.75 0.99

Tricuspid regurgitation 0.99 0.57 0.99
Wall motion abnormalities 0.88 0.55 0.74

Table 9 Fraction of false positive span labels

Characteristic SpanCategorizer MetaCAT ALLrule

Aortic regurgitation <0.01 0.13 <0.01

Aortic stenosis 0.01 0.12 <0.01

Diastolic dysfunction 0.03 0.10 0.04

Left ventricular dilatation 0.01 0.05 0.01

Left ventricular systolic dysfunc-
tion

0.01 0.76 0.02

Mitral regurgitation 0.01 0.12 0.01

Pericardial effusion <0.01 0.04 <0.01

Right ventricular dilatation 0.02 0.11 0.01

Right ventricular systolic dys-
function

0.03 0.08 <0.01

Tricuspid regurgitation <0.01 0.13 0.01

Wall motion abnormalities 0.04 0.22 0.08
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document-level label extraction on an internal test set, 
demonstrating high performance in identifying eleven 
commonly described cardiac characteristics, including 
left and right ventricular systolic dysfunction, left and 
right ventricular dilatation, diastolic dysfunction, aortic 
stenosis, aortic regurgitation, mitral regurgitation, tricus-
pid regurgitation, pericardial effusion, and wall motion 
abnormalities. The main findings indicate that SpanCate-
gorizer consistently outperformed other models in span-
level classification tasks, achieving weighted F1-scores 
ranging from 0.60 to 0.93 across these characteristics, 
while MedRoBERTa.nl excelled in document-level clas-
sification with a weighted F1-score exceeding 0.96 for all 
characteristics.

In this study, we observed a variation in results of 
different span classification approaches. The baseline 
approach, using regular expressions, achieved a high per-
formance for some characteristics but performed poorly 
for others. These outcomes are likely linked to span 
length, frequency, and distinctiveness [23]. Our most 
poorly performing characteristics - left ventricular sys-
tolic dysfunction, pericardial effusion, and wall motion 
abnormalities - have larger span lengths, and lower span 
frequencies. Macro performance is particularly impacted 
by the ‘severe’ classes, which have a low span frequency 
and high span length, which have both been previously 
linked to worse performance [23].

Although no other Dutch studies have focused on 
information extraction from echocardiogram reports, 
comparisons can be made to studies conducted on Eng-
lish-language echocardiogram data. Most of these stud-
ies address both continuous and discrete measurement 
extraction, whereas our study uniquely focuses solely 
on discrete measurement extraction. This distinction 

makes direct comparisons challenging. However, when 
focusing on the extraction of discrete measurements, 
our methods demonstrate competitive [7] or superior 
[10, 43] performance. For instance, F1-scores reported 
in [7] range between 0.93 and 0.94, whereas our docu-
ment classification approach using MedRoBERTa.nl 
achieves F1-scores exceeding 0.96 across all cardiac 
characteristics. These findings highlight the effective-
ness of our methods for discrete cardiac label extrac-
tion, particularly in a non-English setting.

The MedCAT approach has a very high overall pre-
cision but lacked recall due to imperfect span sug-
gestions. Therefore, for medical applications, it may 
be more effective to use a greedy span-classifier as 
the primary span suggestion method, with a NER+L 
extraction serving as an augmentation tool to extract 
additional features. Alternatively, to make the Med-
CAT model more robust, we should consider using 
fuzzy matching with varying proximities, using tools 
like clinlp [46], instead of adding possible spans directly 
from the training phase of the labelling process in 
Prodigy. Another approach, given the results from the 
document classification task, could involve training a 
RoBERTa-based or CNN/biGRU span classifier, using 
either a MedCAT or greedy span suggester. Addition-
ally, a joint entity/relation extraction model could be 
constructed [43]. However, these approaches are out-
side the scope of the current paper and require signifi-
cantly higher computational cost.

For document classification, the MedRoBERTa.nl 
model demonstrated the best overall performance. This 
aligns with previous findings, which highlight the addi-
tional value of BERT-based models in cases involving 
infrequently occurring spans [23]. We did not attempt 

Table 11 Semantic performance of span → document classification heuristics

Weighted and macro (in brackets) scores. The highest performance for each characteristic is denoted in bold

SpanCategorizer MedCAT ALLrule

Characteristic F1 recall precision F1 recall precision F1 recall precision

Aortic regurgitation 0.95 (0.74) 0.95 (0.71) 0.95 (0.77) 0.6 (0.46) 0.58 (0.56) 0.63 (0.42) 0.95 (0.91) 0.95 (0.88) 0.95 (0.95)

Aortic stenosis 0.94 (0.83) 0.94 (0.76) 0.94 (0.93) 0.64 (0.48) 0.62 (0.66) 0.67 (0.42) 0.95 (0.9) 0.95 (0.86) 0.95 (0.96)

Diastolic dysfunction 0.94 (0.87) 0.94 (0.84) 0.94 (0.91) 0.75 (0.67) 0.74 (0.77) 0.81 (0.62) 0.93 (0.82) 0.93 (0.76) 0.93 (0.93)

Left ventricular dilatation 0.91 (0.59) 0.91 (0.59) 0.91 (0.6) 0.65 (0.54) 0.67 (0.58) 0.69 (0.54) 0.94 (0.91) 0.94 (0.89) 0.94 (0.94)

Left ventricular systolic dysfunction 0.92 (0.88) 0.92 (0.89) 0.92 (0.89) 0.87 (0.79) 0.86 (0.8) 0.88 (0.81) 0.33 (0.37) 0.33 (0.41) 0.33 (0.75)

Mitral regurgitation 0.96 (0.92) 0.96 (0.9) 0.96 (0.95) 0.67 (0.64) 0.67 (0.65) 0.68 (0.64) 0.94 (0.92) 0.94 (0.9) 0.94 (0.94)

Pericardial effusion 0.95 (0.32) 0.95 (0.32) 0.95 (0.32) 0.87 (0.48) 0.85 (0.55) 0.9 (0.6) 0.96 (0.37) 0.96 (0.46) 0.96 (0.36)

Right ventricular dilatation 0.93 (0.72) 0.93 (0.68) 0.93 (0.78) 0.64 (0.43) 0.63 (0.49) 0.67 (0.44) 0.9 (0.83) 0.9 (0.8) 0.9 (0.88)

Right ventricular systolic dysfunc-
tion

0.94 (0.72) 0.94 (0.75) 0.94 (0.7) 0.78 (0.63) 0.78 (0.67) 0.8 (0.6) 0.72 (0.55) 0.72 (0.47) 0.72 (0.89)

Tricuspid regurgitation 0.96 (0.92) 0.96 (0.9) 0.96 (0.96) 0.6 (0.48) 0.57 (0.69) 0.68 (0.43) 0.96 (0.97) 0.96 (0.96) 0.96 (0.98)

Wall motion abnormalities 0.95 (0.92) 0.95 (0.9) 0.95 (0.96) 0.55 (0.45) 0.52 (0.61) 0.77 (0.48) 0.95 (0.92) 0.95 (0.93) 0.95 (0.91)



Page 16 of 20Arends et al. BMC Medical Informatics and Decision Making          (2025) 25:115 

Ta
bl

e 
12

 S
em

an
tic

 p
er

fo
rm

an
ce

 o
f d

oc
um

en
t c

la
ss

ifi
ca

tio
n 

m
et

ho
ds

 fo
r s

im
pl

ifi
ed

 la
be

l s
ch

em
e 

(N
o 

la
be

l, 
N

or
m

al
, a

nd
 P

re
se

nt
)

W
ei

gh
te

d 
an

d 
m

ac
ro

 (i
n 

br
ac

ke
ts

) s
co

re
s. 

Th
e 

hi
gh

es
t p

er
fo

rm
an

ce
 fo

r e
ac

h 
ch

ar
ac

te
ris

tic
 is

 d
en

ot
ed

 in
 b

ol
d

BO
W

Se
tF

it 
(R

ob
BE

RT
)

M
ed

Ro
BE

RT
a.

nl
bi

G
RU

 
CN

N

Ch
ar

ac
te

ri
st

ic
F1

re
ca

ll
pr

ec
is

io
n

F1
re

ca
ll

pr
ec

is
io

n
F1

re
ca

ll
pr

ec
is

io
n

F1
re

ca
ll

pr
ec

is
io

n
F1

re
ca

ll
pr

ec
is

io
n

A
or

tic
 re

gu
rg

i-
ta

tio
n

0.
92

 (0
.8

9)
0.

92
 (0

.8
8)

0.
92

 (0
.8

9)
0.

94
 (0

.9
3)

0.
94

 (0
.9

4)
0.

94
 (0

.9
1)

0.
97

 (0
.9

7)
0.

97
 (0

.9
7)

0.
97

 (0
.9

7)
0.

96
 (0

.9
5)

0.
96

 (0
.9

5)
0.

96
 (0

.9
6)

0.
96

 (0
.9

6)
0.

96
 (0

.9
5)

0.
96

 (0
.9

6)

A
or

tic
 s

te
no

si
s

0.
94

 (0
.8

9)
0.

94
 (0

.8
8)

0.
94

 (0
.9

0)
0.

91
 (0

.8
6)

0.
91

 (0
.9

4)
0.

91
 (0

.8
2)

0.
95

 (0
.9

3)
0.

95
 (0

.9
5)

0.
95

 (0
.9

3)
0.

95
 (0

.9
3)

0.
95

 (0
.9

4)
0.

95
 (0

.9
2)

0.
96

 (0
.9

4)
0.

96
 (0

.9
5)

0.
96

 (0
.9

5)

D
ia

st
ol

ic
 

dy
sf

un
ct

io
n

0.
94

 (0
.9

1)
0.

94
 (0

.9
0)

0.
94

 (0
.9

1)
0.

95
 (0

.9
2)

0.
95

 (0
.9

7)
0.

95
 (0

.8
9)

0.
97

 (0
.9

6)
0.

97
 (0

.9
7)

0.
97

 (0
.9

6)
0.

96
 (0

.9
4)

0.
96

 (0
.9

5)
0.

96
 (0

.9
2)

0.
96

 (0
.9

5)
0.

96
 (0

.9
5)

0.
97

 (0
.9

5)

Le
ft

 v
en

tr
ic

ul
ar

 
di

la
ta

tio
n

0.
88

 (0
.8

2)
0.

88
 (0

.8
1)

0.
88

 (0
.8

4)
0.

95
 (0

.9
4)

0.
95

 (0
.9

6)
0.

95
 (0

.9
3)

0.
96

 (0
.9

4)
0.

96
 (0

.9
5)

0.
96

 (0
.9

4)
0.

95
 (0

.9
4)

0.
95

 (0
.9

4)
0.

95
 (0

.9
4)

0.
96

 (0
.9

5)
0.

96
 (0

.9
5)

0.
96

 (0
.9

5)

Le
ft

 v
en

tr
ic

ul
ar

 
sy

st
ol

ic
 d

ys
-

fu
nc

tio
n

0.
92

 (0
.9

0)
0.

92
 (0

.8
9)

0.
92

 (0
.9

0)
0.

96
 (0

.9
4)

0.
96

 (0
.9

5)
0.

96
 (0

.9
3)

0.
97

 (0
.9

5)
0.

97
 (0

.9
5)

0.
97

 (0
.9

5)
0.

96
 (0

.9
4)

0.
96

 (0
.9

4)
0.

97
 (0

.9
4)

0.
96

 (0
.9

4)
0.

96
 (0

.9
3)

0.
96

 (0
.9

4)

M
itr

al
 re

gu
rg

i-
ta

tio
n

0.
90

 (0
.8

8)
0.

90
 (0

.8
8)

0.
90

 (0
.8

9)
0.

94
 (0

.9
4)

0.
94

 (0
.9

5)
0.

94
 (0

.9
3)

0.
97

 (0
.9

7)
0.

97
 (0

.9
7)

0.
97

 (0
.9

6)
0.

95
 (0

.9
4)

0.
94

 (0
.9

5)
0.

95
 (0

.9
4)

0.
96

 (0
.9

5)
0.

96
 (0

.9
6)

0.
96

 (0
.9

5)

Pe
ric

ar
di

al
 

eff
us

io
n

0.
96

 (0
.8

4)
0.

97
 (0

.8
2)

0.
96

 (0
.8

8)
0.

95
 (0

.8
5)

0.
95

 (0
.9

3)
0.

95
 (0

.7
9)

0.
99

 (0
.9

5)
0.

99
 (0

.9
6)

0.
99

 (0
.9

4)
0.

98
 (0

.9
4)

0.
98

 (0
.9

5)
0.

98
 (0

.9
4)

0.
98

 (0
.9

4)
0.

98
 (0

.9
4)

0.
98

 (0
.9

5)

Ri
gh

t v
en

tr
ic

u-
la

r d
ila

ta
tio

n
0.

87
 (0

.7
9)

0.
88

 (0
.7

7)
0.

87
 (0

.8
1)

0.
91

 (0
.8

6)
0.

91
 (0

.9
1)

0.
91

 (0
.8

3)
0.

95
 (0

.9
3)

0.
95

 (0
.9

5)
0.

96
 (0

.9
2)

0.
94

 (0
.9

2)
0.

94
 (0

.9
2)

0.
94

 (0
.9

2)
0.

95
 (0

.9
2)

0.
95

 (0
.9

3)
0.

95
 (0

.9
2)

Ri
gh

t v
en

-
tr

ic
ul

ar
 s

ys
to

lic
 

dy
sf

un
ct

io
n

0.
91

 (0
.8

6)
0.

90
 (0

.8
5)

0.
90

 (0
.8

7)
0.

93
 (0

.9
1)

0.
93

 (0
.9

4)
0.

93
 (0

.9
0)

0.
97

 (0
.9

5)
0.

97
 (0

.9
4)

0.
97

 (0
.9

6)
0.

94
 (0

.9
2)

0.
94

 (0
.9

1)
0.

94
 (0

.9
3)

0.
94

 (0
.9

2)
0.

94
 (0

.9
2)

0.
95

 (0
.9

3)

Tr
ic

us
pi

d 
re

gu
r-

gi
ta

tio
n

0.
93

 (0
.9

0)
0.

93
 (0

.9
0)

0.
93

 (0
.8

9)
0.

93
 (0

.9
1)

0.
93

 (0
.9

3)
0.

93
 (0

.8
9)

0.
97

 (0
.9

7)
0.

97
 (0

.9
6)

0.
97

 (0
.9

7)
0.

96
 (0

.9
5)

0.
96

 (0
.9

5)
0.

96
 (0

.9
5)

0.
97

 (0
.9

6)
0.

97
 (0

.9
6)

0.
97

 (0
.9

5)

W
al

l m
ot

io
n 

ab
no

rm
al

iti
es

0.
94

 (0
.9

0)
0.

94
 (0

.8
5)

0.
94

 (0
.9

2)
0.

95
 (0

.9
2)

0.
95

 (0
.9

3)
0.

95
 (0

.9
1)

0.
97

 (0
.9

5)
0.

97
 (0

.9
4)

0.
97

 (0
.9

6)
0.

96
 (0

.9
3)

0.
96

 (0
.9

0)
0.

96
 (0

.9
6)

0.
97

 (0
.9

4)
0.

97
 (0

.9
3)

0.
97

 (0
.9

6)



Page 17 of 20Arends et al. BMC Medical Informatics and Decision Making          (2025) 25:115  

to train a BERT-based model from scratch due to the 
limited number of available documents. Previous stud-
ies have shown that pre-training on a small corpus 
yields suboptimal results, whereas models with general 
domain pre-training, such as MedRoBERTa.nl, achieve 
highly competitive results without requiring domain-
specific feature engineering [48–53]. The biGRU and 
CNN models demonstrated a competitive performance, 
especially considering their significantly lower compu-
tational cost. Alternatives like TextCNN or hierarchical 
architectures such as Hierarchical Attention Networks 
might perform better with longer contexts, such as dis-
charge summaries [54, 55].

The BOW approach, while effective considering 
its simplicity, could have been extended with more 
sophisticated weighting mechanisms, such as incor-
porating negation estimation, part-of-speech tagging, 
and dependency parsing. These additions could have 
improved the contextual understanding of the text, 
potentially leading to better document classification. 
However, such extensions would require significantly 
more complex feature engineering and computational 
resources, which were beyond the scope of this study.

Regarding the SetFit method, three remarks can be 
made. First, training a new sentence transformer from 
scratch based on the MedRoBERTa.nl model might 
yield better results than using the arithmetic mean. 
Second, the BioLORD-2023M model is constrastively 
trained to discriminate between medical span-level 
concepts, rather than explicitly between semantic dif-
ferences. Third, we achieved performance close to the 
best-performing method using only 10% of the data. 
Therefore, this approach may be most suitable given the 
resources required for manual data labelling.

The class distribution in our dataset reflects real-
world practice, with over 75% of documents lacking 
a label for at least one characteristic, and a small per-
centage containing moderate or severe labels. While 
this distribution poses challenges for model perfor-
mance, particularly in terms of macro scores, it also 
highlights the need for models to perform well under 
realistic clinical conditions. Expanding the dataset was 
not feasible due to the extensive manual labeling pro-
cess, which already took several months. An alternative 
approach to enhance model performance could involve 
utilizing English BERT-based models on translated 
texts, as suggested by Muizelaar et al. [51].

We employed a single train/test split for our experi-
ments, which, while practical, could introduce certain 
limitations. One potential concern is the risk of overfit-
ting to the specific data in the training set, particularly 
when using handcrafted features like regular expres-
sions. This might result in models that perform well on 

the test set but may not generalize as effectively to new, 
unseen data. Ideally, a cross-validation approach would 
provide a more comprehensive evaluation by averaging 
performance across multiple splits, thereby reducing the 
variance and offering a more robust assessment of model 
performance. However, given the infeasibility of develop-
ing regular expressions for each fold, our approach repre-
sents a pragmatic balance between practical constraints 
and methodological rigor. The use of a single split also 
means that our performance estimates may be somewhat 
optimistic, as they are tied to the specific characteris-
tics of the selected test set. This is particularly relevant 
for our span classification tasks, where the performance 
varied significantly across different span types. In future 
work, incorporating cross-validation or a more extensive 
test set could help mitigate these limitations, providing a 
clearer picture of how well these models might perform 
in broader clinical applications.

Our findings suggest distinct use cases for span and 
document classification within clinical practice. Span 
classification, while adding a layer of explainability by 
highlighting specific spans that contribute to a particu-
lar label, exhibit too much variability in performance to 
be reliably used in clinical settings. This inconsistency, 
especially across different characteristics, limits its util-
ity for direct clinical application at this stage. In contrast, 
document classification demonstrated significantly bet-
ter and more consistent performance, making it a more 
viable option for integration into clinical workflows. 
This approach could be effectively used for tasks such 
as constructing patient cohorts for research or auto-
mating parts of the diagnostic pipeline. Additionally, we 
observed that reducing the number of labels significantly 
improved the performance of document classification 
models. This reduced label model might be employed 
to flag cases that require more detailed review, either by 
activating a clinician’s attention or by supporting active 
labeling in research settings, such as using Prodigy. This 
approach not only enhances model accuracy but also 
provides a practical pathway for implementing NLP tools 
in clinical environments where efficiency and precision 
are essential.

Conclusions
This study addresses the need for information retrieval 
on Dutch medical data, specifically focusing on extract-
ing span- and document-level labels from unstructured 
echocardiogram reports in Dutch. By evaluating both 
neural and statistical NLP methods, we provide a compre-
hensive baselien for structured information retrieval in a 
domain with limited pre-trained resources. Our results 
demonstrate high performance in identifying eleven car-
diac characteristics, with the SpanCategorizerachieving 
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weighted F1-scores ranging from 0.60 to 0.93 for span 
classification, and the MedRoBERTa.nl model surpassing 
a weighted F1-score of 0.96 document-level classification.

This comparison of out-of-the-box models highlights 
that MedRoBERTa.nl and SpanCategorizer are effective 
tools for document and span-level diagnosis extraction in 
the Dutch clinical context. These models, publicly avail-
able through HuggingFace, provide a practical and acces-
sible starting point for individuals aiming to implement 
NLP-based tools without extensive customization or 
hyperparameter tuning.

Future work may include validation in external insti-
tutions, ensemble modelling, or the extension to other 
cardiac characteristics. In case of a limited amount of 
data, SetFit may be a suitable alternative for document 
classification.
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