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Autopsy studies revealed that 43-31.4% of fatal strokes 
patients had ICAS [4, 5] and risk of stroke in the terri-
tory of the stenotic artery was highest with severe steno-
sis > = 70% with a hazard ratio 2.03 and a 95% confidence 
interval of 1.29 to 3.22 [6], where the risk for stroke 
increases with an inadequate mean arterial pressure 
[7]. Estimates of population prevalences for ICAS range 
considerably from 3 to 12%, likely due to differences in 
diagnostic methods and/or population samples [8–11]. 
Studies on hospital samples report a considerably higher 
prevalence of ICAS, ranging from 9 to 65% [12]. Early 
detection of stenosis is important for effective interven-
tions or treatment, but diagnosis is labor-intensive and 
requires highly-trained personnel. Automated pathol-
ogy detection using machine learning (ML) has shown 

Introduction
Intracranial atherosclerotic stenosis (ICAS) refers to a 
narrowing of intracranial arteries due to plaque buildup 
on the inside of the vessel walls restricting blood flow. 
ICAS is a risk factor for ischemic stroke [1, 2] and is 
also associated with cognitive deficits and dementia [3]. 
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Abstract
Intracranial atherosclerotic stenosis (ICAS) refers to a narrowing of intracranial arteries due to plaque buildup on the 
inside of the vessel walls restricting blood flow. Early detection of ICAS is crucial to prevent serious consequences 
such as stroke. Here we apply three different machine learning methods, such as support vector machines, 
multi-layer perceptrons and Kolmogorov-Arnold Networks to predict ICAS according to sparse risk factors from 
blood lipids and demographic data, including smoking habits, age, sex, diabetes, blood pressure lowering and 
cholesterol-lowering drugs and high-density lipoprotein. We achieved similar performance on classification 
compared to modern detection algorithms for ICAS in TOF-MRA (time-of-flight magnetic resonance angiography). 
The prevalence of ICAS in the population is relatively low, which is often case in medicine. While in the medical 
research community, the issue of low prevalence is established, machine learning-based research in medicine 
often does not take into account a critical viewpoint of the prevalence in clinical settings of their methods. We 
showed that with a balanced training/test set an accuracy up to 81% was achievable, while with the inclusion of 
prevalence, the positive predictive value was at 19% to the prevalence data, changes the performance metrics. 
Therefore, we highlighted the discrepancy that can arise between the results reported by the models and their 
clinical relevance. Furthermore, the results demonstrate the predictive potential of limited risk factors, highlighting 
its potential contribution to a multi-modular classification algorithm based on MRAs.
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promising results for related neuroradiological applica-
tions, such as aneurysms detection [13], but for detect-
ing ICAS, there has been modest progress, with only two 
published methods in the last four years [14, 15], both of 
which had insufficient performance to be a useful clinical 
tool. This discrepancy may be because the salient features 
of ICAS are more subtle than those of aneurysms.

One way of improving ML models for detecting ICAS 
is to enrich the images with relevant metadata, such as 
known risk factors for ICAS. This approach has, for 
example, improved classification for skin lesions [16] 
and cardiomegaly [17]. For this approach to succeed, the 
metadata must have predictive power to detect ICAS.

To lay the groundwork for ICAS detection methods 
that utilize both image and metadata, we explore how 
well common risk factors can predict ICAS. We test the 
performance of three different ML models for predicting 
ICAS on risk factors only. Using the recently developed 
Kolmogorov-Arnold Networks (KAN) [18] and two more 
conventional and well-established methods Support Vec-
tor Machine (SVM) and Multi-Layer-Perceptron (MLP) 
[19, 20]. We further demonstrate the importance of con-
sidering the prevalence of a condition or disease when 
reporting the classification accuracy. This is often over-
looked, but it is essential to recognize that an 80% accu-
racy with an 80% sensitivity does not directly translate to 
an 80% chance of accurate prediction for positively diag-
nosed patients. Therefore, an interpretation of the model 
without accounting for the disease prevalence does not 
inform on the real-world performance of model [21]. To 
accurately determine an individual’s likelihood of actually 
having the disease, it is important also to consider the 
positive predictive value (PPV), which depends on the 
prevalence [22]. We illustrate how considering predictive 
values alongside accuracy metrics gives a more realistic 
evaluation of predictive algorithm performance.

Materials and methods
Ethics
The study was approved by the Regional Committee of 
Medical and Health Research Ethics Northern Norway 
(619939 REK-Nord) and carried out in accordance with 
guidelines at UiT The Arctic University of Norway. All 
participants gave written informed consent before partic-
ipating in the study. The data used in the analysis can be 
obtained by contacting The Tromsø Study (tromsous@
uit.no).

Data
We used data from the 7th Tromsø study, conducted 
between 2015 and 2016 [23]. The study collected demo-
graphic and health data from citizens 40 years or older 
in the Tromsø municipality. A subset of participants were 
recruited for a more detailed followup examination as 

seen in the flow chart in Fig. 1, and of these, 1878 received 
a cerebral MRI scan in 2016–2017, which included a 
3D time-of-flight angiography sequence. In the present 
study, we used the 1847 cases graded for intracranial ste-
nosis (the 31 excluded cases were due to missing data, 
insufficient image quality, intracranial artery disease, and 
withdrawal of consent) [8]. This manual grading was con-
sidered gold standard for the predictive model [8].

Stenosis was graded using the Warfarin-Aspirin Symp-
tomatic Intracranial Disease method (WASID), expressed 
as the percentage occlusion in the stenotic artery relative 
to the proximal normal artery [24]. ICAS was defined as 
a 50% or greater degree of stenosis. For further details 
regarding the stenosis grading, we refer to [4].

Predictive model
Recognizing the imbalanced data distribution with 
around 1700 non-ICAS cases to 111 ICAS cases, we 
employed a random under-sampling technique to create 
a balanced training dataset. This under-sampled data was 
split into 80 and 20% for training and testing purposes.

The three predictive models, SVM, MLP, and KAN 
were chosen to compare a classical machine learn-
ing algorithm that focuses on maximizing the margin 
between the two classes and compare them to the con-
ventional neural network and recent advancements. The 
SVM was implemented with scikit-learn version 1.2.2 
with a linear kernel and regularization parameter (λ) of 
0.1. This was determined via a grid search hyperparam-
eter optimization. MLP with TensorFlow 2.15.0, with two 
hidden layers, 100 neurons each, with a Rectified Linear 
Unit (ReLU) activation function and one output neuron 
with a sigmoid activation function. The algorithm used 
the Adams optimizer for 50 epochs with a learning rate 
of 0.03. KAN consisted of two hidden layers with 50 neu-
rons and one output neuron and was built using a Ten-
sorFlow implementation of KAN (tfkan) from (​h​t​t​p​​s​:​/​​/​g​
i​t​​h​u​​b​.​c​​o​m​/​​Z​P​Z​h​​o​u​​-​l​a​b​/​t​f​k​a​n). KAN was run 15 epochs 
with Adams optimizer with a learning rate of 0.005.

Due to the small number of observations, five-fold 
cross-validation was used, allowing for every stenosis 
case to be trained and tested in relation to the others. 
This results in a more robust evaluation that is less biased 
towards the selection of data [25]. Furthermore, the pre-
dictive model was evaluated three times as an unders-
ampling method to account for the potentially skewed 
representation and overfitting of the non-afflicted pop-
ulation data due to the randomness of the sampling. In 
our model, we included well-established risk factors, 
that had an especially high odds ratio for ICAS age, sex, 
high-density lipoprotein (HDL) in mmol/L, cholesterol-
lowering drugs, diabetes, blood pressure-lowering drugs, 
and smoking [8, 11, 26]. Smoking, diabetes, blood pres-
sure medication and cholesterol lowering drugs were 

https://github.com/ZPZhou-lab/tfkan
https://github.com/ZPZhou-lab/tfkan
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categorized as ”never”, ”previous”, and ”current”. Initial 
testing included blood pressure, but it was dropped due 
to the fact that the blood pressure medicine was a good 
indicator for blood pressure-related issues. We made the 
assumption that blood pressure and cholesterol-lower-
ing drugs indicated a long exposure to the relevant risk 
factors. This long exposure is known to increase cardio-
vascular risk [27]. Blood pressure was used in an initial 
model, but resulted in a strong inequality between sen-
sitivity and specificity and the reported risk factors gave 
the highest accuracy in the predictive models. The cor-
relation matrix with all risk factors can be seen in the 
Supplementary material.

Evaluation
The metrics used for the evaluation of the predictive 
models were sensitivity [28],

	
Sensitivity = TP

TP + FN

specificity,

	
Specificity = TN

FP + TN

and accuracy,

Fig. 1  Flow chart of the selection of subjects from the seventh Tromsø study
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Accuracy = TP + TN

TP + TN + FP + FN

where TP stands for true positive, TN for true negative, 
FP for false positive, and FN for false negative. The pre-
dictive values can be calculated through Bayes theorem 
depending on accuracy and prevalence [22],

	
PPV = PREV · SENS

PREV · SENS + (1 − PREV ) · (1 − SPEC)

and

	
NPV = (1 − PREV ) · SPEC

(1 − PREV ) · SPEC + PREV · (1 − SENS)

where PREV stands for prevalence, SENS for sensitivity, 
and SPEC for specificity.

Results
The prevalence of ICAS in the population sample was 6%. 
Compared to the participants without ICAS, the ICAS 
group had a greater percentage of males, were older, 
more often hypertensive and diabetic, had higher BMI, 
and lower levels of HDL cholesterol (Table 1).

Model performance
The SVM, MLPs, and KAN models had a mean test accu-
racy of 78, 81, and 78%, with a specificity of 67, 76, and 
74% and sensitivity of 89, 89, and 83%, respectively, as 
seen in Fig. 2. The difference between the MLP and KAN/
SVM in accuracy is 3.0 percentage points. The algorithms 
were performed three independent times in succes-
sion. While under-sampling introduces a risk of features 
being over-represented due to randomness, our findings 
indicate a consistent distribution across the predictor 
space in all three instances of the random sampling. The 
detailed confusion matrix is presented in Fig. 3 and the 

histogram of predictions can be seen in the Supplemen-
tary material.

In Table 2, the positive and negative predictive values 
for the MLP model are 19% and 99%, respectively. While 
the sensitivity of 89% would indicate a high positive pre-
dictive value, the prevalence of 0.06 has a drastic impact 
on the predictive values. Assuming a prevalence of 50%, 
specificity and sensitivity have an equal impact on patient 
outcomes as predictive values.

In Fig. 4 the PPV value is plotted with respect to sen-
sitivity and specificity, which are set to be equal while 
maintaining a constant prevalence. The prevalence for 
the blue line reflects the population data in this study of 
0.06, and the red line is the prevalence of ICAS for elderly 
Japanese men [29].

In the figure, it is evident that to attain an 80% cer-
tainty of correctly diagnosing a patient as positive, both 
sensitivity and specificity would have to be at least 95%. 
Although Fig. 4 is strictly only valid for the present study, 
similar trends hold for all clinical diagnostic methods 
where the disease prevalence is low.

Discussion
Our main findings are twofold. First, we show that with 
basic clinical and demographic data, it is possible to 
achieve higher classification accuracy for ICAS than 
state-of-the-art detection algorithms using expensive 
imaging techniques. The limitation, of course, is that our 
method is unable to locate the stenosis. The high clas-
sification accuracy demonstrates the potential for using 
clinical data to enrich image data to further increase 
ICAS detection accuracy. Second, we demonstrate that 
the real-world accuracy of a classification algorithm is 
highly dependent on a disease’s prevalence.

Our results coincide with the promises of [18], where 
they introduce the idea that KANs perform with half the 
size and faster. The best performing model the MLP-
based predictive model, has a test accuracy of 81.0% 

Table 1  Demographics and clinical data for pariticpants diagnosed with and without ICAS.
Variables NO ICAS N = 1736 ICAS N = 111 p-value
Age 63.30 (10.53) 72.42(7.49) < 0.001
Male sex, n (%) 797 (46%) 69 (62%) < 0.001
Diastolic blood pressure, mmHg 75.08 (9.92) 76.15 (9.30) 0.2
Systolic blood pressure, mmHg 133.21 (20.50) 145.71 (20.51) < 0.001
Serum LDL cholesterol, mmol/L 3.58 (1.01) 3.47(1.09) 0.3
Serum HDL cholesterol, mmol/L 1.64 (0.51) 1.45 (0.36) < 0.001
Body mass index, kg/m2 27.04 (4.17) 28.15 (3.92) 0.001
Current smoker, Yes/No/Previous 218/650/850 18/38/55 0.5
Blood pressure lowering drugs, Yes/No/Previous 501/1160/50 60/42/7 < 0.001
Cholesterol lowering drugs, Yes/No/Previous 367/1252/75 57/47/5 < 0.001
Diabetes, Yes/No/Previous 89/1582/6 15/92/1 0.001
Abbreviations: low-density lipoprotein (LDL), high-density lipoprotein (HDL).  Missing measurements (percentage relative to total): diastolic blood pressure 5 (0.3%), 
systolic blood pressure 4 (0.2%), serum LDL cholesterol 7 (0.4%), serum HDL cholesterol 7 (0.4%), body mass index 1 (0.1%), current smoker 18 (1.0%), blood pressure 
lowering drugs 27 (1.5%), cholesterol lowering drug 44 (2.4%), diabetes 62 (3.4%)
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Fig. 3  Confusion matrices representing the performance of Support Vector Machine (SVM), MultiLayer Perceptron (MLP), and K-Adaptive Neurons (KAN) 
models. Each matrix illustrates the classification results with actual labels on the y-axis and predicted labels on the x-axis. The numbers in each cell indicate 
the count of instances classified accordingly. Shades of blue represent the intensity of correct classifications, with darker shades indicating higher counts. 
The SVM, MLP, and KAN models are depicted in the first, second, and third matrices, respectively

 

Fig. 2  Comparison of performance metrics among Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and K-Adaptive Neurons (KAN) models. 
Performance metrics are train and test accuracy, sensitivity, and specificity for each model trained on random sampling states, the averages are given in 
black
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with a specificity of 76% and sensitivity of 89% by using 
a limited set of clinical and demographic data. In com-
parison, state of the art TOF-MRI based intracranial 
stenosis detection has a sensitivity for intracranial ste-
nosis of 60.4% with a positive predictive value of 79.34%, 
dis-including absence segments of the Circle of Willis in 
the paper, where the ground truth is derived by manual 
inspections of the TOF-MRA by radiologists [14]. This 
illustrates that current pure TOF-MRI detection algo-
rithms are not able to contribute to a clinical tool for clas-
sifying ICAS. By combining risk factors as well as images 
the algorithm obtains more diverse relevant data, which 
should result in a higher predictive power.

Furthermore, for a more advanced model, which may 
even evaluate the severity and risk factor of the ICAS 
without the need to image based data, Interleukin-6 and 
Lipoprotein-associated phospholipase A2 would allow 
the model a deeper understanding of ICAS and the 
causes of stroke [30, 31].

Second, despite our model exhibiting an 89% sensitiv-
ity, the PPV remains notably low at 19%. This prompts 
a critical examination of the actual impact of scientific 
predictive models, particularly those designed for low-
prevalence conditions. An illustrative counterexample is 
the manual detection of intracranial stenosis [32]. The 
authors center their investigation on the detection within 
arterial segments, a distinction that complicates a direct 
comparison with patient testing methodologies. Despite 
this disparity, the study meticulously reports its find-
ings, incorporating the respective prevalence rates. The 
inclusion of these prevalence rates in medical research 
serves to clarify the direct benefit to the patient. While 
the impact of disease prevalence on the accuracy of a 
diagnostic test has long been recognized in medicine 

Table 2  Positive predictive value (PPV) and negative preditive 
value (NPV) for the three models
Model PPV (%) NPV (%) F1-score (%)
SVM 13 99 76
MLP 19 99 80
KAN 17 99 78

Fig. 4  The positive predictive value (PPV) in terms of sensitivity and specificity in decimal representation. Both the values on the x-axis are set equal and 
portray the accuracy. The green line is how most models train on balanced data with a prevalence of 0.5
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[33], this is to the best of our knowledge often neglected 
in papers that introduce predictive deep learning meth-
ods in medicine. Nonetheless, the prevalence of predic-
tive models is not always the population data, but it could 
involve only patients, who have already some severe risk 
factors and therefore it can be difficult to quantify the 
actual prevalence for some predictive models. While 
many AI models have the potential to positively impact 
healthcare, it is crucial to align the research with patients’ 
interests, as emphasized in [22]. The PPV value gives the 
direct response to the patient how likely the diagnosis is 
correct. In cases of low prevalence, this accuracy level 
can significantly influence the PPV and, consequently, 
the relevance to patients, as illustrated in Fig.  4. There-
fore, the predictive metrics need to be considered care-
fully, when applying this method. It could be used in a 
pre-screening to evaluate the risk before considering an 
image-based analysis or use it in a multi modular deep 
learning method.

This discussion aims not to discourage the utilization of 
AI, especially with the introduction of innovative archi-
tectures as demonstrated in [34], which represent crucial 
steps towards a future of more fully automated medical 
applications. However, it serves as a call for the research 
community to provide a broader context when introduc-
ing predictive models for medical benefits.

Future work
Further work in predictive models for detecting intra-
cranial stenosis should be according to the way clinicians 
conduct diagnosis by considering data from multiple 
sources to reach a conclusion. Therefore, the classifica-
tion and detection of MRA should be based on multi 
modular deep learning methods to leverage all the data 
for highest diagnostic performance. To realize this, a pos-
sibility is to merge the feature space of the images with 
the demographic data via multi head attention layers.

Strengths and limitations
Our predictive model used simple demographic data and 
blood lipids to determine ICAS and achieved higher clas-
sification results compared to detection algorithms[14]. 
While detection algorithms use costly TOF-MRAs, 
which need extensive time and money. Nonetheless, the 
model was limited on classification, and it was not pos-
sible to detect or conclude the severity of the intracranial 
stenosis. Furthermore, due to the low prevalence of the 
condition, the PPV value was too low for the model to 
have clinical relevance.

Conclusion
In summary, our investigation has demonstrated that 
the incorporation of risk factors derived from clinical 
and demographic data yields a predictive accuracy of 

81%, surpassing the classification of current TOF-MRA 
detection algorithms [14]. If the demographic data has 
low correlation with the images, adding this information 
should enhance the accuracy of an image-based classifi-
cation algorithm. Furthermore, the clinical relevance of 
this accuracy is questionable, as evidenced by a low posi-
tive predictive value (PPV) of 19%. Emphasizing the sig-
nificance of prevalence as a case study, we underscore the 
importance of considering this parameter for assessing 
clinical relevance, particularly in light of prevalent trends 
in medical predictive model publications that predomi-
nantly focus on reporting accuracy alone [35–37].

Supplementary Information
The online version contains supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​1​8​6​​/​s​​1​2​9​1​1​-​0​2​5​-​0​2​8​9​6​-​x.

Supplementary Material 1

Acknowledgements
We express our gratitude to the participants of the Tromsø Study, the Tromsø 
Study administration, the Department of Radiology at the University Hospital 
North Norway.

Author contributions
Conceptualization: Luca Bernecker; Datacuration: Liv-Hege Johnsen, Torgil 
Riise Vangberg; Formal analysis: Luca Bernecker; Funding acquisition: Torgil 
Riise Vangberg; Investigation: Luca Bernecker; Methodology: Luca Bernecker; 
Project administration: Torgil Riise Vangberg; Resources: Torgil Riise Vangberg; 
Software: Luca Bernecker; Supervision: Torgil Riise Vangberg; Validation: Liv-
Hege Johnsen, Torgil Riise Vangberg; Visualization: Luca Bernecker; Writing– 
original draft: Luca Bernecker, Torgil Riise Vangberg; Writing– review & editing: 
Luca Bernecker, Liv-Hege Johnsen, Torgil Riise Vangberg.

Funding
Open access funding provided by UiT The Arctic University of Norway (incl 
University Hospital of North Norway)
This work was supported by two Helse Nord project grants HNF1675-23 
and SFP1271–16. The funding source had no role in the study design, data 
collection, analysis, interpretation of data, and the decision to submit the 
article for publication.

Data availability
The data used in the analysis is not freely available, but may be obtained via 
an application to the Tromsø Study (tromsous@uit.no).

Declarations

Ethics approval and consent to participate
This study was approved by the Regional Committee for Medical and Health 
Research Ethics, North Norway (REK NORD 619939). All participants provided 
informed consent before their inclusion in the study. The study adheres to the 
tenets of the Declaration of Helsinki.

Consent for publication
Not Applicable.

Competing interests
The authors declare no competing interests.

Clinical trial number
Not applicable.

Received: 11 December 2024 / Accepted: 28 January 2025

https://doi.org/10.1186/s12911-025-02896-x
https://doi.org/10.1186/s12911-025-02896-x


Page 8 of 8Bernecker et al. BMC Medical Informatics and Decision Making           (2025) 25:95 

References
1.	 Holmstedt CA, Turan TN, Chimowitz MI. Atherosclerotic intracranial 

arterial stenosis: risk factors, diagnosis, and treatment. Lancet Neurol. 
2013;12(11):1106–14.

2.	 Pearson AC, Nagelhout D, Castello R, Gomez CR, Labovitz AJ. Atrial septal 
aneurysm and stroke: a transesophageal echocardiographic study. J Am Coll 
Cardiol. 1991;18(5):1223–9.

3.	 Dearborn JL, Zhang Y, Qiao Y, Suri MFK, Liu L, Gottesman RF, Rawlings AM, 
Mosley TH, Alonso A, Knopman DS, Guallar E. Wasserman, B.A.: Intracranial 
atherosclerosis and dementia. Neurology 88(16) (2017).

4.	 Mazighi M, et al. Autopsy prevalence of intracranial atherosclerosis in patients 
with fatal stroke. Stroke. 2008;39(4):1142–7.

5.	 Leung S, Yi et al. Pattern of cerebral atherosclerosis in Hong Kong Chinese. 
Severity in intracranial and extracranial vessels. Stroke 24.6 (1993): 779–786.

6.	 Kasner SE, Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg 
VS, Frankel MR, Levine SR, Chaturvedi S, Benesch CG, Sila CA, Jovin TG, 
Romano JG, Cloft HJ. Warfarin Aspirin Symptomatic Intracranial Disease Trial 
investigators. Predictors of ischemic stroke in the territory of a symptomatic 
intracranial arterial stenosis. Circulation. 2006;113(4):555–63. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​
0​.​​1​1​6​1​​/​C​​I​R​C​​U​L​A​​T​I​O​N​​A​H​​A​.​1​0​5​.​5​7​8​2​2​9. Epub 2006 Jan 23. PMID: 16432056.

7.	 Chen Z et al. Hemodynamic Impairment of Blood Pressure and Stroke 
Mechanisms in Symptomatic Intracranial Atherosclerotic Stenosis. Stroke 
(2024).

8.	 Johnsen L-H, Herder M, Vangberg T, Isaksen JG, Mathiesen EB. Prevalence 
of intracranial artery stenosis in a general population using 3d-time 
of flight magnetic resonance angiography. J Stroke Cerebrovasc Dis. 
2023;32(12):107399.

9.	 L´opez-Cancio E, Dorado L, Mill´an M, Revert´e S, Sun˜ol A, Massuet A, Gal´an 
A, Alzamora MT, Pera G, Tor´an P, D´avalos A, Arenillas JF. The Barcelona-
Asymptomatic Intracranial atherosclerosis (AsIA) study: prevalence and risk 
factors. Atherosclerosis. 2012;221(1):221–5. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​a​t​​h​e​r​​o​s​c​l​​
e​r​​o​s​i​s​.​2​0​1​1​.​1​2​.​0​2​0.

10.	 Sun Q, Wang Q, Wang X, Ji X, Sang S, Shao S, Zhao Y, Xiang Y, Xue Y, Li J, 
Wang G, Lv M, Xue F, Qiu C, Du Y. Prevalence and cardiovascular risk factors 
of asymptomatic intracranial arterial stenosis: the Kongcun Town Study in 
Shandong, China. Eur J Neurol. 2020;27(4):729–35. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​1​1​​/​e​​n​
e​.​1​4​1​4​4.

11.	 Suri MFK, Johnston SC. Epidemiology of intracranial stenosis. J Neuroimaging. 
2009;19(1). ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​1​1​​/​j​​.​1​5​​5​2​-​​6​5​6​9​​.​2​​0​0​9​.​0​0​4​1​5​.​x.

12.	 Gutierrez J, Turan TN, Hoh BL, Chimowitz MI. Intracranial atherosclerotic ste-
nosis: risk factors, diagnosis, and treatment. Lancet Neurol. 2022;21(4):355–68.

13.	 Din M, Agarwal S, Grzeda M, Wood DA, Modat M, Booth TC. Detection of 
cerebral aneurysms using artificial intelligence: a systematic review and 
meta-analysis. J NeuroInterventional Surg. 2023;15(3):262–71. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​
1​0​.​​1​1​3​6​​/​j​​n​i​s​-​2​0​2​2​-​0​1​9​4​5​6. Chap. New devices and techniques.

14.	 Qiu J, Tan G, Lin Y, Guan J, Dai Z, Wang F, Zhuang C, Wilman AH, Huang H, Cao 
Z, et al. Automated detection of intracranial artery stenosis and occlusion in 
magnetic resonance angiography: a preliminary study based on deep learn-
ing. Magn Reson Imaging. 2022;94:105–11.

15.	 Chung H, Kang KM, Al-Masni MA, Sohn C-H, Nam Y, Ryu K, Kim D-H. Ste-
nosis detection from time-of-flight magnetic resonance angiography via 
deep learning 3d squeeze and excitation residual networks. IEEE Access. 
2020;8:43325–35.

16.	 Pacheco AGC, Krohling RA. An attention-based mechanism to combine 
images and Metadata in Deep Learning models Applied to skin Cancer clas-
sification. IEEE J Biomedical Health Inf. 2021;25(9):3554–63. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​
1​1​0​9​​/​J​​B​H​I​.​2​0​2​1​.​3​0​6​2​0​0​2.

17.	 Grant D, Papiez˙ BW, Parsons G, Tarassenko L, Mahdi A. Deep learning classifi-
cation of Cardiomegaly using combined imaging and non-imaging ICU data. 
In: Papiez˙ BW, Yaqub M, Jiao J, Namburete AIL, Noble JA, editors. Medical 
image understanding and analysis.???: Springer; 2021. pp. 547–58. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​
o​​r​g​/​​1​0​.​​1​0​0​7​​/​9​​7​8​-​​3​-​0​​3​0​-​8​​0​4​​3​2​-​9​4​0.

18.	 Liu Z, Wang Y, Vaidya S, Ruehle F, Halverson J, Soljaˇci´c M, Hou TY, Tegmark M. 
Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756 (2024).

19.	 Meyer D, Wien F. Support vector machines. R News. 2001;1(3):23–6.
20.	 Riedmiller M, Lernen A. Multi layer perceptron. Machine Learning Lab Special 

lecture. Univ Freiburg 24 (2014).
21.	 Grimes DA, Schulz KF. Uses and abuses of screening tests. Lancet. 

2002;359(9309):881–4.
22.	 Guggenmoos-Holzmann I, Houwelingen HC. The (in) validity of sensitivity 

and specificity. Stat Med. 2000;19(13):1783–92.
23.	 Hopstock LA, Grimsgaard S, Johansen H, Kanstad K, Wilsgaard T, Eggen AE. 

The seventh survey of the tromsø study (tromsø7) 2015–2016: study design, 
data collection, attendance, and prevalence of risk factors and disease in 
a multipurpose population-based health survey. Scand J Public Health. 
2022;50(7):919–29.

24.	 Samuels OB, Joseph GJ, Lynn MJ, Smith HA, Chimowitz MI. A standard-
ized method for measuring intracranial arterial stenosis. Am J Neuroradiol. 
2000;21(4):643–6. Accessed 2024-03-04.

25.	 Berrar D et al. Cross-validation. (2019). ​h​t​t​p​:​​​/​​/​b​e​r​r​a​​​r​.​c​​o​​m​/​​r​e​s​o​​u​r​​c​​e​s​/​B​e​r​r​a​r 
EBCB 2nd edition Cross-validation preprint.pdf.

26.	 Turan TN, Makki AA, Tsappidi S, Cotsonis G, Lynn MJ, Cloft HJ, Chimowitz 
MI. Risk factors associated with severity and location of intracranial arterial 
stenosis. Stroke. 2010;41(8):1636–40.

27.	 Chen Z, et al. Effects of individual and integrated cumulative burden of blood 
pressure, glucose, low-density lipoprotein cholesterol, and C-reactive protein 
on cardiovascular risk. Eur J Prev Cardiol. 2022;29(1):127–35.

28.	 Shreffler J, Huecker MR. Diagnostic testing accuracy: Sensitivity, specificity, 
predictive values and likelihood ratios. Europe PMC (2020).

29.	 Shitara S, Fujiyoshi A, Hisamatsu T, Torii S, Suzuki S, Ito T, Arima H, Shiino A, 
Nozaki K, Miura K, et al. Intracranial artery stenosis and its association with 
conventional risk factors in a general population of Japanese men. Stroke. 
2019;50(10):2967–9.

30.	 Choi C, Lee D, Lee J, Pyun H, Kang D, Kwon S, Kim J, Kim S, Suh D. Detection 
of intracranial atherosclerotic steno-occlusive disease with 3d time-offlight 
magnetic resonance angiography with sensitivity encoding at 3t. Am J 
Neuroradiol. 2007;28(3):439–46.

31.	 Mo J, et al. Lipoprotein-associated phospholipase A2 activity levels is associ-
ated with artery to artery embolism in symptomatic intracranial atheroscle-
rotic disease. J Stroke Cerebrovasc Dis. 2024;33(11):108012.

32.	 Mo J, et al. Association between Interleukin-6 and multiple Acute infarctions 
in symptomatic intracranial atherosclerotic disease. Curr Neurovasc Res. 
2024;21(3):292–9.

33.	 Buderer NMF. Statistical methodology: I. incorporating the prevalence of 
disease into the sample size calculation for sensitivity and specificity. Acad 
Emerg Med. 1996;3(9):895–900.

34.	 Jang J, Hwang D. M3t: three-dimensional medical image classifier using 
multiplane and multi-slice transformer. In: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp. 20718–20729 
(2022).

35.	 Assiri AS, Nazir S, Velastin SA. Breast tumor classification using an ensemble 
machine learning method. J Imaging. 2020;6(6):39.

36.	 Amin J, Sharif M, Haldorai A, Yasmin M, Nayak RS. Brain tumor detection and 
classification using machine learning: a comprehensive survey. Complex 
Intell Syst. 2022;8(4):3161–83.

37.	 Kigka VI, Sakellarios AI, Mantzaris MD, Tsakanikas VD, Potsika VT, Palombo D, 
Montecucco F, Fotiadis DI. A machine learning model for the identification of 
high risk carotid atherosclerotic plaques. In: 2021 43rd Annual International 
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 
pp. 2266–2269 (2021). IEEE.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1161/CIRCULATIONAHA.105.578229
https://doi.org/10.1161/CIRCULATIONAHA.105.578229
https://doi.org/10.1016/j.atherosclerosis.2011.12.020
https://doi.org/10.1016/j.atherosclerosis.2011.12.020
https://doi.org/10.1111/ene.14144
https://doi.org/10.1111/ene.14144
https://doi.org/10.1111/j.1552-6569.2009.00415.x
https://doi.org/10.1136/jnis-2022-019456
https://doi.org/10.1136/jnis-2022-019456
https://doi.org/10.1109/JBHI.2021.3062002
https://doi.org/10.1109/JBHI.2021.3062002
https://doi.org/10.1007/978-3-030-80432-940
https://doi.org/10.1007/978-3-030-80432-940
http://berrar.com/resources/Berrar

	﻿Intracranial stenosis prediction using a small set of risk factors in the Tromsø Study
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Ethics
	﻿Data
	﻿Predictive model
	﻿Evaluation

	﻿Results
	﻿Model performance

	﻿Discussion
	﻿Future work
	﻿Strengths and limitations

	﻿Conclusion
	﻿References


