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Abstract
Background The principles of urgency, utility, and benefit are fundamental concepts guiding the ethical and 
practical decision-making process for organ allocation; however, LT allocation still follows an urgency model.

Aim To identify and analyze data elements used in Machine Learning (ML) and Artificial Intelligence (AI) methods, 
data sources, and their focus on urgency, utility, or benefit in LT.

Methods A comprehensive search across Ovid Medline and Scopus was conducted for studies published from 2002 
to June 2023. Inclusion criteria targeted quantitative studies using ML/AI for candidates, donors, or recipients. Two 
reviewers assessed eligibility and extracted data, following PRISMA guidelines.

Results A total of 20 papers were included, synthesizing results into five major categories. Eight studies were led by 
a Spanish team, focusing on donor-recipient matching and proposing machine learning models to predict post- LT 
survival. Other international studies addressed organ supply-demand issues and developed predictive models to 
optimize LT outcomes. The studies highlight the potential of ML/AI to enhance LT allocation and outcomes. Despite 
advancements, limitations included the lack of robust transplant-related benefit models and improvements in 
urgency models compared to MELD.

Discussion This review highlighted the potential of AI and ML to enhance liver transplant allocation and outcomes. 
Significant advancements were noted, but limitations such as the need for better urgency models and the absence 
of a transplant-related benefit model remain. Most studies emphasized utility, focusing on survival outcomes. Future 
research should address the interpretability and generalizability of these models to improve organ allocation and 
post-LT survival predictions.
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Introduction
Liver transplantation (LT) is the therapeutic, life-saving 
intervention of choice for most patients with end-stage 
liver disease. The evolving landscape of healthcare has 
seen an increasing adoption of machine learning (ML) 
- including Artificial Intelligence (AI) - techniques, to 
enhance decision-making processes [1–5]. However, 
LT is a complex procedure influenced by numerous fac-
tors, including recipient and donor characteristics, organ 
availability, logistics, and surgical considerations, and 
translation of this complexity into computational solu-
tions to improve outcomes is a challenge [2, 6]. To add 
to that complexity, ethical and practical aspects of organ 
allocation and transplantation need to be considered 
in policy and practice. For instance, several AI and ML 
techniques have been applied to organ allocation, each 
with its strengths and weaknesses. While these methods 
have demonstrated promise in various studies, no single 
approach has yet emerged as the clear leader in the field 
neither being clinically implemented.

The principles of urgency, utility, and benefit are fun-
damental concepts guiding the ethical and practical 
decision-making process for organ allocation, while aim-
ing to avoid futility [7–9]. These principles are rooted 
in the ethical framework guiding public trust and integ-
rity in organ donation and transplantation globally [10]. 
Various transplant stakeholders, including policymakers 
under the Organ Procurement and Transplant Network 
(OPTN) [11–13] have developed allocation policies 
aiming to balance these principles and ensure a fair and 
equitable distribution of organs. Several studies have 
articulated the need for advances in this field intended 
to move from an urgency model to a transplant-related 
survival benefit model [7, 14]; however, operationalizing 
this concept in such a way that would maximize the over-
all survival of all patients in need (considering both those 
who are waiting and those undergoing transplantation) 
has been a critical challenge still to be solved.

The current model in place (i.e., MELD 3.0) is pri-
marily governed by the principle of urgency in which 
the sickest patients have priority for transplantation. 
This allocation strategy does not consider post-LT sur-
vival (principle of utility). The ideal model would use 
the principle of survival benefit from the starting point 
of an intention to transplant, i.e., it would maximize the 
overall survival of all patients from the point of LT list-
ing taking into account the highest LT-related survival 
benefit [7, 13–17]. Although attempts have been made 
toward achieving such a benefit model [8, 15, 18], no 
model has been adopted due to important limitations, 
such as imprecision of survival benefit results and omit-
ting other LT outcomes and risk factors [8, 14, 15, 18, 19]. 
Limitations of prior models are likely a result of limited 
patient-centric and longitudinal data used in previous 

studies; thus, preventing from capturing patient disease 
variability beyond MELDNa. Further, these models fail 
in showing how, and if, waitlist interventions have a sig-
nificant impact on transplantation outcomes, and if suc-
cessful, how such benefit-based model can balance these 
principles.

With the increasing volume of data generated in 
healthcare since the inception of electronic health 
records (EHR) [20, 21], specifically considering multi-
source clinical data currently available for research, 
ML has emerged as a powerful tool to extract valuable 
insights and support personalized decision-making pro-
cesses. Due to its nature of handling large amount of data 
and its interactions, ML models also have the potential 
to aid in models capable of optimizing organ allocation, 
predicting patient outcomes, and identifying novel risk 
factors while addressing important principles and clini-
cal problems. Such resulting models would align with the 
ethical considerations inherent in organ allocation and 
transplantation decision-making, and move organ alloca-
tion and transplantation to a new scientific paradigm, i.e., 
a LT-related survival benefit model.

This study aimed to identify and analyze the data ele-
ments utilized in ML studies that specifically capture the 
complexity of candidates, organs and logistics factors 
impacting the principles of urgency, utility, and benefit in 
the context of liver transplantation. Specifically, we aimed 
to identify the ML methods applied, data source and fea-
tures included in each model, and whether they targeted 
the principle of urgency, utility, or benefit. A comprehen-
sive understanding of the current state of these studies is 
essential to understand existing gaps, and build the foun-
dational knowledge needed to advance the field consider-
ing the current computational resources available toward 
a transplant-related survival benefit model.

Materials and methods
Search strategy
A comprehensive search was conducted across Ovid 
Medline and Scopus databases using the keywords 
“machine learning,” “artificial intelligence,” OR “algo-
rithm,” OR “deep learning,” “neural network,” OR “super-
vised learning,” AND “transplant*,” OR “donat*,” OR 
“donor*,” AND “liver*. Search was performed in July 2023, 
for papers published from 2002 through June 2023 in any 
language. Due to the overall aim of this review, and that 
the expected search strategy would result in the inclusion 
of observational studies, this review was not registered 
under a protocol for systematic reviews.

Eligibility criteria
Inclusion criteria encompassed quantitative studies using 
data from the MELD era (i.e., since the introduction of 
the MELD scoring system in 2002, the ‘MELD era’), 
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peer-reviewed papers, applied a ML/AI technique, where 
the population of study was waitlisted liver candidates, 
donated liver organs, liver donors, and/or liver recipients. 
To be included, studies should have applied ML/AI tech-
niques using input data up to the time of the liver trans-
plant procedure, i.e., risk factors should have considered 
just up to the point when the recipient-donated organ 
match decision-making is made. The outcome of inter-
est was whether models targeted urgency (i.e., predicting 
waitlist mortality), utility (i.e., predicting post-transplant 
survival), or benefit (i.e., predicting transplant-related 
survival benefit) for patients and/or grafts. Duplicated 
studies were excluded. To keep homogeneity of the 
included studies, papers were excluded if included popu-
lation younger than 18 years old, combined transplanta-
tion other than liver and kidney, case reports, opinion 
papers, reviews, and reply letters. Reference lists from 
reviews were revised for any additional paper that could 
have been missed using the search strategy.

Selection and data Collection
All titles and abstracts were screened for meeting inclu-
sion criteria. Those papers not meeting inclusion crite-
ria were excluded and the reason for exclusion recorded. 
Papers where the inclusion criteria could not be deter-
mined by reviewing title and abstract, full text were 
reviewed. Two independent reviewers assessed the eli-
gibility of studies and extracted relevant data from each 
included paper. Any disagreement and/or not clarity on 
whether a paper met the criteria for inclusion was further 
discussed between the two reviewers.

The data collection tool included: authors’ names, 
year of publication, journal, country, aim (problem and 
proposed solution), experimental design, model archi-
tecture, methodological contribution if any, baseline 
models for comparison, data preprocessing, sample size, 
single or multi-site, type and number of variables (recipi-
ent, donor, logistic, other), input data selection, predic-
tion target, maximization goal (urgency, utility, benefit), 
imputation techniques, evaluation metrics, data source 
(registry, EHR, other), type of data sampling (longitu-
dinal, cross-sectional), data availability (public or not), 
code availability, model accuracy, high level results, and 
notes and/or comments.

Risk of bias assessment
The risk of bias for each included study aimed to deter-
mine the rigor of the reported research, specifically 
considering ML and AI-based models, based on multi-
disciplinary guidelines [22] Each study was assessed for 
whether there was a clear reporting of the cohort build-
ing, data sources and/or settings, including inclusion and 
exclusion criteria. Included studies were further evalu-
ated about clarity on the prediction problem definition, 

data preparation techniques, and whether included vari-
ables and missingness were reported. Reported model 
design and results were evaluated for clarity around 
input and output features, reported number of posi-
tive and negative cases, performing metrics, and models 
validation approaches, such as internal and/or external 
validation.

Data synthesis and reporting
The Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines [23] were fol-
lowed to ensure transparency and rigor in the review 
process (Fig. 1). Results were grouped into five major cat-
egories based on the objectives of this review: (1) over-
all goal and description of the included manuscripts; 
(2) data sources; (3) data elements or features; (4) Prin-
ciple and maximization goals; and (5) ML/AI modeling 
approach. Each category were evaluated based on the risk 
of bias before mentioned specific for that category.

Results
A total of 20 papers were included in this review 
(Table  1). We present the synthesized results into five 
major categories. We further synthesize several papers 
from a single team (the Spanish team) into one major 
group of manuscripts, as they capture different stages of 
the same overall project, and synthesizing together would 
better capture the coverage and relevance of the project.

Overall goal and description of the included papers
The majority of the included papers had the overarching 
goal of proposing better models to address the challenge 
of matching donors and recipients, the current failure 
of successfully predicting post-LT survival at the time of 
the procedure, and how best to use resources available to 
decrease adverse outcomes considering the imbalanced 
low supply in front of the high demand for organs.

Out of the 20 included papers, eight of these studies 
were originally conducted and/or collaborated with a 
Spanish team [24–31]. Initially, between 2011 and 2014, 
internally in Spain, the team devised a model that illu-
minates the intricacies of donor-recipient matching in 
liver transplantation [24, 25, 27, 28]. The model lever-
ages Multi-Objective Evolutionary Algorithms, diverse 
selection techniques, and ML models, underscoring the 
potential of these methodologies to enhance organ allo-
cation systems. Starting in 2017, their work spanned from 
Spain to the UK [29, 30], tackling prolonged transplanta-
tion waiting times as a result of the donor shortages by 
introducing a ML-based donor-recipient allocation sys-
tem predicting post-LT survival. Simultaneously, they 
criticize the prevalent reliance on MELD in the current 
LT allocation system, advocating for a more efficient 
decision-support model to enhance organ allocation [30]. 
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Doing that, they note the absence of a scoring system 
capable of integrating the urgency of a transplant candi-
date with the optimal survival benefit among potential 
candidates. The authors advocate for the implementation 
of advanced machine learning techniques to enhance the 
accuracy of organ allocation predictions [31]. Also from 
Spain, another team [32] addresses the pressing chal-
lenges of insufficient organ donors and inadequate organ 
allocation. They propose that incorporating additional 
features and long-term predictions can reveal the impact 
of various risk factors on both short- and long-term out-
comes post-LT.

Worldwide, teams have been investigating how to pro-
pose better models to improve organ supply and demand 
issues. A Canadian and Swiss team [33] proposed to 
identify the absence of a currently calibrated model for 
assessing LT outcomes, developing a calibrated model 
specifically designed to predict post-LT survival for Pri-
mary Sclerosing Cholangitis (PSC). In Australia, a study 
[34] underscores the scarcity of tools to predict graft fail-
ure or primary nonfunction at the time of LT decision-
making. The same study introduces an index leveraging 
donor and recipient factors to predict graft failure. In the 
US, studies [35, 36] address the challenges posed by the 
shortage of organs and the scarcity of optimal donors 
for successful transplantation. They propose a predictive 

model for post-LT patient survival rates, aiming to sup-
port clinical decisions to optimize organ-recipient allo-
cations considering the critical issue of organ demand 
surpassing supply, leading to patient fatalities while 
awaiting transplantation. The papers emphasize the 
importance of a predictive model for post-LT survival to 
prevent transplantation in cases with unacceptably low 
probabilities of post-LT survival.

Specifically, for Hepatocarcinoma (HCC) patients, a 
US study [37] addresses the persistent challenge of accu-
rately predicting LT outcomes for this specific population 
by introducing a prediction model for waitlist dropout 
among LT candidates with HCC. Similarly, a team from 
the Netherlands [38] developed a model to predict post-
LT survival and assert that ML holds the potential to 
surpass existing methods in survival prediction. A team 
from South Korea [39] highlights the shortcomings in 
existing predictive models for post-LT survival. They 
undertake a comparison between traditional statistical 
models and machine learning approaches to enhance the 
accuracy of predicting survival post-LT.

In Germany, a study [40] acknowledges the existence 
of several models for predicting post-LT survival, yet 
none achieve near-perfect accuracy in such a way that 
can provide better performance than clinical judgment. 
They advocate for the application of deep learning, 

Fig. 1 PRISMA flowchart diagram for the proposed review
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asserting that it can yield more precise predictions for 
overall survival post-LT. Similar to the Spanish group, 
an Iranian team highlights the insufficiency of MELD as 
a criterion for LT allocation [41]. They propose the use 
of a hybrid artificial neural network (ANN) to develop a 
decision support system aimed at enhancing LT priori-
tization. A team from India [42] emphasizes the lack of 
a clear understanding of risk factors predicting post- LT 
survival. They advocate for a ML approach to establish a 
more effective model for predicting survival post-LT.

An international team from Canada, the US, the 
Netherlands, and the UK [43] recently highlighted the 
uncertainty surrounding the potential performance and 
transferability of prediction models using registry data. 
They utilize data from three national registries to develop 
ML models predicting 90-day mortality post-LT within 
and across countries.

Data sources and management
The Spanish group [24–28] gathered multicentric data 
from 11 centers in Spain, capturing two years of longitu-
dinal data, which accounted for the inclusion of 1003 LTs. 
However, the source of the data, whether it was derived 
from EHR or a Registry, was not clear. When collaborat-
ing with the UK [29, 30] they assembled data from King’s 
College Hospital in the UK, covering the period of eight 
years and building 858 donor-recipient pairs. They fur-
ther combined with the data from the seven centers from 
Spain, which included 634 LT patients over two years, 
resulting in a dataset of 1406 donor-recipient pairs.

Among the national registries, the Scientific Regis-
try for Transplant Recipients (SRTR) data is a com-
mon source for studies in transplantation in the US and 
elsewhere [31, 33, 35, 36, 38]. One specific study [43] 
gathered data from three different registries: the Cana-
dian Organ Replacement Registry (CORR, Canada), 
the National Health Service Blood and Transplantation 
(NHSBT, UK), and the United Network for Organ Shar-
ing (UNOS, US).

Sample sizes vary depending on the timeframe and the 
inclusion criteria, ranging mostly from a couple thou-
sand to a hundred thousand. Single center registries and/
or EHR seem to be the source for some studies; however, 
studies lack clarity on the different data sources and pro-
cessing. With very few exceptions, there are very few 
or no details reporting data management and measures 
for data quality control across the papers. Some studies 
report how they transformed variables to categorical, 
combined others, calculated scores, but with no further 
details on the preprocessing steps and how inherent chal-
lenges in data management were solved. Data missing-
ness and imputation methods were seldom reported, and 
when reported in a few cases, lacked clarity. However, a 
few papers provided further details on missingness and 

methods for imputation, adding to the importance of 
handling the inherent problem of data quality in second-
ary use of data and to the rigor of the proposed approach 
[38, 42].

Considering the data sources mainly being from reg-
istries and the methodologies employed, most of the 
studies used data as a cross-section; i.e., as a snapshot in 
a specific time point. Only one study used longitudinal 
data to capture risk factor change over time [27], where 
one of the features, MELD, was treated as a range differ-
ence between listing and operative scores. However, none 
of the included studies used time-dependent risk factors, 
associated interventions, or their progression as a source 
of capturing disease trajectories and/or patient dete-
rioration while on the waitlist. Besides risk factors, tar-
get outcomes were often considered longitudinally over 
time; however, most of the times graft and patient sur-
vival were treated as a binary outcome at different time-
windows (e.g., 1-month, 3-month), not as a time-to-event 
outcome.

Data elements/features included
Most of the papers included a large number of recipi-
ent, donor, and operative (including logistics and/or 
from extraction to implant factors) features. Four papers 
included just recipients’ data. One paper [35] didn’t 
report how many features were included; restricting their 
report to stating that recipient, donor, and operative vari-
ables were included. The number of input features ranged 
from a couple dozen to hundreds.

Specifically for recipient features, the most often 
included were demographics, indication for LT, the pres-
ence and/or absence of comorbidities, dialysis, medica-
tions, MELD score, having HCC or not, and exception 
points conditions. Some studies included Intensive Care 
Unit stay at the time of LT, being on mechanical ventila-
tion and laboratory values other than the ones for MELD 
score calculation. Functional status, socio-economic, 
and insurance factors were seldom included. With the 
exception of MELD that was used once as the difference 
between value at listing and at the time of LT, none of the 
input variables incorporated time-dependent variation or 
acuity level, and risk factors were considered as present 
or absent.

Donor and donated organs characteristics were mostly 
captured as demographics, cause of death, use of insulin 
and vasopressors, and the absence or presence of certain 
disease and comorbidities. Socio-behavioral factors such 
as smoking, and drugs use were included in a few studies. 
Serology results were often incorporated, as well as labo-
ratories values.

Logistical features covered a broad range of informa-
tion. Organ related features were often included, such 
as preservation solution, cold and warm ischemia time, 
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and whole and/or split donation. Organ procurement 
information, i.e., donation after circulatory death (DCD) 
versus brain death (DBD) were seldom included [28] 
Considering the current advances in the organ preserva-
tion, none of the included studies considered procure-
ment type, i.e., normothermic regional perfusion (NRP) 
versus super-rapid recovery (SRR), as an input feature. 
Some studies included compatibility between donated 
organ and recipient information, such as blood type, gen-
der, and Human Leucocyte Antigen (HLA) mismatch.

Some studies incorporated previous developed scores 
into their models as input feature or as a comparison 
metric, such as the Donor Risk Index (DRI), the Survival 
Outcomes Following Liver Transplantation (SOFT), the 
Predict-SOFT (P-SOFT), Delta-MELD (D-MELD), and 
the Balance of Risk Score (BAR).

Principles and maximization goals
Papers address the donor-recipient matching challenge 
mostly by predicting different post-LT survival outcomes. 
These studies address the principle of utility by using 
recipient and donated organ features at the time of LT 
to predict graft and/or recipient survival post-LT. The 
majority adopted a classification task, designating the 
outcome as a binary of graft/recipient survival or non-
survival, at varying time windows post-LT. These time 
windows mostly include 3-months graft survival [25], 
12-months graft survival [24] and 1-year graft survival 
[26]. Recipient survival is considered in a similar fashion, 
at 4-months, 1-, 3-, 5-, and 10-years post-LT [33, 36]. One 
recent study used the precise time of graft failure imple-
menting a time-dependent ML technique [35], the only 
study that considered the outcome as a time-to-event 
feature. One paper considered the outcome of in-hospital 
recipient mortality [40].

The principle of urgency, in an attempt to develop a 
better model than the current MELD, aiming at maximiz-
ing waitlist survival, was the target of two papers. These 
studies evaluated candidate mortality within 2-years of 
waitlist time [41] and waitlist dropout at different time 
windows 3-, 6-, and 12-months from waitlist time [37]. 
None of the included papers provided transplant-related 
survival benefit models, considering a model capable of 
maximizing survival post-LT while minimizing mortality 
on the waitlist.

Among the studies included, several have demon-
strated noteworthy successes, specifically in better 
urgency models. For example, ML was used to improve 
organ matching [17, 18, 20, 22], some models achieving 
significant performance (C-Index > 0.84) in transplant 
success rates. Thus, these studies demonstrated that 
AI-based models incorporating donor-recipient fea-
tures significantly reduced organ wastage. These studies 

underscore the transformative potential of AI in enhanc-
ing decision-making processes in organ allocation.

Machine learning and artificial intelligence approaches
In the included papers, several different ML techniques 
and some optimizations were employed to improve over-
all models’ performance when predicting pre- and post-
LT outcomes.

Studies employed diverse data imputation techniques, 
feature selection methods, and validation strategies. 
Some studies didn’t report any imputation approach for 
missing values; thus, not being able to evaluate whether 
there were missing values or not, and if present, how 
they were addressed [24]. Mean imputation was a com-
mon approach in a few paper [25, 27], some with a more 
simplistic approach while others with a more advanced 
technique, such as when imputing values below 1% with 
mean and polynomial regression for values exceeding 1% 
[25]. A study [40] proposed a novel approach -Multidi-
mensional Medical Combined Imputation (MMCI) algo-
rithm - to address the challenge of missing values.

Feature selection methods varied among studies, 
with random forest being a common choice. One study 
[32] employed a wrapped method that integrated logis-
tic regression with binary particle swarm optimization 
(BPSO) algorithm showing a better performance than 
other features selection methods; while achieving the 
same performance as if the completed dataset were used.

For validation, most of the papers adopted internal 
validation. Some studies employed a 75% training set 
and 25% testing set split [24, 27] while others reported 
80 − 20% split [25] Train-test splitting strategies ranged 
from 67 − 27 bootstrap sampling [34] to 90 − 10 cross-
validation [27]. Cross-validation was employed by using 
a stratified n-fold validation, while combining differ-
ent strategies (e.g., cost-sensitive and oversampling) for 
imbalanced data [29, 30].

The included papers covered a limited range of ML 
methods, with almost the majority adopting a supervised 
learning. One paper employed semi-supervised learn-
ing [29] to address the problem of imbalanced datasets, 
as is the case of LT data, which was the concern of sev-
eral studies [29, 30, 37]. The main techniques were out-
of-the-shelf or modified Random Forest (RF) [32, 38, 42], 
and Artificial Neural Network (ANN) [24, 27, 28, 30, 39, 
42]. The Spanish team introduced the Memetic-Pareto 
Differential Evolutionary Neural Network (MPDENN) 
[24, 25, 27, 28] and utilized to train various neural net-
work models, such as generalized radial basis functions 
and radial Bessel function neural networks. These mod-
els demonstrated competitive performance across mul-
tiple metrics, including accuracy, root mean square error 
(RMSE), minimum sensitivity, and area under the curve 
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(AUC) showing methodological contribution, specifi-
cally, for transplant research.

Most of the papers used several techniques to com-
pare performance results. These comparison techniques 
included both traditional and non-traditional techniques 
to solve clinical problems, such as linear and multiple 
regression, Cox hazards, LASSO, Ridge, ElasticNet, 
LightGBM [28, 33, 34] The broad coverage of model-
ing techniques utilized across papers shows the amount 
of efforts teams are making in an attempt to solve the 
donor-recipient matching problem and provide bet-
ter solutions that can add to decision-making. From the 
application of a single specific technique to the combina-
tion of several techniques to a specific problem, the way 
investigators incorporated these techniques is outstand-
ing, from feature selection to evaluation techniques.

The included papers acknowledged various limita-
tions. Some limitations included the retrospective nature 
of data collection, the need for larger and more diverse 
datasets, and the inherent challenges in predicting out-
comes in the dynamic field of LT. The lack of a clear 
understanding of the risk factors for post-LT survival, 
the potential biases in using registry data, and the uncer-
tainty in predicting long-term outcomes were also recog-
nized as limitations in several papers. Another limitation 
is the inclusion of features commonly found in national 
registries; thus, lacking patient variability and other social 
determinants of health, specifically with the increased 
evidence that these factors are associated with processes 
of care and outcomes. The heterogeneity in data sources, 
patient populations, and transplant practices posed chal-
lenges in standardizing prediction models across studies.

Discussion
This review intended to synthesize and analyze data ele-
ments utilized in ML/AI papers that specifically capture 
the complexity of candidates, organs and logistics fac-
tors impacting the principles of urgency, utility, and ben-
efit in the context of LT. Despite the advancements and 
successes of these techniques in predicting various LT-
related outcomes, and the wide array of data elements 
incorporated into models, several common limitations 
were observed, such as the lack of studies successfully 
developing a truly transplant-related benefit model, and 
very few proposing a better urgency model with poten-
tial to outperform, clinically and statistically, the current 
MELD score.

Most of the studies addressed the principle of util-
ity, likely due to the high emphasis on survival as an 
outcome, the lack of other metrics to evaluate trans-
plantation success, and the fact that predicting post-LT 
outcomes with higher accuracy at the time of LT is still a 
challenge to be solved. However, transplantation research 
has been incorporating additional metrics to examine 

other forms of transplant benefit, such as quality of life, 
life of years saved and hospital-free days post-transplan-
tation [44–47].

Overall, the included papers provide valuable con-
tributions into the application of ML/AI techniques for 
improving the prediction of LT-related outcomes, spe-
cifically looking into input features and models results; 
however, the interpretability and generalizability of 
these models remain important considerations for future 
research [48, 49]. Another major finding, and consider-
ing the current state of explainable AI on developing 
unbiased and fair models [1, 48], no study reported how 
their models addressed or mitigated those concerns. 
Additionally, external validation was seldom used, and 
comparison with baseline models were not consistently 
performed across all studies, limiting the generalizability 
of the results [3, 50].

Key findings varied across papers, but generally 
emphasized the need for advanced prediction models to 
enhance organ allocation, improve post-LT survival pre-
dictions, and address challenges such as organ shortages 
and prolonged waitlist times. ML/AI, specifically deep 
learning, approaches were frequently used and recom-
mended for their potential to provide more accurate and 
individualized predictions. While the limitations of AI 
and ML in organ allocation were found significant, the 
successes reported in various studies indicate the trans-
formative potential of these technologies. For example, 
AI has shown promise in improving the accuracy of 
donor-recipient matching, reducing organ wastage, and 
potentially extending transplant survival rates. Future 
work should focus on scaling these successful models, 
addressing current barriers, and integrating them into 
clinical practice.

Several papers identified common challenges in the 
field of LT prediction models. These challenges included 
the scarcity of effective prediction tools, the critical issue 
of organ demand surpassing supply, and the need for 
more precise and personalized predictions. Organ short-
ages, prolonged waitlist times, and the complex nature 
of donor-recipient matching were recurring themes 
across papers. However, important confounders were not 
included, such as transplant center effects [51, 52]. The 
studies underscored the limitations of traditional sta-
tistical models and the potential benefits of incorporat-
ing advanced ML techniques, specifically for its ability 
to handle complex interactions as the ones found in the 
donor-recipient matching problem [3]. The heterogeneity 
of data sources, the complexity of feature selection, and 
the uncertainty surrounding prediction model perfor-
mances were also acknowledged as challenges.

This review is limited to the included papers and the 
studies’ results reported. As this review intended to 
capture large studies using ML and covered a wide time 
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window, included papers used a retrospective approach, 
which is usually the case in current ML applications. 
However, several efforts are in place to move for more 
prospective studies where implementation science can 
be incorporated to address some of the problems raised 
in this review, such as the lack of transferability, exter-
nal validation, and additional measures to evaluate 
transplantation success. It is clear that, with very few 
exceptions, ML in LT studies have been primarily using 
registry data, which lacks granularity and fails to capture 
longitudinal variations that are time-dependent and a few 
studies have shown to highly impact LT outcomes [53, 
54]. The heterogeneity in data sources ranging from sin-
gle centers, countries to multi-centers with different data 
sources, patient sub-populations, and different transplant 
practices poses a constant challenge in analyzing trans-
plant data and harmonizing different datasets for predic-
tion models.

This review poses a foundational knowledge for future 
studies. As many included papers pointed out, research 
in LT using ML faces several challenges, sometimes 
inherent to the data and others to the modeling approach. 
Despite numerous AI/ML models being applied to organ 
allocation, no one model has proven consistently supe-
rior across studies. While methods like Random Forests 
(RF) and XGBoost (XGB) have frequently demonstrated 
strong predictive power, their success appears to depend 
heavily on the dataset and specific objectives of the study. 
Neural networks, particularly deep learning models, have 
also shown promise but struggle with interpretability 
and require large amounts of high-quality data. Overall, 
it is clear that the field is still in a stage of exploration, 
and further research is needed to establish which tech-
niques will prove most effective for long-term success in 
clinical settings. While some models show more promise 
than others, a consensus on the best-performing model 
has yet to emerge, indicating that more work is required 
to identify the most reliable and scalable approaches for 
organ allocation.

New strategies should consider the development and 
validation of more sophisticated ML models, the explo-
ration of novel features and data sources, and the inte-
gration of additional clinical information to improve 
prediction accuracy, specifically targeting the inclusion 
of individual variability into models. Addressing the chal-
lenges of organ shortages and prolonged waitlist times 
through advanced allocation systems is also still to be 
solved, and although ML can provide better allocation 
systems, it will not solve the shortage of organs directly. 
It may be that a better allocation system would be able 
to provide enough evidence to expand donor criteria and 
show that some recipients would have LT-related survival 
benefit even if organs not currently considered trans-
plantable are transplanted in the future. Moreover, it may 

be able to identify the optimal procurement technique 
for DCD donors and the optimal storage strategy (i.e., 
cold storage versus machine perfusion) for all donors that 
will optimize utilization of specific organs or donor types 
[55–57]. This could drive allocation to specify what pro-
curement technique or storage strategy should be used 
for each donor to optimize utilization potential.

The need for collaborative efforts across centers, stan-
dardized and automatized data collection and harmo-
nization, and external validation of prediction models 
across different regions and populations are key impor-
tant considerations for future research in the field. We 
acknowledge that the application of ML models to organ 
allocation and post-transplant outcomes carries ethi-
cal considerations, particularly around the potential for 
algorithmic bias. To address this, various techniques 
to ensure fairness, such as fairness metrics and model 
interpretability tools, should be incorporated. These safe-
guards help prevent discrimination based on factors like 
age, sex, and geographical location, and allow clinicians 
to make more transparent and informed decisions. How-
ever, we also recognize that further work is needed to 
ensure that ML models are continuously monitored for 
bias and that their use in clinical practice is aligned with 
ethical standards.

Further, considering the current advances in donor 
procurement and organ preservation, new strategies to 
move from data silos to large and integrated multiple 
data sources capturing the several stakeholders and fac-
tors impacting the donor-recipient matching problem 
are still needed. It may be that in the new future, multiple 
efforts can be made to combine longitudinal recipient 
data (e.g., EHR), donor-organ-procurement characteris-
tics, transplant and patient-centered socio-geographical 
characteristics, and novel metrics that could better cap-
ture transplantation success from a system and patient 
perspective; thus, providing the premises for the devel-
opment and implementation of a successful transplant-
related benefit model.

Solutions and future directions
This review identifies significant limitations in the cur-
rent use of ML/AI for liver transplantation, particularly 
the lack of granularity in registry data and the challenges 
in improving upon existing models. The current MELD 
score primarily prioritizes patients based on the severity 
of their liver disease (urgency). This approach does not 
adequately consider post-transplant survival (utility) or 
the overall survival benefit (benefit) derived from trans-
plantation, neither both concepts together. To develop 
a benefit model that maximizes the overall survival of 
all patients in need, several steps can be taken, such as 
incorporating advanced ML techniques, such as rein-
forcement learning and generative adversarial networks, 
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as well as causal AI could not just enhance model perfor-
mance by better capturing the complexity of liver trans-
plantation processes, but develop causal model where 
the causal effect of transplantation could be estimated. 
Additionally, leveraging explainable AI methods could 
improve the transparency and interpretability of these 
models, making them more acceptable to clinicians.

Moreover, integrating more granular data sources, 
including patient-generated health data, longitudi-
nal clinical data derived directly from electronic health 
records, real-time monitoring, and multi-omics data, 
could provide a more comprehensive view of patient 
health and disease progression. This integration would 
allow for more accurate and personalized predictions. 
This review also support to establishing collaborative 
frameworks to combine data from multiple centers, thus 
increasing the robustness and generalizability of the 
models.

Limitations of this review We acknowledge that this 
review may have missed important papers due to its 
search strategy, as not-ML papers addressing LT-related 
survival benefit. This review didn’t include data from 
patients younger than 18 to prevent bias, and doing so, the 
review may have missed important ML methodological 
contributions in the field, if pediatric LT was considered.

Conclusions
Overall, the review provides a comprehensive review of 
recent research efforts in the development and improve-
ment of LT ML models, shedding light on the data ele-
ments/features used as input data, modeling techniques, 
key findings, challenges, and potential future direc-
tions. The integration of advanced ML techniques and 
the emphasis on personalized and precise predictions, 
where models can capture the individual variability of 
patients over time, underscore the evolving landscape 
of LT research, and the need to develop better models 
that are patient-centric and account for better metrics 
of transplantation success in addition to survival. These 
findings of our review point towards several avenues for 
innovation that could substantially shift current practices 
in liver transplantation. By proposing the use of advanced 
machine learning techniques and integrating more gran-
ular data sources, we aim to enhance the precision and 
personalization of liver transplantation decisions.
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