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Abstract
Background  There is no effective way to accurately predict paroxysmal and persistent atrial fibrillation (AF) subtypes 
unless electrocardiogram (ECG) observation is obtained. We aim to develop a predictive model using a machine 
learning algorithm for identification of paroxysmal and persistent AF, and investigate the influencing factors.

Methods  We collected demographic data, medication use, serological indicators, and baseline cardiac ultrasound 
data of all included subjects, totaling 50 variables. The diagnosis of AF subtypes is confirmed by ECG observation 
for at least more than 7 days. Variable selection was performed by spearman correlation analysis, recursive feature 
elimination, and least absolute shrinkage and selection operator regression. We built a prediction model for AF 
using three machine learning methods. Finally, the significance of each variable was analyzed by Shapley additive 
explanations method.

Results  After screening, we found the optimal variable set consisting of 10 variables. The model we built achieved 
good predictive performance (AUC = 0.870, 95%CI 0.858 to 0.882), and had specificity of 0.851 (95%CI 0.844 to 0.858) 
and sensitivity of 0.716 (95%CI 0.676 to 0.755). Good predictive performance was stably achieved in different age 
subgroups and different gender subgroups. LA and NT-proBNP were the two most important variables for predicting 
paroxysmal and persistent AF in all models, except for the female subgroup aged less than 60 years.

Conclusions  Our model makes it possible to predict paroxysmal and persistent AF based on baseline data at 
admission. Early and individualized intervention strategies based on our model may help to improve clinical 
outcomes in AF patients.
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Background
Atrial fibrillation (AF) is the most common persistent 
cardiac arrhythmia, and its incidence and prevalence are 
increasing worldwide [1, 2]. More than 50 million people 
worldwide were affected by AF in 2020, and the preva-
lence is expected to continue to rise in the future [3, 4]. 
Therefore, AF, as a major public health issue, has become 
a huge burden on social and economic development. And 
this puts forward new requirements for early screening 
and intervention of AF.

The recent US 2023 Atrial Fibrillation Diagnosis and 
Management Guidelines divide AF into four stages, 
including At Risk for AF, Pre-AF, AF, and Permanent 
AF [4]. The first stage (At Risk for AF) and the second 
stage (Pre-AF) were first proposed in the guidelines. 
While enhanced monitoring is recommended in the sec-
ond stage of AF (Pre-AF), and treatment symptoms are 
needed for the third stage (AF) and the fourth stage of 
AF (Permanent AF) according to the latest version of 
the diagnosis and treatment guidelines for AF [5]. Since 
current clinical studies have not obtained a positive cor-
relation between opportunistic screening for AF and 
increased detection rates of AF [6, 7], screening for the 
first and second stages is not necessary. The fourth stage 
of AF in the guidelines refers to permanent AF, and no 
subtype prediction is required. Therefore, the predic-
tion of the third stage of AF is more meaningful. The 
third stage of AF is further divided into Paroxysmal AF 
(AF that is intermittent and terminates within ≤ 7d of 
onset), Persistent AF (AF that is continuous and sus-
tains for > 7d and requires intervention), Long-standing 
persistent AF (AF that is continuous for > 12 months in 
duration), and Successful AF ablation (Freedom from 
AF after percutaneous or surgical intervention to elimi-
nate AF) [4]. Among them, paroxysmal and persistent AF 
patients account for the majority of outpatient AF types 
in China, accounting for 38.9% and 39.2% respectively 
[8]. The research conducted on these two subtypes of AF 
is of great significance in the actual clinical application 
scenarios in China. The treatment strategies for the four 
subtypes of stage 3 AF are also different, especially in 
paroxysmal AF and persistent AF [4, 5]. It is similar to the 
European guidelines, where catheter ablation is graded as 
Class I and Class IIb in the management of paroxysmal 
AF and persistent AF, respectively [9, 10]. Therefore, the 
prediction for these two subtypes is more meaningful.

A recent review showed that the theoretical burden of 
AF in patients with non-paroxysmal AF and spontane-
ous regression is almost 100% [11] Occasional regression 
of AF results in an estimated burden of AF of 70–100% 
in patients with persistent AF [12]. Nevertheless, the 
burden of AF in persistent AF is about 10 times higher 
than that in paroxysmal AF. The risk of stroke in patients 
with persistent or permanent AF is also higher than 

that in patients with paroxysmal AF [13, 14]. The result 
shows that yearly ischemic stroke rates were 2.1% and 
3.0% for paroxysmal and persistent AF, respectively [5]. 
Early identify the type of AF (paroxysmal or persistent) 
in patients with a new diagnosis of AF is of great sig-
nificance for the staged management of AF. In the 2024 
EHRA guidelines, it specifically emphasize the need to 
recognize the common misclassification between par-
oxysmal AF and persistent AF in clinical work [10]. The 
2024 ESC guidelines also emphasize that paroxysmal AF 
and persistent AF are not easy to distinguish [9]. There-
fore, more strategies are needed to predict paroxysmal 
and persistent AF.

Machine learning (ML) is an important artificial intel-
ligence method that uses complex algorithms to discover 
potential patterns in some massive data sets [15]. With 
the increasing acceptance of clinicians, ML has been 
applied to many clinical medical fields including car-
diovascular and cerebrovascular diseases [16, 17]. We 
included all patients with a first diagnosis of AF but lack 
of specific type and collected their baseline data. Since 
the diagnosis of paroxysmal and persistent AF requires at 
least 7 days of observation, we excluded patients with a 
hospital stay of less than 7 days. We used ML methods to 
build a model to predict the diagnosis of AF at discharge 
(Fig. 1-a). We can not only screen out variables that are 
highly correlated with the clinical classification of AF but 
also provide an application basis for predicting paroxys-
mal or persistent AF.

Methods
Patient enrolment and data collection
We enrolled participants with the inclusion criteria: (1) 
Patients hospitalized in Sun Yat-sen Memorial Hospi-
tal from January 2013 to January 2023. (2) Patients with 
examination records confirming the presence of AF 
rhythm in the past or during hospitalization (such as 
surface electrocardiogram, 24-hour dynamic electro-
cardiogram, and pacemaker memory record). All the 
patients had a first diagnosis of AF with an unknown spe-
cific type. (3) Patients with a discharge diagnosis of atrial 
fibrillation and the subtype is paroxysmal or persistent. 
The discharge diagnosis code starts with I48 (AF) and the 
subtype is I48.x02 (paroxysmal AF) or I48.x00 × 007 (per-
sistent AF), according to the diagnosis code of the 10th 
edition of the International Classification of Diseases 
(ICD-10). Paroxysmal AF is defined as AF that can ter-
minate spontaneously or after intervention within 7 days. 
Persistent AF is defined as AF that lasts for more than 
7 days and requires medication or electrical cardiover-
sion to terminate the attack. (4) Detailed medical history 
information.

Our exclusion criteria include (1) Patients with rheu-
matic heart disease, congenital heart disease, primary 
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Fig. 1  Central illustration and flow chart of the study design. This figure contains the central illustration and the flow chart. Figure 1-a is a summary of 
the entire research, explaining the input variables and output results in the model, and the clinical significance of our study. Figure 1-b is the flow chart 
of this study. After enrolled all the patients matched inclusion criteria, we did the screening according to the exclusion criteria and finally included 1,600 
participants
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valvular heart disease, cardiomyopathy, pericardial dis-
ease, cor pulmonale, malignant tumors, or recent major 
surgical history; (2) Patients with other systemic diseases 
that may affect cardiac structure and function, such as 
acute myocardial infarction, hyperthyroidism, hypo-
thyroidism, amyloidosis, pheochromocytoma, systemic 
lupus erythematosus, or severe infection; (3) Patients 
with severe liver dysfunction: alanine aminotransfer-
ase > 3 times the upper limit of normal and (alanine ami-
notransferase/aspartate aminotransferase) ratio > 1; (5) 
Patients with severe renal dysfunction: estimated glomer-
ular filtration rate < 30  ml/min·1.73m2. (6) Patients with 
severe lack of clinical data, which refers to patients who 
lack more than half of the variable results or lack records 
of cardiac ultrasound examination results.

The methods complied with the ethical principles of 
the Declaration of Helsinki. This study was reviewed 
and approved by the Ethics Committees of the Sun 
Yat-sen Memorial Hospital of Sun Yat-sen University 
(SYSKY-2024-004-01).

Selection of variables
We performed correlation analysis on all recorded vari-
ables, and all the variables are detailed in Supplemen-
tary Table 1. By using Spearman correlation analysis, we 
preliminarily screened variables with a strong correla-
tion with a diagnosis of AF stage. Among them, p < 0.001 
was considered a statistically significant difference. Sub-
sequently, we performed the least absolute shrinkage 
and selection operator (LASSO) regression correlation 
analysis and GradientBoost Recursive Feature Elimina-
tion (RFE) on this basis to complete feature screening. 
By combining these two methods, we can comprehen-
sively and accurately evaluate the importance of vari-
ables, providing strong support for subsequent model 
construction.

We collected demographic data, medication use, sero-
logical indicators, and baseline cardiac ultrasound data of 
all included subjects, totaling 50 variables. Since the diag-
nosis of AF subtypes must rely on ECG, we collected the 
patients’ ECG diagnosis results. But we did not use any 
parameters in the ECG as input variables of the model. 
After screening, we finally included 10 variables that 
can be divided into three categories: demographic data, 
cardiac ultrasound, and serological indicators. All data 
were collected from electronic health records (EHR). 
Demographic data included systolic blood pressure (SBP) 
and diastolic blood pressure (DBP). Echocardiographic 
parameters included left atrial diameter (LA), left ven-
tricular end-diastolic diameter (LVDd), aortic valve 
flow velocity (AV), and left ventricular ejection fraction 
(LVEF). These indicators were analyzed by routine trans-
thoracic echocardiography (TTE) performed by a certi-
fied cardiologist at baseline and collected from the EHR. 

Serological parameters included hemoglobin (Hb), N-ter-
minal pro-brain natriuretic peptide (NT-proBNP), uric 
acid (UA), and the ratio of low-density lipoprotein cho-
lesterol to high-density lipoprotein cholesterol (LDL-C/
HDL-C). All serological indicators were obtained from 
the peripheral blood sample collected for the first time at 
baseline.

Machine learning algorithms
In this investigation, alongside traditional statistical anal-
yses, we conducted experiments utilizing three widely 
employed gradient boosting machine algorithms: Ada-
Boost, GradientBoost, and XGBoost. Each algorithm 
showcased distinctive strengths, contributing valuable 
diversity to our study. AdaBoost, short for Adaptive 
Boosting, is a pioneering algorithm in the boosting family 
that combines multiple weak learners, typically decision 
trees, to create a strong classifier The key principle of 
AdaBoost is to iteratively adjust the weights of misclas-
sified instances, enabling the model to focus on difficult 
cases in subsequent iterations [18]. GradientBoost, a clas-
sical gradient boosting algorithm, excels when dealing 
with high-dimensional sparse datasets. It iteratively mini-
mizes the loss function by training decision trees, effec-
tively managing various complex nonlinear relationships 
[19]. XGBoost, an efficient algorithm rooted in gradient 
boosting trees, is lauded for its outstanding performance 
and scalability. Leveraging parallel processing enhances 
training speed and efficiently handles large-scale datas-
ets [20]. Employing a range of machine learning models 
enabled us to comprehensively assess their performance 
on our datasets, providing insights into which models 
excel in addressing specific problems. We conducted 
experiments using five-fold cross-validation to compre-
hensively evaluate their performance on the dataset.

SHAP interpretable analysis for machine learning
SHAP (SHapley Additive exPlanations) [21] stands as an 
interpretable method grounded in game theory, facilitat-
ing a nuanced understanding of each feature’s contribu-
tion to the model’s output. By quantifying the impact 
of individual features, SHAP empowers us to discern 
which features play pivotal roles in driving variations in 
the model’s output. This interpretative capability aids 
researchers in identifying crucial features, leading to a 
more profound understanding of patterns and regulari-
ties within the data. Through the application of SHAP 
analysis, we were able to visualize the contribution of 
variables to the model’s predictive results, thereby high-
lighting the key features of the model with clarity and 
precision.
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Statistical analysis
The Kolmogorov-Smirnov test was used to assess the 
normality of the distribution of continuous variables; 
normal variables were presented as mean ± standard devi-
ation (SD), while nonnormal variables were presented as 
median and interquartile range (IQR). Categorical vari-
ables were presented as frequency and percentage. The 
receiver operating characteristic (ROC) curve and the 
area under the ROC curve (AUC) were used to measure 
the discriminative ability of the ML model for predict-
ing paroxysmal and persistent AF. Further analysis was 
performed to examine the predictive ability of the ML 
model. The analysis included sensitivity (SEN), specific-
ity (SPE), accuracy (ACC), precision (PRE), recall, and F1 
score. Displays restricted cubic spline (RCS) curves with 
4 knots to test nonlinear relationships between inde-
pendent variables and outcomes [22, 23]. SPSS Statistics 
Version 26.0 and Python 3.7.6 software were used for sta-
tistical analysis and graphics, and p < 0.05 was considered 
statistically significant.

Results
Baseline characteristics of participants
According to the strict inclusion and exclusion criteria, 
1600 patients at Sun Yat-sen Memorial Hospital of Sun 
Yat-sen University were enrolled as research subjects. 
Among them, there were 1,020 cases of paroxysmal AF 
and 580 cases of persistent AF. The baseline data of the 
recruits included in this study are shown in Table 1. By 
comparing the baseline data between the paroxysmal 
AF and persistent AF groups, it can be found that the 
differences exist in gender, DBP, Hb, UA, NT-proBNP, 
LA, LVDd, AV, and LVEF (p < 0.05). The male propor-
tion, DBP, Hb, UA, NT-proBNP, and LA in the persistent 
AF group were higher than those in the paroxysmal AF 

group. There was no statistically significant difference in 
SBP and LDL-C/HDL-C between the two groups.

Variable selection results
We further used Spearman correlation analysis (p < 0.001) 
to screen out variables with a strong correlation with the 
type of AF diagnosis. For these variables, we used Gra-
dientBoost-RFE and LASSO for dimensionality reduc-
tion. In the LASSO dimensionality reduction method, 
when the number of included variables was 32, the high-
est AUC value could be obtained (Fig.  2-a). Similarly, 
after dimensionality reduction using the RFE method, 
we retained 12 variables to obtain the best performance 
(Fig.  2-b). Then we took the intersection of these two 
parts of variables and determined 10 variables that were 
finally included in the model (Fig.  2-c). The correlation 
between the final included variables and the subtypes of 
AF was plotted using a heat map (Fig. 2-d).

Results of the AF prediction model
After incorporating 10 variables, we used three methods 
(GradientBoost, AdaBoost, and XGBoost) to build mod-
els. The outputs of the models were the patient’s atrial 
fibrillation subtype (specifically paroxysmal or persistent 
AF) after a hospitalization of more than 7 days, which 
was compared with the diagnosis recorded in the EHR at 
the time of final discharge. By comparing the evaluation 
indicators, we found that the model established in this 
study had good performance, whether in AUC, PRE, SEN, 
or SPE (as shown in Table 2). Among the three machine 
learning methods used in modeling, GradientBoost per-
formed well in most indicators. Specifically, in the AUC 
indicator, GradientBoost achieved the best value [0.870, 
95% confidence interval (CI): 0.858 to 0.882]. AdaBoost 
and XGBoost were 0.858 (95% CI: 0.836 to 0.877) and 

Table 1  Comparison of general information among paroxysmal and persistent AF
Variables Total (n = 1600) Paroxysmal AF (n = 1020) Persistent AF (n = 580) p-value
Gender (n, %) 0.021*
Male (%) 944 (59.0%) 580 (56.9%) 364 (62.8%)
Female (%) 656 (41.00) 440 (43.14) 216 (37.24)
SBP (mmHg) 127 (116, 142) 128 (116, 143) 126 (115, 140) 0.362
DBP (mmHg) 78 (71, 85) 77 (70, 84) 80 (72, 88) < 0.001*
LDL-C/HDL-C 2.52 (1.94, 3.20) 2.52 (1.95, 3.25) 2.51 (1.93, 3.12) 0.431
Hb (g/L) 135 (123, 147) 133 (120, 144) 139 (126, 150) < 0.001*
UA (µmol/L) 391 (321, 468) 374 (306, 444) 431 (352, 510) < 0.001*
NT-proBNP (pg/ml) 471 (129, 1192) 245 (75, 788) 899 (472, 1582) < 0.001*
LA (mm) 38 (35, 43) 36 (33, 39) 43 (39, 46) 0.031*
LVDd (mm) 48 (45, 51) 48 (45, 51) 48 (45, 52) 0.013*
AV (cm/s) 129 (110, 152) 133 (115, 156) 121 (103, 143) < 0.001*
LVEF (%) 66 (61, 70) 67 (63, 71) 63 (59, 68) < 0.001*
Values are presented as n (%) as appropriate or the median [interquartile range (IQR)]. AF, Atrial fibrillation; AV, Aortic opening flow velocity; DBP, Diastolic blood 
pressure; SBP, Systolic blood pressure; Hb, Hemoglobin; HDL-C, High density lipoprotein cholesterol; LA, Left atrial diameter; LDL-C, Low density lipoprotein 
cholesterol; LVDd, Left ventricular end-diastolic diameter; LVEF, Left ventricular ejection fraction; NT-proBNP, N-terminal brain natriuretic peptide precursor; UA, 
Uric acid
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0.859 (95% CI: 0.849 to 0.872), respectively. The ROC of 
the AF subtypes prediction model constructed using all 
participants is shown in Fig. 3-a. The best parameter for 
evaluating our algorithm in daily clinical practice is pre-
cision (positive predictive value). For this indicator, the 
results of GradientBoost, AdaBoost, and XGBoost were 
0.730, 0.727, and 0.701, respectively. In terms of predic-
tion accuracy, GradientBoost outperformed AdaBoost 
and XGBoost. The results were 0.801(95%CI: 0.775 to 

0.821), 0.796(95%CI: 0.785 to 0.817), and 0.782 (95%CI: 
0.764 to 0.802), respectively. We have a high SPE with the 
best AdaBoost algorithm is 0.851 (95% CI: 0.844–0.858). 
As for the SEN, the best value of 0.716 (95%CI: 0.676 to 
0.755) is found in the GradientBoost method.

Interpretation of binary classification model
Since it is difficult for clinicians to accept a prediction 
model that cannot be directly explained and interpreted, 

Table 2  Results of model output indicators in all participants
Model ACC (95%CI) Precision Recall AUC (95%CI) F1 Score (95%CI) SEN (95%CI) SPE (95%CI)
GradientBoost 0.801 (0.775–0.821) 0.730 0.716 0.870 (0.858–0.882) 0.722 (0.686–0.754) 0.716 (0.676–0.755) 0.849 (0.816–0.872)
AdaBoost 0.796 (0.785–0.817) 0.727 0.700 0.858 (0.836–0.877) 0.713 (0.694–0.747) 0.700 (0.673–0.747) 0.851 (0.844–0.858)
XGBoost 0.782 (0.764–0.802) 0.701 0.697 0.858 (0.849–0.872) 0.699 (0.665–0.732) 0.697 (0.648–0.747) 0.831 (0.815–0.843)
ACC, Accuracy; AUC, Area under curve; CI, Confidence interval; SEN, Sensitivity; SPE, Specificity

Fig. 2  Selection process of variables. Figure 2 shows the process of variable screening. Figure 2-a and -b correspond to the results of variable screening 
using LASSO and GradientBoost RFE methods, respectively. The AUC of the model output changes with the change of the model input variables. From 
Fig. 2-c, it can be found that the number of variables when LASSO and GradientBoost RFE achieve the best AUC is 32 and 12 respectively, and merging 
them can get a common 10 variables. Figure 2-d illustrates the spearman correlation between the 10 variables

 



Page 7 of 15Zhang et al. BMC Medical Informatics and Decision Making           (2025) 25:51 

the SHAP method is used to interpret the output of the 
final model by calculating the contribution of each vari-
able to the prediction. As shown in Fig.  3-b, the SHAP 
mean evaluates the contribution of the factors to the 
model and is displayed in descending order. The four 
variables that have the greatest impact on different diag-
nostic types of AF are LA, NT-proBNP, Hb, and LVEF. 
Figure 3-c more intuitively observes the correspondence 
between different variables and the diagnostic type of 
AF. It can be observed that the top four variables affect 
the diagnosis of AF in a certain pattern. For example, LA 
shows a gradient line from red to blue. In particular, near 
the SHAP value of 0, there is a clear color boundary, indi-
cating that there is an exploitable pattern between the LA 
value and the diagnostic type of AF. When the LA value 
is low, the model tends to predict paroxysmal AF, while 

a larger LA value is associated with the diagnosis of per-
sistent AF. As shown in Fig. 3-c, a larger LA, higher NT-
proBNP, higher Hb, and lower LVEF are the key factors 
that lead the model to predict that the patient’s AF type 
is persistent AF. Figure 3-d specifically shows the impact 
of each variable obtained by the SHAP method on the 
model prediction results of a certain sample.

Although the potential pattern between the variables 
and the diagnosis of AF can be observed in Fig. 3-c, the 
lack of interaction between different variables is obvious, 
which is crucial for multi-factor prediction. Therefore, 
we further explored the interaction between the variables 
with the top four SHAP mean values (LA, NT-proBNP, 
Hb, and LVEF) as shown in Fig.  4. In Fig.  4-a ~ -d, we 
used the values ​​of LA, NT-proBNP, Hb, and LVEF and 
their SHAP values ​​as the x-axis and y-axis respectively. 

Fig. 3  Model prediction performance by AUC and interpretation by SHAP method. Figure 3 shows the predictive performance of the model and its 
interpretation using the SHAP method. Figure 3-a is the ROC obtained using three machine learning algorithms and their corresponding AUC. Figure 3-b 
shows the variables sorted by the absolute value of the mean SHAP value. A high value means a high impact on the model output. Figure 3-c visualizes 
the different SHAP values ​​of each variable and their impact on the results. The gradient from red to blue indicates the ranking of the variable values ​​from 
high to low. The horizontal axis indicates the impact on the result. Figure 3-d further shows the application of the SHAP algorithm in a single sample. 
Different variables with different SHAP values ​​jointly affect the prediction results of the sample
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Then remove the variables used to draw the horizontal 
and vertical coordinates from LA, NT-proBNP, Hb, and 
LVEF. The remaining three variables are plotted as series 
1 ~ 3 in Fig. 4 in the order of SHAP means. For example, 
in Fig. 4-a, LA is used to draw the horizontal and verti-
cal coordinates, and the remaining NT-proBNP, Hb, and 
LVEF are used to draw a1, a2, and a3, respectively. Simi-
larly, NT-proBNP is used to draw the horizontal and ver-
tical coordinates, and the remaining LA, Hb, and LVEF 

correspond to Fig. 4-b1, b2, and b3. The closer the scatter 
point is to the zero value of the vertical axis, it means that 
the sample corresponding to the point has a lower SHAP 
value in the variable represented by the vertical axis. The 
color of the scatter points in the figure from blue to red 
represents the value of the variable from small to large. 
By comparison, we found the corresponding relation-
ship between the variables. When the patient’s LA is a 
certain value, it corresponds to higher Hb and LVEF and 

Fig. 4  Interactions between the top four important variables ranked by SHAP method. Figure 4 shows the interactions among the four variables (LA, 
NT-proBNP, Hb, and LVEF), which are the top four factors affecting the model output obtained by the SHAP method. The horizontal axis of Fig. 4-a1 ~ a3 
is the value of LA, and the vertical axis is the SHAP value of LA. The color of the scatter points from red to blue corresponds to the value of the interac-
tion variable, and the interaction variables in Fig. 4-a1 ~ 4-a3 are NT-proBNP, Hb, and LVEF. Similarly, Fig. 4-b1 ~ 4-b3 represents the interaction between 
NT-proBNP and LA, Hb, and LVEF; Fig. 4-c1 ~ 4-c3 is the interaction between Hb and LA, NT-proBNP, and LVEF; d1 ~ d3 is the interaction between LVEF and 
LA, NT-proBNP, and Hb
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lower NT-proBNP. The interaction between the variables 
shown in Fig. 4-c1 is quite significant. Near the zero value 
of the vertical axis, the number of blue points far exceeds 
the number of red points, indicating that a smaller LA 
can reduce the impact of Hb on the results to a certain 
extent. Figure  4-c2 shows that when patients have the 
same level of Hb, patients with low NT-proBNP are more 
likely to be diagnosed with persistent AF.

Further analysis of variables with significant cutoff values
In the SHAP analysis, we also obtained the explanation 
diagram of the model. The diagrams shown in Fig.  5-
b1 ~ b4 visualize 500 samples, with the X-axis represent-
ing the size of the variable and the Y-axis representing 
the size of their impact on the results. The red area indi-
cates a greater tendency to be diagnosed with persistent 
AF, while the blue area indicates a greater likelihood of 
being diagnosed with paroxysmal AF. When there is a 
clear dividing point between the red and blue areas of a 
variable, this indicates that the variable may have a cer-
tain cutoff point, and the values ​​before and after this 
value point to completely different diagnoses. Therefore, 
we screened the heat map obtained by SHAP, and Fig. 5-
a1 ~ a4 shows all variables with obvious cutoff values ​​(LA, 
Hb, LVEF, LVDd). For these variables, we further per-
formed restricted cubic spline analysis. Based on further 
analysis of the RCS results as shown in Fig. 5-a1 ~ a4, we 
found that these variables do have cutoff points, which 
make the variable values ​​before and after this value have 
different correlations with the diagnostic classification. 
Specifically, when LA > 38 mm, Hb > 135 g/L, LVEF < 65%, 
and LVDd > 38 mm, patients are more likely to be finally 
diagnosed with persistent AF. The value of each cutoff 
point is not completely certain and there will be some 
fluctuations. At the same time, the trends of these vari-
ables as exposure factors are not the same.

Performance and explanation of binary classification 
models in subgroups
The CHA2DS2-VASc score is currently the most widely 
used stroke risk assessment tool for patients with AF 
[24], and age is an important part of it. The international 
community generally adopts 65 years old as the thresh-
old for the score, but the newly released Chinese guide-
lines for the diagnosis and treatment of AF adjust this age 
threshold to 60 years old [25]. Therefore, we used 60 and 
65 as the age thresholds for subgroup analysis. We divide 
the participants of this study into three groups: under 60 
years old, 60–65 years old, 65 years old, and above. The 
model has achieved good prediction performance among 
different age subgroups, as shown in Fig.  6-a ~ 6-c. The 
best AUC of people under 60 years old is 0.891 (95% CI: 
0.856 to 0.892), with high SPE (0.885, 95% CI: 0.803 to 
0.957) and high SEN (0.717, 95%CI: 0.574 to 0.792). The 

best AUC of people aged 60 to 65 years old is 0.905 (95% 
CI: 0.860 to 0.948), with SPE equals 0.875 (95% CI: 0.731 
to 0.966) and SEN equals 0.759 (95%CI: 0.625 to 0.904). 
Among people over 65 years old, the best AUC is 0.837 
(95% CI: 0.827 to 0.862), with SPE equals 0.824 (95%CI: 
0.789 to 0.855) and SEN equals 0.687 (95% CI: 0.610 to 
0.759). We show these results and the specific values of 
other evaluation indicators in Table 3. The most impor-
tant and second influencing factors of any age subgroup 
are LA and NT-proBNP, which is similar to the overall 
model. More results of the SHAP method are shown in 
Fig. 6-d ~ 6-f.

Furthermore, we conducted a subgroup analysis 
that combined gender and age, which was divided into 
male ≥ 60 years old, male < 60 years old, female ≥ 60 
years old, and female < 60 years old. In these subgroups, 
we made model comparisons by the machine learning 
method and variable importance analysis by the SHAP 
method, which are shown in Fig. 7. The baseline data of 
male and female patients in this study are shown in Sup-
plementary Table 2. In terms of diagnostic performance, 
the model achieved the highest AUC of 0.893 (95% CI: 
0.777 to 0.972), with SPE equals 0.894 (95% CI: 0.789 to 
0.967) and SEN equals 0.726 (95% CI: 0.632 to 0.884) in 
the subgroup of male that age < 60 years old. The lowest 
AUC was obtained in the subgroup of male ≥ 60 years 
old, only equals 0.822(95% CI: 0.790 to 0.848), with SPE 
equals 0.780 (95% CI: 0.764 to 0.799) and SEN equals 
0.665 (95% CI: 0.574 to 0.754). More results of model per-
formance evaluation by different machine learning meth-
ods can be found in Supplementary Table 3. As for the 
importance of variables, we found that in all subgroups 
combining gender and age, the most important and sec-
ond variables are LA and NT-proBNP, as shown in Fig. 7-
b1 ~ b4. Except in the subgroup of female < 60 years old, 
these two variables (LA and NT-proBNP) became the 
second and the first respectively.

Discussion
We used ten commonly available clinical indicators to 
derive a new model for predicting AF subtypes, and it has 
a high AUC (0.877), SPE (0.716), and SEN (0.851). This 
is the first time that the subtypes of AF (paroxysmal and 
persistent AF) could be predicted based on the baseline 
EHR at admission by machine learning.

AF is a common cause of stroke, heart failure, cardio-
vascular death, and dementia [26–29]. Recent reviews 
have proposed that burden-based descriptions of tempo-
ral AF patterns associated with outcomes and treatment 
strategies could improve risk prediction based on the 
classification of early paroxysmal, persistent, and long-
standing persistent AF [11]. In particular, persistent AF 
is more strongly associated with serious adverse events 
such as stroke, systemic embolism, hospitalization for 
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heart failure, and other cardiovascular morbidity and 
mortality than paroxysmal AF [30–32]. The risk factors 
for the early prediction of paroxysmal or persistent AF 
have become particularly essential.

Our study found 10 variables that are strongly corre-
lated with the prediction of paroxysmal AF and persistent 

AF. The results obtained by the SHAP method show that 
LA is the most important factor associated with the pre-
diction of AF, followed by NT-proBNP. Several studies 
have found that LA was an effective indicator for pre-
dicting the progression of AF [31–33], and its increase 
is associated with the progression of AF to persistent 

Fig. 5  Heatmap and RCS of variables with sharp cutoffs using the SHAP method. Figure 5 describes the restricted cubic spline analysis of variables with 
obvious cutoff points and the heat map of these variables. In order to further observe the correlation between variables and predicted results, we per-
formed RCS. Figure 5-a1 ~ 5-a4 show the nonlinear correlation between variables with obvious cutoff points and predicted results. The horizontal axis of 
the RCS series of graphs is the variable size, and the vertical axis is the Odds radio value between paroxysmal and persistent AF. Figure 5-a1 and 5-a2 show 
that LA and Hb have similar correlations with paroxysmal and persistent AF subtypes, which are protective factors at low values ​​and risk factors at high 
values. Figure 5-a3 shows that LVEF is a risk factor at low values ​​and a protective factor at high values. For these variables, we further show their heat maps. 
The charts shown in Fig. 5-b1 ~ b4 visualize 500 samples, with the X-axis representing the size of the variables and the Y-axis representing their impact 
on the results. The red area indicates a greater tendency to be diagnosed with persistent AF, and the blue area indicates a greater possibility of being 
diagnosed with paroxysmal AF. When there is a clear dividing point between the red and blue areas of a variable, it means that the variable may have a 
certain cutoff point, and the values ​​before and after this value point to completely different diagnoses
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AF [34]. Our research has verified this view in the whole 
population, different ages, and different age groups of dif-
ferent genders. Recent data suggest that circulating bio-
molecules, especially elevated NT-proBNP [35–37], can 
identify patients at risk for AF and stroke because these 
biomolecules are associated with atrial dysfunction and 
AF [38]. Our results further validate previous studies 
suggesting that elevated NT-proBNP is associated with 
the development of paroxysmal AF [39].

It should be noted that gender and age factors are asso-
ciated with the progression of AF [39]. The Relationship 
between increasing age and the progression of AF has 
been confirmed [34]. To further verify the consistency 

of the study conclusions in different age subgroups, we 
conducted an age subgroup analysis. The cutoff points for 
grouping were 60 and 65 years old, which was based on 
the stroke risk score. The CHA2DS2-VASc score is cur-
rently the most widely used tool for assessing stroke risk 
[24], and age is an important part of the CHA2DS2-VASc 
score that affects this risk of stroke. Although the stan-
dard generally adopted in the world is 65 years old as the 
threshold of an integral, the newly released China guide-
lines for the diagnosis and management of AF adjust this 
age threshold to 60 years old [25]. This revision is based 
on the research evidence in Asia [40–42]. Our results 
showed that the prediction model had a high diagnostic 

Table 3  Results of model output indicators in different age subgroups
Model ACC (95%CI) Precision Recall AUC (95%CI) F1 Score (95%CI) SEN (95%CI) SPE (95%CI)
Age under 60 years old
GradientBoost 0.819 (0.783–0.856) 0.731 0.664 0.891 (0.856–0.892) 0.680 (0.544–0.779) 0.664 (0.417–0.825) 0.885 (0.803–0.957)
AdaBoost 0.819 (0.728–0.857) 0.731 0.717 0.866 (0.828–0.911) 0.709 (0.638–0.763) 0.717 (0.574–0.792) 0.862 (0.700-0.961)
XGBoost 0.816 (0.761–0.878) 0.703 0.700 0.882 (0.836–0.918) 0.695 (0.618–0.802) 0.700 (0.535–0.823) 0.866 (0.785–0.924)
Age from 60 to 64 years old
GradientBoost 0.821 (0.746–0.898) 0.795 0.759 0.892 (0.842–0.929) 0.772 (0.684–0.872) 0.759 (0.625–0.904) 0.863 (0.781–0.934)
AdaBoost 0.776 (0.696–0.813) 0.725 0.722 0.843 (0.724–0.904) 0.721 (0.617–0.774) 0.722 (0.603–0.850) 0.812 (0.750–0.872)
XGBoost 0.825 (0.725–0.905) 0.812 0.749 0.905 (0.860–0.948) 0.776 (0.668–0.884) 0.749 (0.630–0.894) 0.875 (0.731–0.966)
Age 65 years old and above
GradientBoost 0.765 (0.741–0.793) 0.687 0.687 0.837 (0.827–0.862) 0.686 (0.639–0.732) 0.687 (0.610–0.759) 0.812 (0.782–0.837)
AdaBoost 0.760 (0.721–0.811) 0.689 0.654 0.815 (0.770–0.836) 0.669 (0.605–0.758) 0.654 (0.568–0.790) 0.824 (0.798–0.854)
XGBoost 0.765 (0.746–0.810) 0.695 0.668 0.835 (0.820–0.872) 0.680 (0.639-0.745) 0.668 (0.596–0.742) 0.824 (0.789–0.855)
ACC, Accuracy; AUC, Area under curve; CI, Confidence interval; SEN, Sensitivity; SPE, Specificity

Fig. 6  Model prediction performance by AUC and interpretation by SHAP method in different age subgroup. Figure 6 shows the AUC results for age 
subgroups and the explanation of the model obtained using the SHAP method. The order of Fig. 6-a ~ 6-c and Fig. 6-d ~ 6-f is people under 60 years old, 
people aged 60 to 64 years old, and people aged 65 and above. Figure 6-a ~ 6-c show the AUC of the three algorithms for different age subgroups. Fig-
ure 6-d ~ 6-f show the order of variable importance, that is, SHAP value, in different age subgroups
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Fig. 7  Model prediction performance by AUC and interpretation by SHAP method in different gender and age group. Figure 7 shows the AUC results for 
different gender and age subgroups and the interpretation of the model obtained using the SHAP method. Figure 7-a and 7-b series represent the AUC 
and SHAP value rankings, respectively. 1, 2, 3, and 4 are male younger than 60 years old, male older than or equal to 60 years old, female younger than 60 
years old, and female older than or equal to 60 years old, respectively
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efficacy in people under 60 years old. This further shows 
that our study has strong clinical application significance, 
especially for young AF patients who are newly diag-
nosed. Among patients with paroxysmal AF, female are 
less likely to progress [39, 43]. Based on evidence from 
previous studies, we divided the subjects into four groups 
according to gender and age. In the groups aged < 60 
years and ≥ 60 years, male and female subgroups showed 
different results. Among subjects aged < 60 years, male 
had higher AUC and SEN but weaker SPE than female. In 
the group aged ≥ 60 years, women had better AUC, SEN, 
and SPE. In summary, AF progression is a multifactorial 
disease, and our study also suggests differences between 
genders. This requires further research.

Our study also proposed some new variables associ-
ated with the prediction of paroxysmal AF and persistent 
AF, including Hb and UA. In our study, we found that the 
Hb level of patients with persistent AF was higher than 
that of the paroxysmal AF group, and high hemoglobin 
values are positively correlated with the prediction of 
AF. We believe that this conclusion is consistent with the 
conclusions of previous basic cardiovascular research 
[44]. Patients with AF have impaired cardiopulmonary 
function, which is manifested as a decrease in peak oxy-
gen consumption [45]. Studies have shown that oxygen 
delivery is limited in the state of AF, and limited muscle 
oxygen uptake further increases tissue cell oxygen uptake 
[46]. Therefore, patients with AF may increase their Hb 
levels through compensatory reactions, thereby increas-
ing their oxygen carrying capacity. The Hb level of the 
population is concentrated in the normal range, so fluc-
tuations within the normal range may be individual dif-
ferences between samples. Besides, our study is the first 
to explore the relationship between uric acid levels and 
AF subtypes (paroxysmal or persistent). High uric acid 
is positively correlated with persistent AF, and this indi-
cator has a higher predictive value in people under 60 
years of age. Although the relationship between uric acid 
and AF is still unclear, key pathways in the development 
of AF, such as cardiac electrical remodeling, structural 
remodeling, immune activation, insulin resistance, endo-
thelial dysfunction, inflammatory response, and oxidative 
stress imbalance, have been shown to be closely related 
to UA [47]. In particular, hyperuricemia is independently 
associated with increased left atrial diameter, which is the 
physiological basis of AF structural remodeling [48]. Our 
results also showed that the importance of UA for model 
prediction was lower in female than in male, which is dif-
ferent from the conclusion of previous studies that the 
correlation between UA and AF was more significant in 
female instead of male [49]. Therefore, the underlying 
mechanism of the differences in the association between 
UA and AF and AF subtypes in different genders needs 
further study.

Nevertheless, our study also has some limitations. Due 
to strict inclusion and exclusion criteria, we only enrolled 
1,600 participants from one of the largest hospitals in 
southern China. The smaller dataset size necessitates val-
idation of the study results with a larger data set. In addi-
tion, our participants were all from one hospital with one 
ethnicity, which ensured the stability of the EHR while 
requiring research from more centers to generalize the 
results.

Conclusion
The predictive model developed in this study can be uti-
lized to discern the specific subtypes in patients with 
newly diagnosed AF. Tailoring individualized treatment 
strategies based on this predictive model may help to 
realize early-stage management and treatment, ulti-
mately leading to improved clinical outcomes.
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