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Abstract
Objective This study aimed to assess the feasibility of computer model-based evaluation of knee joint functional 
capacity in comparison with manual assessment.

Methods This study consisted of two phases: (1) developing an automatic knee joint action recognition and 
classification system on the basis of improved YOLOX and (2) analyzing the feasibility of assessment by the software 
system and doctors, identifying the knee joint function of patients, and determining the accuracy of the software 
system. We collected 40–50 samples for use in clinical experiments. The datasets used in this study were collected 
from patients admitted to the Joint Surgery Center. In this study, the knee joint assessment items included stair 
climbing, walking on uneven surfaces, and knee joint function. To assess the computer model’s automatic evaluation 
of knee joint function, MedCalc 20 statistical software was used to analyze the consistency of the Lequesne functional 
index between the computer model’s automated determinations and manual independent assessments.

Results The weighted kappa coefficients between the doctors’ assessments and the software system’s 
assessments were 0.76 (95% confidence intervals:0.59 ~ 0.92) for climbing up and down stairs, 0.64 (95% confidence 
intervals:0.45 ~ 0.82) for walking on uneven floors, and 0.68 (95% confidence intervals:0.53 ~ 0.84) for the Lequesne 
functional index, indicating good consistency between the assessments of the software system and doctors.

Conclusion This paper introduces an automatic knee joint action recognition and classification method based on 
improved YOLOX. By comparing the results obtained by orthopedic doctors and the software system, the feasibility of 
this software system was validated in the clinic.
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Background
Accurate assessment of knee function in patients with 
knee osteoarthritis is important for guiding treatment 
decisions and monitoring the natural history of physi-
cal dysfunction and osteoarthritis associated with this 
disease [1–3]. Joint-specific questionnaires such as the 
American Knee Society Score (AKSS) and the Western 
Ontario and McMaster Universities Osteoarthritis Index 
(WOMAC) have been specifically validated for use in 
patients with knee osteoarthritis [4]. While these ques-
tionnaires help capture symptoms and functional limi-
tations that are important to the patient, they may not 
provide an accurate representation of underlying joint 
health or actual functional ability [5]. When question-
naires inquire about pain and difficulty with tasks, there 
is no standardization of how these tasks are performed. 
Furthermore, responses to questionnaires can be influ-
enced by other psychosocial factors unrelated to the 
injured joint, including depression, fatigue, and cognition 
[6]. Knee function tests in patients with knee osteoar-
thritis can be feasibly administered preoperatively, which 
may provide additional longitudinal information about 
knee function that complements patient questionnaires.

Patient-reported measures of knee function are impor-
tant for the comprehensive assessment of knee joint 
disease in both clinical and research contexts [7]. The 
dimensions that have been deemed important to patients 
include pain, function, quality of life, and activity level. 
Artificial intelligence (AI) may afford the opportunity 
for observations that lead to a new understanding and 
improved knee function measurement [8]. AI for health 
care has already provided new perspectives on automated 
assessments, leading to novel and timely interventions 
[9]. A common limitation in the development of machine 
learning (ML) health-behavior models is the time needed 
to provide real-world context (ground truth) for datasets. 
However, evidence exists that techniques accounting for 
small samples and low levels of consistent reporting can 
produce robust models [10].

Object tracking, which is based on deep learning, offers 
notable advantages in terms of robustness. However, 
challenges such as occlusions and poor lighting condi-
tions have spurred the development of innovative solu-
tions. The joint detection and embedding (JDE) model 
has been introduced to merge reidentification and detec-
tion branches [11], thereby enhancing the precision 
of target detection. The You Only Look Once (YOLO) 
series, derived from the JDE model, encompasses single-
stage object detection algorithms. Spanning from YOLO 
V1 to YOLO V7 and including various refined versions, 
this series is characterized by efficiency, flexibility, and 
superior generalization capabilities. YOLOX, which 
is a progression in the YOLO algorithmic lineage, has 

evolved to include anchor-free detectors, offering a blend 
of rapidity and high accuracy [12].

Conventional knee joint functional assessments typi-
cally assume that only medical practitioners measure 
knee joint function, which requires substantial time and 
effort. Previous researchers have reported a poor cor-
relation between questionnaire data and functional 
assessments (P = 0.08 ~ 0.59), which suggests that patient 
perception may be distinct from actual joint function 
[13]. To increase the precision and efficiency of lower 
limb functional evaluation in patients with knee osteo-
arthritis, this study employed deep learning techniques 
to construct an automated knee joint functional scoring 
and classification model. By harnessing computer vision, 
this approach automates patient assessment, significantly 
enhancing the accuracy and efficiency of scoring while 
alleviating the workload of medical professionals. More-
over, this method allows for a more nuanced assessment 
of knee joint functionality, thus providing vital insights 
for the formulation of tailored treatment plans.

Consequently, the proposed method of automated knee 
joint functional scoring holds wide-ranging research sig-
nificance and practical utility. It not only advances the 
precision of medical evaluations but also has potential 
applications in the clinical rehabilitation and sports train-
ing domains, bolstering training efficacy and safety. Thus, 
the automated knee joint functional scoring approach 
delineated in this study has considerable implications for 
both research and practical implementation. Based on 
the requirements of clinical diagnosis and patient treat-
ment for knee osteoarthritis, this study preliminary ana-
lyzed the feasibility of YOLOX computer model-based 
knee function assessment and its comparison with man-
ual assessment.

Design
Software development
YOLOX model
The YOLOX algorithm, which was introduced by Mega-
genius Inc. in 2021 as an enhancement of YOLOv3, pres-
ents a distinctive set of attributes [12]:

Decoupled Head: A pivotal advancement lies in the 
decoupling of prediction branches, engendering a nota-
ble acceleration in the convergence rate.

Data Augmentation: Mosaic and mixup techniques are 
strategically implemented. Intriguingly, data augmenta-
tion is gradually phased out in the final 15 epochs to miti-
gate the risk of excessive augmentation.

Anchor Refinement: YOLOX adopts an anchor-free 
approach, revolutionizing multipositive and SimOTA 
methodologies. This dual-pronged refinement not only 
truncates the training time but also markedly increases 
the predictive accuracy (Fig. 1).
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In the standard model of the YOLOX framework, 
the mean average precision (mAP) of YOLOX-l was 
8.8% greater than that of YOLOX-s, as demonstrated in 
Table 1. The training dataset that was used in this study 
encompasses data capturing a spectrum of human move-
ments, including climbing up and down stairs, squatting 
and walking on uneven floors. The strategic inclusion 
of such diverse actions enables the model to learn from 
a range of human poses, enhancing the model’s robust-
ness and generalization capabilities. Considering the task 
scenario and requirements combined with the visual 
view, YOLOX-l, which has high prediction accuracy, was 
selected.

Bayesian optimization
Bayesian optimization is an optimization approach based 
on Bayes’ theorem, which, within a limited number of 
iterations, progressively evaluates the objective function 

to discover the optimal combination of hyperparameters 
[14]. Compared with traditional methods such as random 
search and grid search, Bayesian optimization achieves 
faster convergence to the optimal solution by leverag-
ing prior knowledge and confidence intervals, resulting 
in higher search efficiency and accuracy. In this study, 
Bayesian optimization was applied to optimize the fol-
lowing hyperparameters:

Learning Rate: The learning rate plays a vital role in 
controlling the magnitude of model weight updates in 
deep learning. It is typically represented as η or α. The 
magnitude of the learning rate directly influences the 
model’s training effectiveness.

Batch Size: The batch size refers to the number of 
samples used in each iteration when training a neural 
network.

Exponential Moving Average Decay: Exponential 
moving average decay is a commonly used optimiza-
tion technique in deep learning. It is employed primar-
ily to smooth the variations in weights within a model 
and reduce the volatility of weight updates, enhancing 
the model’s stability. The formula for exponential moving 
average decay is as follows:

 θt+1 = βθt + (1 − β)θt+1 (1–1)

Table 1 Differences in performance parameters of YOLOX-l 
compared with other models
Model Input 

Resolution
Mean aver-
age precision 
(mAP) (%)

Size 
(MB)

Infer-
ence 
Speed 
(FPS)

Train-
ing 
Time 
(hours)

YOLOX-s 640 × 640 76.39 32.0 52 4
YOLOX-m 640 × 640 83.69 90.2 43 12
YOLOX-l 640 × 640 91.73 192.9 28 20

Fig. 1 YOLOX Model Framework
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where θt represents the parameter values before iteration 
t, θt+1 represents the parameter values after iteration t, 
and β represents the attenuation factor, whose value 
typically ranges between 0.9 and 0.999. Moving average 
attenuation can improve the generalization ability of the 
model and reduce the risk of overfitting (Table 2).

Improved SCP module
The CSP architecture derives inspiration from the net-
work structure of SCPNet, ingeniously amalgamat-
ing convolutional layers and X residual components to 

augment information propagation and improve feature 
representation.

The learning potential of convolutional neural net-
works (CNNs) is attributed to the SCP module, which 
remains constrained by the dimensions of the convolu-
tional kernel, precluding the holistic integration of pixel-
level information beyond the kernel bounds.

In object recognition, the proposed model has bet-
ter precision than the traditional model does in terms of 
accuracy and speed. The study takes a holistic perspec-
tive, emphasizing the model’s efficacy. As a result, this 
study introduces crucial refinements into the original 
SCP module. Through a reduction in the core backbone’s 
parameters and the elimination of redundant gradi-
ent information during inference, these modifications 
improve the model’s capacity for learning (Fig. 2).

Each group of 3 × 3 convolutions in the output chan-
nels of the original SCP module is preceded by a set of 
1 × 1 convolutions, effectively halving the output channel 

Table 2 The setting intervals and results of bayesian 
optimization hyperparameters
Hyperparameter Optimization interval Optimal Results
Learning rate [0.001, 0.1] 0.03
Batch size [16, 64] 32
Sliding average attenuation [0.9, 0.99] 0.95

Fig. 2 Improve SCP module
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count while maintaining the input channel dimensions. 
The input feature maps are handled by the 3 × 3 convo-
lutional block residual structure, whereas the output fea-
ture maps are processed through the 1 × 1 convolutional 
block, ensuring dimensional congruence between the 
input and output feature maps. Ultimately, this innova-
tion enables the incorporation of three residual blocks on 
the right side of the new module, effectively achieving the 
same receptive field as the SCP module.

In YOLOX, convolution operations are performed 
on the parameters of the original SCP module, and the 
expression is as follows:
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The improved expression for parameter calculation in 
this study is as follows:
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where I is the number of layers in the network, Cl−in is 
the number of input channels in layer I, CI−out  is the 
number of output channels in layer I, and K is the size of 
the convolutional kernels.

In formulas (1–2) and (1–3), when the receptive fields 
are the same, the computational complexity of the 
improved structure is reduced by 36.2% compared with 
that of the original CSP module.

Experimental Setup and Environment: The experi-
mental investigations detailed in this study were con-
ducted within a controlled computational environment. 
The hardware configuration utilized for experimenta-
tion comprised an Intel(R) Core(TM) i9-10900  K CPU, 
128 GB of RAM, and an NVIDIA RTX 3090 graphics 
card with 24 GB of memory. The software infrastructure 
employed was anchored by the Ubuntu 20.04 LTS 64-bit 
operating system.

Dataset construction
The dataset utilized in this study was sourced from inpa-
tients at the Joint Surgery Center who were prepared for 
total knee arthroplasty. The inclusion criteria for patients 
were as follows: ① undergoing preparation for total knee 

arthroplasty and ② diagnosed with severe osteoarthritis 
of the knee, classified as KL grade III or higher through 
radiological imaging. The exclusion criteria for patients 
were as follows: ① afflicted by systemic immune disor-
ders, leading to a reduced quality of daily life, such as 
rheumatoid arthritis, and ② having severe preoperative 
knee deformities impairing independent mobility.

 
① Data Augmentation:

Data augmentation is a technique involving the appli-
cation of transformations and expansions to original data 
to increase sample diversity, thereby enhancing model 
generalization performance and mitigating overfitting. 
With respect to the input requirements of the improved 
YOLOX, the following data augmentation operations 
were executed:

a. Random Cropping: Extracting a random portion 
of an image for training aids the model in learning 
object features at various positions.

b. Random Flipping: Horizontally or vertically flipping 
images at random adds diversity to the dataset, 
enabling the model to adapt to different object 
orientations.

c. Random Rotation: Introducing random rotations 
simulates the appearance of objects at varying angles.

d. Random Scaling: Randomly scaling images ensures 
that objects can be accurately detected at different 
sizes.

e. Random Brightness and Contrast Adjustment: 
Randomly adjusting image brightness and contrast 
increases image variability.

Data augmentation fosters diverse sample representa-
tions, enhances model robustness and leads to improved 
detection performance during training.

 
② Model Training:

During model training, the annotated dataset was par-
titioned into training and validation sets. 70% of the data 
were allocated for training, and the remaining 30% were 
allocated for validation. This division ensured ample sam-
ples for model learning during training and facilitated the 
assessment of model generalization on the validation set.

The primary challenge of the traditional YOLO loss 
function lies in unstable IoU calculations when objects 
exhibit substantial overlap. The CIoU loss function 
addresses this by considering the comprehensive inter-
section over union between objects and incorporating 
distance metrics.

The formula for the CIoU loss function is as follows:

 
CIoU Loss = −IoU + d2

c2
 (1–4)
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where IoU (intersection over union) represents the inter-
section area of the predicted box and the real box divided 
by their union area; d2 is the square of the Euclidean dis-
tance between the center points of the prediction box 
and the real box; and c2 is a parameter used to punish 
size differences between the boxes.

Stochastic gradient descent (SGD) is a widely employed 
optimization algorithm for training neural networks and 
diverse machine learning models. A first-order optimiza-
tion algorithm updates model parameters utilizing the 
gradient of a single sample, eschewing the computation 
of the average gradient across all samples. This feature 
not only renders SGD computationally efficient but also 
makes it suitable for optimizing large-scale datasets.

The formula for SGD is as follows:

 θt+1 = θt − η · ∇J(θt, xi, yi) (1–5)

where θt is the parameter of the model at the tth iteration 
and η is the learning rate, which is used to control the 
step size of each parameter update. It is a hyperparam-
eter and needs to be set beforehand. Too large a learn-
ing rate may result in too drastic a parameter update, 
whereas too small a learning rate may result in too slow 
convergence. J(θt, xi, yi) is the loss function, which rep-
resents the prediction error of the model for the training 
sample (xi, yi) under parameter θt. By calculating the 
gradient ∇J(θt, xi, yi) of the loss function with respect 
to the parameter, SGD aims to minimize the loss function 
and thus optimize the parameters of the model.

In SGD, each iteration involves the selection of a ran-
dom training sample (xi, yi) to compute the loss function 
and gradient. Leveraging the gradient’s direction and the 
learning rate, the model parameters are then updated. 
This process iterates over the entire training dataset mul-
tiple times, culminating when the predetermined num-
ber of training epochs is achieved or when convergence 
conditions are met.

In summary, the settings used for model training in this 
study were as follows:

  – Training Set: 70% of the annotated dataset;
  – Validation Set: 30% of the annotated dataset;
  – Loss Function: the YOLOX object detection loss 

function (CIoU loss function);
  – Optimization Algorithm: stochastic gradient descent 

(SGD).

 
③ Evaluating the detection model performance

When assessing the efficacy of an object detection 
model, the metric of choice is the mean average preci-
sion. mAP is derived by calculating precision values 
across varying confidence thresholds and subsequently 

computing their average. Several relevant formulas 
encompass the evaluation process:

Precision signifies the proportion of samples correctly 
classifies as positive by the model among all samples clas-
sified as positive.

 
Precision = True Positives

True Positives + False Positives  (1–6)

The recall rate represents the proportion of samples that 
the model successfully predicts to be positive among all 
true positive samples.

 
Recall = True Positives

True Positives + False Positives  (1–7)

The F1 score represents the harmonic average of accu-
racy and recall, which is used to comprehensively con-
sider the accuracy and comprehensiveness of the model.

 
F1 Score = 2 × Precision × Recall

Precision + Recall  (1–8)

mAP represents the average precision value calculated at 
different confidence thresholds.

The prediction outcomes of the model are meticulously 
ordered on the basis of confidence scores. By incremen-
tally adjusting the confidence threshold, precision values 
are subsequently calculated at each threshold, which are 
then graphed into a precision‒recall curve.

 
④ Model recognition and classification process

a. Region Calibration: Pertinent regions within the test 
area undergo precise calibration, effectively delimiting 
the testing scope. This calibration strategy ensures testing 
uniformity and reproducibility, as depicted in Fig. 3.

In the pursuit of refining object detection evaluation 
and improving the model recognition process, the assess-
ment methodology hinges upon precise precision‒recall 
calculations. This approach not only offers insights into 
model performance but also facilitates robust classifica-
tion in diverse scenarios.

b. System Testing: Upon entering the test area, patients’ 
movements are timed. The walking speed on uneven 
terrain is calculated using the video frame rate and the 
number of frames in which individuals are detected. 
Additionally, the squatting and stair-climbing times are 
recorded.

Walking Speed Calculation Formula:
Walking Speed = Time Taken / Distance Walked.
Distance Walked: Total distance covered by the patient 

within the test area, representing the actual range of the 
designated zone.
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Time Taken: Obtained by dividing the number of 
frames capturing the patient’s movement by the video 
frame rate.

Squatting and Stair-Climbing Time Recording:
Squatting Time Calculation: The time taken for a single 

squatting action by the patient, directly recorded during 
the test.

Stair-Climbing Time Calculation: The time required 
by the patient to complete the stair-climbing action, 
recorded during the test.

Importantly, walking speed is typically measured in 
distance per unit time (e.g., meters per second), whereas 
squatting and stair-climbing times are measured in sec-
onds. By calculating patients’ walking speed, squatting 
time, and stair-climbing time, their mobility and perfor-
mance can be effectively assessed.

c. Calculating Walking Speed: Using the video frame 
rate and the frames used to detect individuals, the 
walking speed of each patient on uneven terrain can 
be calculated. The speed is determined by dividing 
the total distance walked by the patient within the 
area by the total time.

d. Calculating Squatting Time: For squatting actions, 
the time taken for a single squatting action by a 
patient can be calculated. The squatting action can 
be defined on the basis of a predetermined threshold 
for the patient’s squatting height. The time when 
the patient’s squat height meets the set threshold is 
recorded.

e. Calculating Stair-Climbing Time: For stair-climbing, 
the total time taken for the entire action is recorded, 

spanning from stepping onto the stairs to completing 
the descent.

Through these steps, patients’ abilities in walking on 
uneven terrain, squatting, and stair climbing are tested, 
with the corresponding speed and completion times cal-
culated to evaluate and analyze their mobility. The evalu-
ation system is based on time as the evaluation standard, 
and the completion time of actions is in accordance with 
the local standard < Specification for evaluation of crite-
rion-referenced senior functional fitness standards > in 
Tianjin. A completion time percentile < P25 indicates 
easy performance of the action, a completion time in 
the P25 ~ P50 percentile range indicates mild difficulty, a 
completion time in the P50 ~ P75 percentile range indi-
cates moderate difficulty, and a completion time in the 
P75 ~ P100 percentile range indicates severe difficulty in 
completing or inability to complete the required action, 
resulting in movement interruption. This standard is 
applicable to the functional evaluation of elderly people 
in Tianjin [15].

Clinical experiments
Study subjects
For the confirmatory analysis, the ratio between the sam-
ple size and the number of items had better to be above 
5:1 [16]. The ideal sample size is 10 ~ 25 times the num-
ber of items. The Lequesne functional index only has 4 
items (climbing upstairs, climbing down stairs, squatting 
down, and walking on uneven floors). Therefore, 40 ~ 50 
samples are collected for use in clinical experiments. 
The datasets used in this study were collected from 

Fig. 3 Model Calibration Area
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patients admitted to the Joint Surgery Center in Tianjin. 
This center is one of the largest knee joint disease diag-
nosis and treatment centers in the local area, with more 
than 70 fixed beds and treating over 1500 patients with 
knee osteoarthritis every year. The inclusion criteria for 
patients were as follows: (1) knee osteoarthritis, graded 
KLIII or above on the basis of radiographic imaging 
[17], and (2) the capacity to provide informed consent. 
The exclusion criteria for patients were as follows: (1) 
severe deformities affecting knee joint mobility, namely, 
varus knee deformity > 20°, valgus knee deformity > 20°, 
or degree of knee flexion contracture > 20° [18]; (2) a his-
tory of knee joint trauma within the past 3 months; and 
(3) neurological disorders impacting movement, such as 
Alzheimer’s disease. This clinical study received ethical 
approval from the institutional medical ethics committee 
(2023-YLS-078).

Methodology
Clinical doctors (four in total, each with over five years of 
clinical experience in joint surgery) underwent training 
in CKFA usage. Researchers provided a detailed explana-
tion of the computer model report structure to the train-
ees, along with two demonstration videos showcasing the 
computer model’s functionality. This approach aimed to 
acquaint the assessors with the computer model’s output 
process without providing any instructions on the video 
actions throughout the training.

Evaluation Tool: The Lequesne functional index, ini-
tially proposed in 1987, was adopted for both manual and 
computer-based knee joint functional evaluations [19]. 
This index evaluates disease conditions and joint func-
tions in patients with knee joint osteoarthritis and con-
sists of two parts: osteoarthritis symptoms and daily life 
functional disabilities. The measurement takes approxi-
mately 3–5  min. Li et al. validated the Chinese version 
of the Lequesne Index, which yielded an interrater reli-
ability coefficient (ICC) of 0.94 [20]. Presently, this index 
is widely utilized to assess patient disease conditions and 
perform follow-up evaluations in patients with knee joint 
osteoarthritis.

The clinical trial was divided into two stages: (1) Pro-
ficient orthopedic doctors (four in total, each with over 
5 years of clinical experience in joint surgery) evaluated 
knee joint function through clinical physical examina-
tions, and the Lequesne Functional Index was used to 
assign scores to patients. (2) Three days after undergo-
ing manual knee joint functional evaluation, the sub-
jects executed designated movements, such as climbing 
up stairs, squatting, and walking on uneven floors. The 
trained doctors then utilized the computer software 
model to automatically generate patient knee joint func-
tional reports.

Statistical analysis
In assessing the computer model’s automatic evalua-
tion of knee joint function, MedCalc 20 statistical soft-
ware was employed to analyze the consistency between 
the computer model’s automated determinations and 
manual independent assessments via the weighted kappa 
coefficient, which was used to evaluate the reliability of 
the computer model software in determining knee joint 
function [21]. The MedCalc version 20.0 (MedCalc Soft-
ware, Ostend, Belgium) statistical software package 
was used for statistical analysis of all the variables. The 
agreement between the clinical doctors’ assessments and 
model classification results was evaluated via Bland‒Alt-
man analysis [22]. It was validated through 95% confi-
dence intervals for both the kappa and Bland‒Altman 
assessments.

Results
Patients
A total of 42 patients were included in this study, with 
20 males and 22 females. The mean age was 73.6 ± 8.21 
years. All the subjects successfully completed two knee 
joint functional evaluations, and no accidental incidents, 
such as falls, occurred.

Climbing up and down stairs
Both the clinical doctors and the computer model 
included in this study independently measured the ability 
to climb up and down stairs. A consistency evaluation via 
MedCalc 20 yielded a weighted kappa coefficient of 0.76 
and a 95% confidence interval of 0.59‒0.92, indicating 
good agreement between the two methods. In this study, 
we conducted a Bland‒Altman analysis, which revealed 
that the limits of agreement between manual assessment 
and model evaluation were notably tight, ranging from 
− 1.1 to 1.9 (Table 3; Fig. 4).

Walking on uneven floors
In addition to stair-climbing ability, the ability to walk on 
uneven floors was assessed by both doctors and the com-
puter model in this study. The assessment results were 
subjected to consistency analysis via MedCalc 20, which 
yielded a weighted kappa coefficient of 0.64 and a 95% 
confidence interval of 0.45‒0.82 between the two assess-
ment methods. The results revealed that the limits of 
agreement between manual assessment and model evalu-
ation were notably confined, ranging from − 2.5 to 2.2 (as 
shown in Table 4; Fig. 5).

Knee joint function
Finally, the knee joint function of the participants was 
assessed by doctors and the computer model. A consis-
tency analysis was performed via MedCalc 20, result-
ing in a weighted kappa coefficient of 0.68 and 95% 
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confidence interval of 0.53‒0.84 between the two assess-
ment methods. This indicates an acceptable level of 
agreement (as presented in Table 5). Moreover, through 
our investigation, we conducted a Bland‒Altman analy-
sis, reaffirming that the agreement between manual 
assessment and model evaluation was notably bounded, 
ranging from − 2.9 to 3.5 (as depicted in Fig. 6).

Discussion
This study presents the first application of the YOLOX 
network model to knee joint motion assessment, estab-
lishing an automatic classification system for knee joint 
actions on the basis of the YOLOX network. This sys-
tem was employed to evaluate patients’ daily knee joint 
functional capacity. Through clinical experiments, we 
observed that the knee joint action classification system 

Table 3 Consistency between manual evaluation and model evaluation of up and down stairs(Kappa)
model evaluation manual evaluation

0 1 2 3 4
0 26 1 1 1 0 29 (69.0%)
1 0 3 0 3 0 6 (14.3%)
2 0 0 1 2 0 3 (7.1%)
3 0 0 0 1 3 4 (9.5%)
4 0 0 0 0 0 0 (0.0%)

26 (61.9%) 4 (9.5%) 2 (4.8%) 7 ( 16.7%) 3 (7.1%) 42
Weighted Kappa a 0.76
Standard error 0.08
95% CI 0.59–0.92
a Quadratic weighting

Table 4 Consistency between manual evaluation and model evaluation of walking on uneven floor(Kappa)
model evaluation manual evaluation

0 1 2 3 4
0 8 3 3 1 0 15 (35.7%)
1 0 8 0 0 0 8 (19.0%)
2 0 1 3 0 0 4 (9.5%)
3 0 1 2 1 0 4 (9.5%)
4 0 1 5 1 4 11 (26.2%)

8(19.0%) 14(33.3%) 13(31.0%) 3(7.1%) 4(9.5%) 42
Weighted Kappa a 0.64
Standard error 0.09
95% CI 0.45–0.82
a Quadratic weighting

Fig. 5 Individual agreement of walking on uneven floor between manual 
evaluation and model evaluation

 

Fig. 4 Individual agreement of up and down stairs between manual eval-
uation and model evaluation
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built upon the YOLOX network exhibited certain simi-
larities in assessment outcomes compared with experi-
enced medical practitioners, indicating its potential for 
use in clinical research.

By assessing and classifying various knee joint actions, 
we found that the computer model’s evaluation results 
were highly consistent with those of clinical orthopedic 
physicians in the assessment of stair climbing ability. 
Action recognition and motion analysis in the medical 
field have relied mainly on expensive equipment, such 
as high-speed cameras, Kinect cameras, and optical 
motion capture devices, and have been limited by other 
factors, such as scene characteristics and costs [23–25]. 
We performed action recognition analysis via a computer 
model. Most research has focused on rehabilitation sce-
narios [26–29]. Recently, researchers developed a mobile 
app based on the AlphaPose and VideoPose algorithms 
for evaluating patients’ knee joint function and stiffness 
by recording five sit-to-stand test videos [30], whose 

technology uses self-assessment by patients and simple 
application scenarios. Compared with several studies 
[31–34], our research revealed that computer models 
often demonstrate greater accuracy in assessing actions 
with larger ranges of motion. This phenomenon may 
be attributed to several factors: (1) Actions with larger 
knee joint ranges of motion (such as stair climbing and 
squatting) tend to have distinctive features, enabling the 
computer model to rapidly identify and classify them. 
(2) Many patients with severe knee joint osteoarthri-
tis exhibit limited joint mobility and require maximum 
effort to complete actions with larger ranges of motion, 
resulting in slower movements that are more easily eval-
uated by clinical physicians. (3) Relative to stair climbing, 
the assessment of walking on uneven surfaces is simpler 
for patients with severe knee joint osteoarthritis, requir-
ing lower joint mobility. Consequently, patients complete 
the action in a shorter time during evaluation, making 
discrepancies more likely to arise between manual and 
computer model assessments. (4) During manual knee 
joint functional assessments, clinical physicians often 
consider factors such as overall physical function (e.g., 
cardiorespiratory fitness) and mental state (e.g., fatigue) 
to derive final assessment outcomes. In contrast, com-
puter models evaluate knee joint function solely on the 
basis of the completion of actions without incorporating 
other factors, such as psychological state and environ-
mental factors.

In the past, many studies achieved action recogni-
tion and behavior assessment through OpenPose sys-
tems [35]. In contrast to other automated classification 
assessment systems for rehabilitation and sports [36], 
our study first developed a knee joint action automatic 
classification evaluation system based on the enhanced 
YOLOX model. Compared with common human pose 
recognition algorithms such as OpenPose, the YOLOX 

Table 5 Consistency between manual evaluation and model evaluation of knee joint function(Kappa)
model evaluation manual evaluation

0 1 2 3 4 5 6 7 8
0 2 0 3 1 0 0 0 0 0 6 (14.3%)
1 0 2 0 1 0 0 0 0 0 3 (7.1%)
2 0 0 4 1 1 0 0 0 0 6 (14.3%)
3 0 0 0 3 3 1 1 0 0 8 (19.0%)
4 0 0 3 1 2 0 2 0 0 8 (19.0%)
5 0 0 0 0 0 2 1 1 0 4 (9.5%)
6 0 0 0 0 1 0 1 0 1 3 (7.1%)
7 0 0 0 0 0 0 0 2 0 2 (4.8%)
8 0 0 0 1 0 1 0 0 0 2 (4.8%)

2(4.8%) 2(4.8%) 10(23.8%) 8(19.0%) 7(16.7%) 4(9.5%) 5(11.9%) 3(7.1%) 1(2.4%) 42
Weighted Kappa a 0.68
Standard error 0.07
95% CI 0.53–0.84
a Quadratic weighting

Fig. 6 Individual agreement of knee joint function between manual eval-
uation and model evaluation
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algorithm has the advantages of low computational com-
plexity, strong generalization ability, good scene adapt-
ability and robustness [37]. Moreover, research has 
confirmed that establishing a computer vision system 
with algorithmic services is crucial for action assess-
ment and behavior prediction [38]. This system employs 
Bayesian hyperparameter optimization for loss function 
improvement, expediting model convergence and reduc-
ing the computational burden on servers and GPUs, thus 
increasing computational efficiency. By incorporating the 
Lequesne knee joint functional index and addressing the 
specific requirements and application scenarios of clini-
cal physicians and rehabilitation trainers, our research 
modularized the design and business logic, including 
action completion time and assessment score reports. 
This was followed by algorithm deployment into the knee 
joint motion functional classification system. Sequential 
orchestration of the YOLOX model’s action recognition 
and serialization services provided real-time action scor-
ing for participants.

While this study successfully applied the YOLOX 
model to knee joint action recognition and conducted 
preliminary clinical tests that demonstrated certain simi-
larities with orthopedic physicians’ manual assessments, 
several limitations remain. These include the following: 
(1) The clinical trial’s sample size was limited due to fac-
tors such as patient demographics, hospital environmen-
tal factors, and research project duration, reducing the 
persuasiveness of the study results. Future work should 
involve large-scale, multicenter clinical trials to evaluate 
the effectiveness of the knee joint action recognition and 
classification system developed in this study for clinical 
practice. (2) The system requires a high level of computer 
hardware configuration, with a CPU of i9-10 or above 
and an independent graphics card, to ensure detection 
and transmission speed. Otherwise, problems such as 
delayed operation and low efficiency of the automatic 
system may occur. (3) The automatic evaluation system 
developed in this study needs to capture the video infor-
mation of the patient completing specific movements 
and evaluate knee function on the basis of an analysis of 
the video information. The system cannot conduct con-
tinuous automatic evaluation. (4) Current research has 
focused mainly on the initial development and validation 
stage of the system. This automated scoring system has 
not been used to conduct a comprehensive evaluation 
of long-term performance and sustainability in clinical 
practice. We will carry out long-term observations in 
real clinical environments to validate the durability and 
sustained effectiveness of the system in future research. 
(5) Environmental factors such as lighting conditions 
and background clutter may indeed affect the model’s 
ability to detect and classify knee joint movements accu-
rately in actual environments. To improve accuracy, we 

recommend video capture under good lighting condi-
tions and against a simple background. (6) With ongo-
ing technological advancements, computer classification 
model algorithms continue to evolve. Thus, the project 
team should further enhance the model algorithm to 
improve work efficiency and meet clinical requirements. 
(7) The later-stage scoring module of the project incor-
porates only a few actions, limiting the generalizability of 
the model’s assessment results.

Conclusions
This paper introduces an automatic knee joint action rec-
ognition and classification method based on improved 
YOLOX, aimed at addressing the challenges of low com-
putational efficiency and limited robustness in com-
puter vision action recognition. A comparison of the 
measurement results with those of experienced medical 
practitioners preliminarily verified the potential applica-
tion of this technology in knee joint function assessment 
scenarios.
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