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Abstract 

Background Malaria, an infectious disease caused by protozoan parasites belonging to the Plasmodium genus, 
remains a significant public health challenge, with African regions bearing the heaviest burden. Machine learning 
techniques have shown great promise in improving the diagnosis of infectious diseases, such as malaria.

Objectives This study aims to integrate ensemble machine learning models and Explainable Artificial Intelligence 
(XAI) frameworks to enhance the diagnosis accuracy of malaria.

Methods The study utilized a dataset from the Federal Polytechnic Ilaro Medical Centre, Ilaro, Ogun State, Nige-
ria, which includes information from 337 patients aged between 3 and 77 years (180 females and 157 males) 
over a 4-week period. Ensemble methods, namely Random Forest, AdaBoost, Gradient Boost, XGBoost, and CatBoost, 
were employed after addressing class imbalance through oversampling techniques. Explainable AI techniques, such 
as LIME, Shapley Additive Explanations (SHAP) and Permutation Feature Importance, were utilized to enhance trans-
parency and interpretability.

Results Among the ensemble models, Random Forest demonstrated the highest performance with an ROC AUC 
score of 0.869, followed closely by CatBoost at 0.787. XGBoost, Gradient Boost, and AdaBoost achieved ROC AUC 
scores of 0.770, 0.747, and 0.633, respectively. These methods evaluated the influence of different characteristics 
on the probability of malaria diagnosis, revealing critical features that contribute to prediction outcomes.

Conclusion By integrating ensemble machine learning models with explainable AI frameworks, the study promoted 
transparency in decision-making processes, thereby empowering healthcare providers with actionable insights 
for improved treatment strategies and enhanced patient outcomes, particularly in malaria management.
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Introduction
The development of machine learning has brought about 
the era of predictive analysis in medical systems, prom-
ising more effective patient care and efficient medical 
practices. With the growing volume and complexity of 
healthcare data [1], there is an increasing need for accu-
rate prediction models. However, in addition to accuracy, 
these models must be transparent and interpretable, 
especially about sensitive health information that directly 
affects patients’ health [2–4]. Health providers are chal-
lenged by making decisions based on huge amounts of 
available information while keeping their predictions 
reliable and trustworthy [5]. Traditional machine learn-
ing algorithms are often called black boxes because they 
often cannot explain why they have chosen this or that 
action [6, 7].

The ensemble models proposed in this study aim to 
achieve improved accuracy while maintaining transpar-
ency and interpretability [8]. Ensemble methods, such as 
bagging, boosting, and stacking, harness the strengths of 
multiple models to enhance predictive performance [9]. 
For instance, bagging reduces variance by averaging pre-
dictions from various models trained on different data 
subsets, while boosting focuses on sequentially training 
models on the errors of prior models to improve accu-
racy. Stacking combines predictions from multiple mod-
els using a meta-model, allowing for the capture of more 
complex data relationships. However, this study empha-
sizes simpler ensemble methods that effectively balance 
accuracy with transparency, avoiding the increased com-
plexity associated with stacked algorithms, which may 
hinder interpretability. Ensemble learning has shown 
great promise across various fields, including healthcare, 
agriculture, and sports science. In healthcare, methods 
such as random forests and boosting techniques have 
improved predictive accuracy for conditions like diabetes 
and heart disease [10]. In agriculture, ensemble methods 
have been utilized for predicting crop yields and iden-
tifying pest infestations, showcasing their versatility in 
diverse domains [11]. Similarly, in sports science, ensem-
ble techniques have been employed for performance pre-
diction and injury risk assessment, providing coaches 
and athletes with actionable insights [12]. These applica-
tions underscore the potential of ensemble methods to 
enhance predictive modeling in healthcare, particularly 
for complex diseases such as malaria.

Malaria continues to pose a significant public health 
challenge globally, particularly in regions where the 
disease is endemic. In 2022, the World Health Organi-
zation (WHO) reported 249 million malaria cases and 
608000 mortality globally due to malaria [13]. The Afri-
can region was also reported to bear the heaviest bur-
den of malaria with 95% of incidence and 94% mortality 

resulting from malaria in this region [13]. Furthermore, 
Nigeria has been reported as one of the five countries 
with the highest reported cases of malaria (WHO, 
2023). In Nigeria, 80% of deaths resulting from malaria 
occur among children who are below the age of five 
[14]. Frequent malaria re-infections during childhood 
places a huge economic burden on the entire healthcare 
system. The situation is further worsened by the devel-
opment of resistance to commonly used antimalarial 
medications [15]. Malaria is caused by the protozoan 
parasite-Plasmodium, of the phylum Apicomplexa. It 
thrives in warm tropical climates, predominantly trans-
mitted by the female Anopheles gambiae mosquito. The 
Plasmodium species, carried by a vector, infects a wide 
range of vertebrates ranging from mammals, birds, 
amphibians, and humans. It consists of six species that 
cause infection in humans. These are Plasmodium falci-
parum, Plasmodium malariae, Plasmodium ovale, Plas-
modium vivax, and the zoonotic Plasmodium knowlesi 
and Plasmodium cynomolgi. Plasmodium falciparum 
is the most deadly and prevalent among these species 
[15]. The transmission of the malaria parasite is closely 
tied to environmental conditions that allows mosquito 
to thrive, especially high and humid temperatures after 
rain. Hence, the reason why Africa bears the heaviest 
burden of Malaria [16].

Clinical signs and symptoms of malaria typically mani-
fest during the intra-erythrocytic stage of the disease. At 
this stage, mature schizonts release merozoites that cause 
the rupture of red blood cells (RBCs), triggering the onset 
of fever-a hallmark symptom of malaria. This process 
can also lead to severe complications such as malaria-
induced anemia, particularly in children, due to sig-
nificant RBC destruction. Additional symptoms include 
chills, headaches, and vomiting, which are common to 
other febrile illnesses as well [17]. Consequently, the use 
of precise diagnostic tools is crucial to detect and man-
age malaria. In regions where malaria is endemic, many 
individuals harbor the infection without showing symp-
toms, thanks to acquired immunity. These asymptomatic 
infections often go undetected by standard field diag-
nostics such as optical microscopy (detection limit: 50 
parasites/µ L) and rapid diagnostic tests (detection limit: 
100–200 parasites/µL), particularly when parasite levels 
are low [18]. Nonetheless, these undetected infections 
contribute to the persistence of malaria, as mosquitoes 
that bite infected carriers can acquire and then transmit 
the parasite to others, perpetuating the spread of the dis-
ease. Without appropriate treatment, these infections can 
lead to severe health consequences. Moreover, asympto-
matic carriers pose a risk of spreading malaria through 
mechanisms such as imported cases, or via blood trans-
fusions and organ transplants [18].
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There is a critical need for more effective diagnostic 
tools that can identify such low-density infections to pre-
vent the spread of malaria both within endemic regions 
and globally. Early treatment of these infections moves 
us closer to the goal of global malaria elimination. Addi-
tionally, the ability to promptly identify parasite strains is 
vital to curb the spread of drug resistance.

Related works
Machine learning has emerged as a reliable diagnos-
tic tool in the detection of various diseases, including 
malaria. It offers the potential to detect infections early 
and accurately, ensuring the correct administration of 
antimalarial drugs and reducing the risks associated with 
drug overuse and misuse. Timely and accurate diagnosis 
is crucial for effective treatment and management, yet 
traditional diagnostic methods often face limitations in 
sensitivity and accessibility, especially in low and middle-
income countries where access to medications, health 
care, and preventive education is limited [14]. In recent 
years, advancements in machine learning (ML) tech-
niques have shown promise in enhancing the accuracy of 
infectious disease diagnosis through automated analysis 
of medical images and clinical data [19]. However, the 
complexity of modern ML models, such as deep learning 
networks [16], can hinder their adoption in clinical set-
tings due to their inherent lack of interpretability. Health-
care professionals require transparent and explainable 
models to trust and effectively utilize these technologies. 
Explainable ensemble machine learning models offer a 
compelling solution by combining the high predictive 
power of ensemble learning with enhanced interpretabil-
ity, thereby bridging the gap between accuracy and trans-
parency in malaria diagnosis [16].

Machine learning techniques have proven valuable in 
healthcare diagnostics, as demonstrated in [20]. Their 
study uses advanced feature selection methods, including 
bio-inspired algorithms like Particle Swarm Optimiza-
tion (PSO), Genetic Algorithm (GA), and Firefly Algo-
rithm (FA), combined with ensemble models (RF and 
XGBoost) to enhance the accuracy of depression diagno-
sis. These methodologies parallel our approach in malaria 
diagnostics, where robust feature selection and ensemble 
models are utilized to maximize accuracy and interpret-
ability. The study underscores the broader applicability of 
ML in healthcare, providing a framework for enhancing 
diagnostic efficiency.

Recent advancements in machine learning for medi-
cal diagnostics are exemplified by [21], who conducted a 
systematic review of ML techniques in depression diag-
nosis. The study highlights the effective fusion of ML 
techniques with diverse data modalities, emphasizing 
the importance of careful pre-processing and feature 

optimization. These findings resonate with our study’s 
approach to malaria diagnostics, where ensemble mod-
els are employed to enhance accuracy and robustness. 
The review further underscores shared challenges, such 
as data scarcity, that motivate the adoption of advanced 
handling techniques. [22] highlights the application of 
machine learning models, such as Random Forest (RF) 
and Gradient Boosting (GB), to predict malaria using 
patient clinical information rather than blood smear 
images. Key contributions include the use of SMOTE to 
address class imbalance and the identification of critical 
features like nationality (for imbalanced data) and symp-
toms (for SMOTE-balanced data) in malaria prediction. 
These findings resonate with our use of SMOTE and fea-
ture importance analysis in our ensemble models, such as 
Random Forest and CatBoost, for malaria diagnosis.

[23] Barboza et al. focus on spatiotemporal prediction 
of malaria cases in the state of Amazonas, Brazil, using 
a large dataset of approximately 6 million records. By 
clustering cities based on malaria incidence and employ-
ing machine learning (ML) and deep learning (DL) mod-
els such as Random Forest, Long Short-Term Memory 
(LSTM), and Gated Recurrent Units (GRU), the study 
demonstrates the effectiveness of ML/DL models in pre-
dicting malaria cases. The results highlight that GRU per-
forms better in regions with high variability in malaria 
incidence, while LSTM excels in regions with low vari-
ability. Our study differs by focusing on patient-level data 
and employing ensemble methods like Random For-
est and CatBoost for malaria diagnosis. While Barboza 
et al. address macro-level prediction for resource alloca-
tion, our approach aims to improve clinical diagnostics 
through explainable AI (XAI). Together, these studies 
emphasize the versatility of ML/DL models in tackling 
malaria from both public health and clinical perspectives.

The study by [24] explores the application of Variational 
Quantum Circuit (VQC) machine learning for malaria 
diagnosis, leveraging the hybrid capabilities of quantum-
classical computing. This innovative approach utilizes red 
blood cell (RBC) images and employs advanced feature 
optimization techniques, including Minimum Redun-
dancy Maximum Relevance (mRMR) and Principal 
Component Analysis (PCA), to refine the feature set. By 
optimizing both the input encoding and the parameters 
of the quantum circuit, the VQC model demonstrates 
the potential of quantum-enhanced learning to achieve 
superior performance with reduced computational com-
plexity. The study reports impressive metrics-99.06% 
accuracy, 99.08% precision, 99.05% recall, and 99.07% 
specificity-using 10-fold cross-validation. Additionally, 
the authors incorporate a rule-based expert system to 
classify malaria types, further enhancing the model’s clin-
ical utility. The research not only highlights the growing 
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role of quantum machine learning in healthcare but also 
establishes a benchmark for future studies exploring 
quantum approaches in diagnostic systems. Compared to 
our study, which utilizes ensemble machine learning on 
clinical data, the VQC approach focuses on image-based 
data and quantum computing. While both emphasize 
feature optimization for accuracy, our work prioritizes 
explainability through SHAP and LIME, advancing inter-
pretability and clinical relevance, whereas VQC high-
lights computational efficiency.

Our study explores the application of explainable 
ensemble machine learning models in malaria diagnosis, 
aiming to improve diagnostic accuracy while providing 
insights into the decision-making process of these mod-
els. By examining these models’ methodologies, benefits, 
and challenges, we seek to highlight their potential to 
revolutionize malaria diagnostics and contribute to bet-
ter healthcare outcomes worldwide. Additionally, the 
findings from this study will be helpful for healthcare 
practitioners, policymakers, and researchers to select 
the most suitable models for health data prediction, 
thereby advancing the integration of machine learning 
in healthcare and fostering a more efficient and effec-
tive healthcare system. This study employs three primary 
methodologies in conjunction with ensemble techniques: 
Local Interpretable Model-agnostic Explanations (LIME) 
[25], Shapley Additive Explanations (SHAP) [26], and 
Permutation Feature Importance (PFI) [27]. LIME assists 
in explaining the predictions of black-box models by cre-
ating surrogate models with interpretable local behavior. 
SHAP, on the other hand, provides a unified measure of 
feature importance by assigning each feature an impor-
tance value for a particular prediction based on coopera-
tive game theory principles. These methods enhance the 
interpretability of the models by illustrating how each 
feature contributes to the final prediction. PFI assesses 
the significance of each feature by determining how 
much the model’s performance decreases when its values 
are randomly permuted. By utilizing these methods, the 
ensemble models will become more comprehensible and 
dependable for healthcare professionals, enabling them 
to make informed decisions based on model predictions.

The research questions guiding this study are as 
follows:

• How can ensemble machine learning algorithms be 
developed for accurate malaria prediction?

• In what ways can interpretable machine learning 
techniques, including Local Interpretable Model-
agnostic Explanations (LIME), Shapley Additive 
Explanations (SHAP), and Permutation Feature 
Importance (PFI), enhance the decision-making pro-
cess of ensemble models for malaria diagnosis?

• What insights can be provided regarding the factors 
influencing malaria diagnosis and predictions?

Methodology
In this study, we utilized a cross-validation strategy to 
ensure the robustness of our models. A 10-fold cross-
validation was applied, which involves splitting the data-
set into five subsets. For each fold, one subset is used as 
the validation set, while the remaining four subsets are 
used to train the model. This process is repeated five 
times, with each subset used as the validation set once. 
This helps to reduce overfitting and provides a more 
reliable estimation of model performance. We system-
atically optimized key hyperparameters for each model 
using RandomizedSearchCV with 5-fold cross-validation 
across multiple candidates. For Random Forest, we tuned 
the number of trees and maximum depth over 50 fits for 
20 candidates. Similarly, boosting models such as Ada-
Boost, Gradient Boosting, XGBoost, and CatBoost were 
fine-tuned for parameters like learning rate, number of 
boosting iterations, and regularization terms, with 45–50 
fits for 9–20 candidates each. These efforts significantly 
improved model performance, as detailed in the Model 
results section.

Study area
Ogun State is located in the Southeastern part of Nige-
ria. The State borders the Republic of Benin to the West, 
Osun and Oyo States to the north, Lagos State and Atlan-
tic Ocean to the south and Ondo State to the east. Ogun 
State has a population density of 6,445,275 as of 2023 
(National Population Commission, 2023). The State has 
a tropical wet and dry climate and has 224.18 rainy days 
yearly, hence a high breeding ground for Plasmodium.

Design of the study
The research pathway followed in this work can be seen 
from the illustration in Fig. 1. It gives a visual representa-
tion of the processes carried out in this work.

Data preparation methods
This section provides an overview of the data preprocess-
ing methods utilized in this study.

Spearman Rank Correlation Coefficient
The Spearman Rank Correlation Coefficient, often 
denoted as ρ or rs , measures the strength and direction 
of a monotonic relationship between two continuous or 
ordinal variables. It ranges from −1 to 1, where:

• rs = 1 shows a perfect positive monotonic relation-
ship,
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• rs = −1 shows a perfect negative monotonic rela-
tionship, and

• rs = 0 indicates no monotonic relationship [28].

Understanding the Spearman Correlation Coefficient 
is essential for analyzing relationships in our dataset, 
as it helps identify patterns and associations relevant to 
malaria-related data, even when relationships are not 
strictly linear.

The formula for Spearman’s correlation is based on the 
ranks of the data rather than the raw values:

where: di is the difference between the ranks of each pair 
of values (Xi,Yi) , n is the number of data points.

rs = 1− 6 d2i
n(n2 − 1)

In this formula, each variable is ranked from smallest to 
largest, and the correlation is calculated on these ranks, 
making Spearman’s coefficient more robust for non-lin-
ear relationships .

Standardization
Standardization entails transforming the input data to 
have zero mean and unit variance. This is crucial in mod-
eling since all inputs are scaled equally, thus avoiding the 
creation of biased models. Let a dataset contain n obser-
vations with p features, Xj , j = 1, 2, . . . p , then Eqs. (1) 
and (2) present the means and standard deviations of fea-
ture j correspondingly.

where µj and σ j are the mean and standard deviation of 
feature j respectively, xi is the i-th observation in feature 
j, and n is the total observations. Standardization of an 
observation i for feature j using z-score normalization 
can be given by:

Standardization is an important technique in machine 
learning that helps improve the robustness and generaliz-
ability of models.

Over‑sampling
Over-sampling is a technique used in machine learning 
to aid in addressing class imbalance. Chawla et  al. [29] 
introduced it for the first time. The minority class will 
be enhanced by this way of replicating existing instances 
and making sure that each category has equal number 
of samples. This method functions very much like KNN. 
Considering X to be the input matrix having minority 
class instances, k being the number of nearest neighbors 
to be considered and m as the synthetic samples to gen-
erate. Let xi represent an observation on a minority data 
point xij which is the ith observation on jth feature and 
k randomly selected neighbors. The new feature vector, 
Xi,new , is defined as:

Where Xj is the original feature vector, α is any random 
number between 0 and 1, while Xr denotes a randomly 
chosen feature vector from all available vectors. Over-
fitting observed in random sampling can be mitigated 

(1)µj =
1

n

n∑

i=1

xi

(2)σ j =
1

n

n∑

i=1

(
xi − µj

)2

(3)Xstandardized = xi − µj

σj

(4)Xj,new = Xj + [α(Xj − Xr)]

Fig. 1 Research design flowchart. Source: Author
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through oversampling. Classification accuracy can 
improve if this technique is used [29].

Ensemble machine learning models
Ensemble machine learning models are powerful tech-
niques that combine multiple individual models to 
improve overall performance and robustness. The idea 
is that by integrating the predictions from several mod-
els, an ensemble can reduce the likelihood of errors and 
produce more accurate results compared to any single 
model. We describe the ensemble machine models used 
in this study in the following sub-sections:

Random Forest
Random Forest (RF) is a tree-based ensemble learning 
method, and bagging type ensemble [30]. Unlike other 
ordinary trees, RF splits every node by selecting the most 
effective among a random subset of predictors at that 
node [31]. This extra layer of randomness is what makes 
RF more resistant to over-fitting [32]. To improve the 
bagged trees in RF, a slight change that de-correlates the 
trees are made. For example, in bagging, we create sev-
eral decision trees for bootstrapped training sets. How-
ever, when constructing these decision trees, each time a 
split occurs within a tree, a randomly chosen sample of m 
variables are selected as potential splitting points out of 
the complete set of p-predictors [33]. The random forest 
builds each decision tree as follows:

• A random subset of the features is chosen at each 
node.

• A measure of impurity, such as Gini impurity or 
entropy, is used to determine which characteristic 
offers the best split.

• A stopping requirement, such as a maximum depth 
or a minimum number of samples per leaf, is fulfilled 
as the tree grows.

In deciding how to classify the data, each decision tree 
acts as an expert. The predominant result (majority vote) 
is used to make predictions after computing the predic-
tion for each decision tree [34]. The optimal method for 
enhancing bagging is to reduce variation. This is such 
that the outcome for a B tree (bootstrap sample) is equal 
to the outcome for any other tree, and vice versa, due to 
the evenly distributed tree spread resulting from the bag-
ging strategy. The B-bagged trees’ bias is, therefore, equal 
to the bias of an individual B tree.

The basic idea of RF is to enhance the bagging vari-
ance by reducing the correlation between trees [35]. This 
objective is accomplished during the tree-building pro-
cess by randomly selecting input variables. Every node is 

divided from a subset of predictors chosen arbitrarily at 
every node into the best predictors. Prior to every split, 
RF chooses arbitrarily b ≤ a input variables as candidates 
for splitting where a is the overall number of input varia-
bles. Most of the time, b has a value of 

√
a or possibly just 

1 . Additionally, trees with particular framework quali-
ties are produced by this choice at random. To obtain 
the final RF class prediction, we apply a majority vote on 
the RF’s respective decision trees. Specifically, let Ĉi(y) 
denote the prediction made by the ith tree, then the RF 
prediction Ĉ(y) is:

where i = 1, · · · , n and n is the number of trees.

AdaBoost
Adaptive boosting (AdaBoost) algorithm is an ensemble 
learning technique that enhances the performance of 
weak learners to create a robust predictive model [36]. 
In Adaboost, training sets (x1, y1) , (x2, y2) ,. . . , (xm, ym) is 
the input, where each xi belongs to some instance space 
X, and each feature yi is in some label set Y (in this case 
assuming that Y = {−1,+1}).This method repeatedly 
invokes a particular weak or base learning algorithm 
through a given number of rounds t = 1, ...,T  . One of 
the key ideas in the algorithm is to maintain a distribu-
tion or collection of weights over the training set. The 
weight of this distribution on training samples i on round 
t will be denoted by Dt(i) . Initially, all weights are equal, 
but at every round, the weights of misclassified samples 
are increased so that the weak learner can concentrate 
on hard samples in the training data. The responsibility 
for finding a weak hypothesis ht : X → {−1,+1} useful 
under the distribution Dt still lies with the weak learner 
[37].

For a binary classification problem with a dataset contain-
ing m samples, denoted as {(x1, y1), (x2, y2), ..., (xm, ym)} , 
where xi represents the feature vector and yi denotes the 
corresponding binary class label ( yi ∈ {−1,+1} ), AdaBoost 
algorithm can be represented as follows:

Initialize sample weights Dt(i) = 1
m for i = 1, 2, ...,m.

For t = 1, 2, ...,T  , where T is the number of boosting 
iterations:

• Train a weak learner ht(x) using the weighted sam-
ples Dt.

• Get weak hypothesis ht : X → {−1,+1} with low 
weighted error 

• Compute the classifier weight αt as: 

(5)Ĉ(y) = Majority vote
{
Ĉi(y)

}n

i=1
,

ǫt = Pri ∼Dt [ht(xi) �= yi]
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• Update, for i = 1, . . . ,m : 

 Where Zt is a normalization factor chosen so that 
Dt+1 will be a distribution.

• Output the final hypothesis: 

Gradient boosting
Gradient boosting is a boosted algorithm used to solve 
classification and regression problems [38]. The predic-
tion model produced by gradient boosting takes the 
form of a combination of weak learners, often referred 
to as decision trees. This stage-wise modeling approach 
that underlies other boosting techniques also applies 
to it, whereas these are further generalized by enabling 
optimization over any differentiable loss function [39]. 
In gradient boosting, a new decision tree is learned at 
each stage to rectify errors committed by the existing 
trees. Gradient boosting as a non-linear method out-
performs linear models [40] when there are high-order 
relationships in the data. Moreover, it has surpassed 
other machine learning algorithms in various studies 
[41]. Its potential was described in recent works in the 
medical field [40, 42–44]. The gradient boosting algo-
rithm, was originally proposed by [45] and it is repre-
sented as follows:

Inputs:

• Input data (x, y)Ni=1

• number of iterations M
• Choice of the loss function ψ(y, f )

• Choice of the base-learner model h(x, θ)

Algorithm: 

1. Initialize f̂0 with a constant
2. Compute the negative gradient gt(x)
3. Fit a new base-learner function h(x, θt)
4. Find the best gradient descent step-size ρt : 

αt =
1

2
ln

(
1− ǫt

ǫt

)

Dt+1(i) =
Dt(i)

Zt
×

{
exp (−αt) if ht(xi) = yi
exp (αt) if ht(xi) �= yi

=
Dt(i) exp

(
−αtyiht(xi)

)

Zt

H(x) = sign

(
T∑

t=1

αtht(x)

)
.

5. Update the function estimate: 

6. End

XGBoost
XGBoost or eXtreme Gradient Boosting [41] is a deci-
sion tree ensemble that depends on gradient boosting to 
be highly scalable. XGboost is built similarly to Gradient 
Boosting as an objective function is expanded additively 
through the minimization of the loss function. It is used for 
supervised learning tasks, such as regression and classifica-
tion [46]. XGBoost builds a predictive model by combining 
the predictions of multiple individual models, often deci-
sion trees, in an iterative manner [47].

The algorithm works by sequentially adding weak 
learners to the ensemble, with each new learner focus-
ing on correcting the errors made by the existing ones. It 
uses a gradient descent optimization technique to mini-
mize a predefined loss function during training [48, 49]. 
To begin with, a tree ensemble method of classification 
and regression trees (CARTs) is utilized whereby each 
CART consists of Ki

E | i ∈ 1 . . .K  nodes. The total pre-
diction scores at a leaf node fk for each tree k th are used 
to calculate the final prediction output of class label ŷi . 
This is expressed in Eq. (6).

where xi stands for training set whereas F denotes the set 
of all K scores for all CARTs. Afterwards, regularization 
step enhances the outcomes as shown by Eq. (7).

In this case, ℓ represents the differentiable loss func-
tion, which is determined through finding out the error 
difference between the target yj and the predicted class 
labels ŷ’s. Furthermore, there is also a design element 
that penalizes � , to make sure that models do not suffer 
from over-fitting complexities. Finally, there is an Eq. (8) 
that can be used to compute the values of the penalty 
function.

ρt = arg minρ

N∑

i=1

ψ

[
yi, f̂t−1(xi)+ ρh(xi, θt)

]

f̂ ← f̂t−1 + ρth(x, θt)

(6)ŷi = ϕ(xi) =
K∑

k=1

fk(xi), fk ∈ F

(7)L(ϕ) =
∑

i

ℓ
(
ŷi, yi

)
+

∑

k

�
(
fk
)

(8)�(f ) = γT + 1

2
�

T∑

j=1

w2
j
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where γ and � are parameters that can be modified to 
control the level of regularization. The number of leaves 
in the tree is represented by T, while w is a set of weights 
corresponding to the leaves.

The Gradient Boosting (GB) is then used to efficiently 
solve the classification problem with loss function and 
extended by second-order Taylor expansion. The constant 
term will be removed in order to simplify the objective at 
step t as calculated in Eq. (9).

where Ij =
{
i | q(xi) = j

}
 denotes instances of leaf t and 

equations for first-order gradient statistics gi and second-
order gradients hi are defined in Eqs. (10)-(11).

Thereafter the optimal weight w∗
j  of leaf j can be calcu-

lated using Eq. (12).

Equation (13) then allows for the calculation of a func-
tion q to use as a scoring function that measures the quality 
of tree structure by giving it a given tree structure q(xi).

This function can be simplified by using the Taylor 
expansion as shown in Eq. (14) , and a formula is derived 
for loss reduction after the tree split from the given node:

where I is a subset of the available observations in the 
current node i.e I = IR ∪ IL and IL , IR are subsets of the 
available observations in the left and right nodes after the 
split.

(9)

L̃
(t) =

n�

i=1

�
gift (xi)+

1

2
hif

2

t (xi)

�
+�

�
ft
�

=
n�

i=1

�
gift (xi)+

1

2
hif

2

t (xi)

�
+ γT + 1

2
�

T�

j=1

w2

j

=
T�

j=1








�

i∈Ij
gi



wj +
1

2




�

i∈Ij
hi + �



ω2

j



+ γT

(10)gi =
∂ℓ(ŷ

(t−1)
i , yi)

∂ ŷ
(t−1)
i

(11)hi =
∂2ℓ(ŷt−1

i , yi)

∂(ŷt−1
i )2

(12)w∗
j =

∑
i∈Ij gi∑

i∈Ij hi + �

(13)L̃
(t)(q) = −1

2

T∑

j=1

(∑
i∈Ij gi

)2

∑
i∈Ij hi + �

+ γT

(14)Lsplit =
1

2




��

i∈IL gi
�2

�
i∈IL hi + �

+

��
i∈IR gi

�2

�
i∈IR hi + �

+
��

i∈I gi
�2

�
i∈I hi + �



− γ

CatBoost
The CatBoost algorithm, derived from “Category Boost-
ing”, has been widely used for its impressive handling of 
categorical data, which is why it makes a good choice for 
health data tasks that mostly involve a combination of 
numerical and categorical features [50]. CatBoost is an 
implementation of gradient boosting, which makes use of 
binary decision trees as base predictors. CatBoost’s abil-
ity to natively handle categorical data as well as its regu-
larized nature that guards against overfitting positions it 
uniquely in the health prediction setting where feature 
interactions can be complex and non-linear.

Consider data consisting of samples 
D =

{(
Xj , yj

)}
j=1,...,m

 , where Xj =
(
x1j , x

2
j , . . . , x

n
j

)
 is a 

vector of n features and response feature yj ∈ R ; the 
response may be encoded either numerically (0 or 1) or 
categorically (i.e., yes-no). The pairs 

(
Xj , yj

)
 are identically 

and independently distributed according to an unknown 
distribution p(.,.). Therefore given in (15), the objective of 
this learning task is to train a function H : Rn → R,

where (X, y) is test set drawn from training data D and 
L(., ·) represents any smooth loss function. Gradient 
boosting [51] is carried out in a greedy manner by repeat-
edly constructing approximations Ht : Rm → R, t = 
0, 1, . . . . The new approximation Ht with respect to the 
previous approximation can be derived by means of an 
addition process such that Ht = Ht−1 + αgt , where α 
denotes the step size and gt : Rn → R is a base predictor 
chosen from a set of functions G that aims at minimizing 
the expected loss defined in (16):

The minimization problem is typically solved either 
using Newton’s method via second-order approximation 
of the function L(H (t−1) + g (t)) at H (t−1) or taking ( neg-
ative ) gradient steps. Either of these functions is gradient 
descent [45, 52].

Data analyses and results
In the last section, we showed the mathematical repre-
sentation of the techniques that were used in this study. 
This section intends to give a description of our data-
sets, analytics on data, model fit, and model prediction 
and comparisons. To ensure reproducibility, all analyses 
were performed using Python 3.9.1. This software pack-
age has various great libraries, including Pandas for data 

(15)L(H) := E[L(y,H(X))]

(16)
gt = arg min

g∈G
L

(
Ht−1 + g

)

= arg min
g∈G

EL
(
y,Ht−1(X)+ g(X)

)
.



Page 9 of 26Awe et al. BMC Medical Informatics and Decision Making          (2025) 25:162  

handling in general, Matplotlib and Seaborn for visual-
izing, Scikit-learn [53] for pre-processing, data splitting, 
model building and evaluation as well as explainability 
with LIME and Permutation Feature Importance.

From the different studies that have used deep learning 
models, it is evident that ensemble methods effectively 
minimize false positives and false negatives, increasing 
confidence in diagnosing malaria. These models are par-
ticularly useful in addressing the challenges of skewed 
variable distributions in large, imbalanced datasets. In 
such cases, smaller attributes can be overshadowed, lead-
ing to misclassification and significant prediction errors. 
However, machine learning techniques refine these pre-
dictions, helping to uncover hidden patterns in the data. 
These insights are crucial for public health interventions 
aimed at controlling malaria. Examples include accurate 
malaria outbreak prediction models [54, 55], the com-
plexities of parasite transmission [56], identifying areas 
for targeted disinfection [57] and predicting immune sys-
tem resilience to parasite incursions [56].

Data description and preprocessing
This study employed a comprehensive malaria dataset, 
collected over a four-week period at a medical center in 
Nigeria, to investigate and model malaria-related symp-
toms. The dataset comprises detailed records of 337 
patients who presented with symptoms indicative of 
malaria, providing a rich source of information for anal-
ysis. The data is sourced from a peer-reviewed research 
article, accessible at Malar ia Datas et, ensuring its cred-
ibility and relevance for scientific inquiry. The patient 
cohort spans a wide age range, from 3 to 77 years, with 
an average age of 35.4 years (SD = 14.7). Gender distribu-
tion within the dataset shows 180 females and 157 males, 
indicating a slight gender imbalance. This demographic 
diversity supports a nuanced analysis of malaria’s impact 
across different age groups and genders. An exploratory 
data analysis revealed a class imbalance in the target vari-
able, where 65.6% of the patients were not diagnosed with 
malaria, while 34.4% were confirmed to have the disease. 
Such an imbalance in the data is a critical consideration, 
as it can influence the performance of predictive mod-
els. Addressing this imbalance is necessary to develop a 
model that provides accurate and unbiased predictions.

To identify the most relevant features for analysis, 
a systematic feature selection process was conducted. 
This resulted in a final set of 16 features, encompassing 
both categorical and numerical variables, in addition to 
the target variable, severe_malaria. The target variable 
distinguishes between the presence (1) and absence (0) 
of severe malaria. A comprehensive summary of these 
features is presented in Table 1. Importantly, the dataset 
is complete, with no missing values, which enhances its 

reliability and suitability for building robust predictive 
models. This completeness, combined with its diverse 
demographic and categorical information, makes the 
dataset a valuable resource for malaria research and 
modeling efforts.

In this study, Spearman Rank Correlation Coefficient 
analysis was applied to the malaria dataset to assess the 
relationship between features and the target variable. Fig-
ure  2 illustrates a correlation plot of the dataset, where 
variables with correlation coefficients close to 1 and −1 
indicate strong positive and negative correlations, respec-
tively. A threshold of 0.05 was set, and features with cor-
relation coefficients below this threshold were eliminated 
which resulted in the removal of ’sex’ from the features. 
As a result, 16 features were retained for further analy-
sis [58]. In this study, we standardized our data to ensure 
the data was on the same scale and for consistent results 
across the models used.

Handling Class Imbalance: One of the primary prepa-
ration steps in this work was to manage the imbalance in 
the dataset, which, if not managed properly, could lead to 
bias in model training because machine learning mod-
els tend to favor classes with the most representation. 
The imbalance ratio of the Malaria dataset before bal-
ancing was 1:2, meaning that for every malaria patient, 
there were approximately two non-malaria patients. The 
highly imbalanced nature of the data, therefore, made 
it imperative for balancing to be carried out. Figure  3 
illustrates the class distribution for the Malaria dataset. 
Subsequently, Fig.  4 shows the class distribution after 

Table 1 Description of features in malaria dataset

Feature Description

age Age of the patient

sex Sex of the patient (1: Male, 0: Female)

fever Presence of fever (1: Yes, 0: No)

cold Presence of cold symptoms (1: Yes, 0: No)

rigor Presence of rigor (shivering) (1: Yes, 0: No)

fatigue Presence of fatigue or tiredness (1: Yes, 0: No)

headace Presence of headache (1: Yes, 0: No)

bitter_tongue Presence of bitter taste in the mouth (1: Yes, 0: No)

vomitting Presence of vomiting (1: Yes, 0: No)

diarrhea Presence of diarrhea (1: Yes, 0: No)

Convulsion Presence of convulsions (seizures) (1: Yes, 0: No)

Anemia Reduced red blood cell count or hemoglobin (1: Yes, 
0: No)

jundice Yellowing of skin and eyes (1: Yes, 0: No)

cocacola_urine Dark-colored urine (1: Yes, 0: No)

hypoglycemia Low blood sugar levels (1: Yes, 0: No)

prostraction Extreme weakness or fatigue (1: Yes, 0: No)

hyperpyrexia Extremely high fever (1: Yes, 0: No)

https://pmc.ncbi.nlm.nih.gov/articles/PMC7093799/
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applying oversampling to balance the Malaria data set. 
In this study, an oversampling technique was used to 
balance our classes on the data used to train our models 
Malaria dataset. We balanced the train set instead of the 
entire dataset to reduce the chances of overfitting. Other 

methods, such as synthetic data generation, were not 
considered because the dataset involved sensitive medi-
cal data, where synthetic data generation could introduce 
risks of inaccuracies or distortions that might compro-
mise the integrity of the study.

Fig. 2 Correlation matrix of malaria dataset

Fig. 3 Target classes before balancing
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Model results
In this section, the results of the models used in our study 
are presented. A number of performance evaluation met-
rics were employed in order to determine how effective 
the models were, including accuracy, balanced accuracy, 
Matthew Correlation Coefficient (MCC), precision, and 
Area Under the Receiver Operating Characteristic (AUC-
ROC) curve score. The Malaria dataset used in this study 
was divided into a 70:30 ratio, with 70% used for training 
and 30% used for testing. The following confusion matri-
ces were obtained from the five models trained on the 
imbalanced dataset for the Malaria dataset.

From the confusion matrices generated in Figs.  5, 
6, 7, 8, and 9, the study can observe the impact of data 
imbalance and the necessity of incorporating balancing 
techniques in the study. It is evident that all the mod-
els struggle to correctly identify the true negative (TN) 
classes effectively, especially out of the 37 correct nega-
tive classes in the test dataset. The performance metrics 
of these models can be seen in Table 2.

While the Random Forest model achieves the highest 
accuracy score (64.7%), it struggles with balanced accu-
racy (54.8%) and MCC (0.140), indicating challenges in 
correctly identifying true negatives. CatBoost follows 
closely with slightly lower accuracy (63.7%) but exhibits 
a higher balanced accuracy (55.2%) and MCC (0.132), 
showcasing better overall performance in handling 
the imbalanced dataset. Gradient Boost and AdaBoost 
models also face difficulties in balanced accuracy and 
MCC, indicating similar struggles in TN identification. 
XGBoost shows lower overall performance metrics, 

with the lowest accuracy (58.8%) and MCC (0.078) 
among the models, although it exhibits relatively higher 
recall and F1 scores, suggesting better identification 
of positive instances despite struggling with overall 
accuracy. The overall analysis of the ensemble machine 
learning models indicates that evaluating multiple met-
rics beyond just accuracy is crucial, especially when 
dealing with imbalanced datasets. While accuracy pro-
vides a general measure of performance, metrics like 
balanced accuracy, Matthews Correlation Coefficient 
(MCC), recall, and F1 scores offer a deeper insight into 
how well the models handle different classes. The pri-
mary challenge observed across most models was the 
difficulty in correctly identifying true negatives, under-
scoring the need to address class imbalance during 
model training and evaluation.

The findings here suggest that although the Random 
Forest model achieved the highest accuracy, CatBoost 
displayed a more balanced performance across all 
classes, making it potentially more suitable for real-
world malaria diagnosis applications. This study high-
lights the importance of using a comprehensive set of 
evaluation metrics to fully assess model performance, 
particularly in critical fields such as medical diagnostics 
where both false positives and false negatives can have 
significant consequences.

From Figs.  10, 11, 12, 13, and 14, there were notable 
improvements in the true positive (TP) and true negative 
(TN) identification for all the ensemble machine learning 
models in the Malaria dataset after applying oversam-
pling technique to address class imbalance. Specifically, 

Fig. 4 Target classes after oversampling
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Fig. 5 Random Forest before balancing

Fig. 6 CatBoost before balancing
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Fig. 7 XGBoost before balancing

Fig. 8 AdaBoost before balancing
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both the Random Forest (RF) and CatBoost models 
showed enhanced TP and TN rates, indicating improved 
accuracy in identifying both malaria and non-malaria 
cases. Conversely, while the XGBoost model demon-
strated improved TP rates, there was a slight increase in 
false positives (FP), leading to a lower TN rate. AdaBoost 
and GradientBoost models also exhibited mixed results 
in TP and TN identification, highlighting the effects of 
oversampling on the model’s performances as displayed 
in Table 3.

After implementing oversampling techniques to han-
dle a class imbalance in the Malaria dataset, signifi-
cant improvements were observed in the performance 
metrics of various machine-learning models. Both the 
Random Forest and CatBoost models exhibited sub-
stantial increases in accuracy scores, reaching 76.7%, 
along with improved ROC-AUC scores of 0.853 and 

0.821, respectively. These enhancements also translated 
to higher Matthews correlation coefficient (MCC), bal-
anced accuracy, Cohen’s Kappa coefficient, precision, 
recall, and F1 scores, reflecting better overall predictive 
capabilities in malaria diagnosis. The Gradient Boost 
and XGBoost models also showed notable improve-
ments across most metrics, although slightly lower than 
Random Forest and CatBoost. However, the AdaBoost 
model, while showing some improvements, post-over-
sampling, still lagged behind significantly in accuracy 
and other performance metrics compared to the other 
models.

The ROC curve is shown in Fig. 15.
Using oversampling to handle class imbalance in the 

Malaria dataset, Random Forest (RF) and CatBoost 
stand out as the top-performing models. RF achieves an 
AUC of 0.87, highlighting its robust ability to distinguish 

Fig. 9 GradientBoost before balancing

Table 2 Performance evaluation metric results before balancing

Model Accuracy ROC AUC MCC B. Acc Cohen’s K. Precision Recall F1 Score

Random F. 0.647 0.580 0.140 0.548 0.113 0.538 0.189 0.280

CatBoost 0.637 0.592 0.132 0.552 0.118 0.500 0.243 0.327

Gradient B. 0.627 0.567 0.100 0.539 0.088 0.471 0.216 0.296

AdaBoost 0.618 0.598 0.090 0.537 0.082 0.450 0.243 0.316

XGBoost 0.588 0.561 0.078 0.537 0.077 0.419 0.351 0.382
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Fig. 10 Random Forest after oversampling

Fig. 11 CatBoost after oversampling
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Fig. 12 XGBoost after oversampling

Fig. 13 AdaBoost after oversampling
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between positive and negative instances accurately. Cat-
Boost also excels with an impressive AUC of 0.84, show-
casing its effectiveness in accurate classification. Gradient 
Boost and XGBoost show notable improvements with 
AUC values of 0.76 and 0.81, respectively, while Ada-
Boost achieves an improved AUC of 0.66.

After hyperparameter tuning for the malaria predic-
tion as shown in Table 4, Random Forest emerged as the 
top-performing model, demonstrating strong predictive 
capabilities across various evaluation metrics. With an 
accuracy score of 0.819, Random Forest effectively dis-
tinguishes between malaria-positive and negative cases. 
Its ROC AUC score of 0.870 indicates that the model 
performs well in separating the two classes, showcasing 
its ability to rank predictions with high confidence. The 
model’s Matthew’s Correlation Coefficient (MCC) of 
0.637 reflects a good balance in predicting both classes 

correctly, making it suitable for dealing with the class 
imbalance often present in malaria datasets.

Additionally, the balanced accuracy of 0.819 indicates 
that Random Forest is robust in handling class distri-
butions, providing consistent performance for both 
malaria-positive and negative instances. Its Cohen’s 
Kappa score of 0.637 further confirms the model’s reli-
ability, reflecting a substantial agreement between the 
predicted and actual classifications beyond random 
chance. Both precision and recall at 0.831 demon-
strate that Random Forest strikes an excellent balance 
between identifying true malaria cases (high recall) 
and minimizing false positives (high precision). This 
balance is crucial in healthcare settings where the cost 
of mis-classification can be high, especially when pre-
dicting a serious condition like malaria. In comparison, 
AdaBoost performed the worst, with a low accuracy of 

Fig. 14 GradientBoost after oversampling

Table 3 Performance evaluation metric results after oversampling

Model Accuracy S. ROC AUC S. MCC B. Acc Cohen’s K. Precision Recall F1 S.

Random F. 0.767 0.853 0.532 0.766 0.532 0.786 0.775 0.780

CatBoost 0.767 0.821 0.532 0.766 0.532 0.786 0.774 0.780

Gradient B. 0.737 0.787 0.470 0.733 0.469 0.737 0.789 0.762

XGBoost 0.722 0.803 0.439 0.718 0.438 0.724 0.775 0.748

AdaBoost 0.617 0.675 0.230 0.615 0.230 0.643 0.634 0.638
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0.579 and an MCC of only 0.156, showing weak pre-
dictive power and struggles with classifying malaria 
cases. Gradient Boost and XGBoost performed moder-
ately, with accuracy scores of 0.729 and 0.692, respec-
tively. These models, while decent, lacked the precision 
and robustness shown by Random Forest. Their lower 
MCC and Cohen’s Kappa scores indicate that they did 
not handle class distributions as well, leading to more 
errors in classification.

Discussion
Random Forest (RF) and CatBoost have shown excellent 
performance, as shown in Tables 3 and 4. This indicates 
their strength in dealing with health data classification. 
Random Forest can address health data with a large 

number of features, which enables it to identify complex 
relationships within medical datasets more efficiently. 
Being an ensemble model that combines many decision 
trees, it prevents overfitting and enhances generalization, 
useful in healthcare where accuracy is required [32]. On 
the other hand, what makes CatBoost so effective is its 
capability to handle categorical features as well as built-
in protection against overfitting [50]. This feature is criti-
cal in malaria diagnostics, where categorical data such as 
patient demographics and symptom presence play a sig-
nificant role. Its gradient-boosting framework optimizes 
learning from previous iterations, focusing on difficult 
examples and reducing bias, which proves advantageous 
in medical datasets characterized by imbalanced classes 
and subtle variation patterns. This focus is reflected in 

Fig. 15 ROC curve after oversampling

Table 4 Model performance after hyperparameter tuning

Model Accuracy S. ROC AUC S. MCC Balanced A. Cohen’s K. Precision Recall

Random F. 0.8195 0.8696 0.6374 0.8187 0.6374 0.8310 0.8310

AdaBoost 0.5789 0.6336 0.1558 0.5780 0.1557 0.6087 0.5915

Gradient B. 0.7293 0.8092 0.4559 0.7230 0.4505 0.7160 0.8169

XGBoost 0.6917 0.7703 0.3812 0.6826 0.3710 0.6744 0.8169

CatBoost 0.7293 0.7876 0.4551 0.7240 0.4517 0.7215 0.8028
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metrics like AUC-ROC and F1 score, which are crucial 
for imbalanced data as they consider both positive class 
recall and overall accuracy. Compared to other ensemble 
models, Random Forest and CatBoost consistently out-
perform them in accuracy, precision, recall, F1 scores, 
and AUC-ROC. This shows that they are very effective 
in finding useful patterns from complicated health data, 
especially when imbalanced class distributions exist. 
They are also very important for predictive modeling in 
healthcare. In the light of this, they can be used for early 
diagnosis and optimization of treatment plans, among 
others, leading to patient outcome predictions.

Model explainability with LIME
To obtain explanations of a model’s prediction using the 
LIME package in Python, we compile a list of attributes 
used to train the model, define class labels (e.g., Severe 
Malaria and no Malaria for the Malaria prediction data-
set), and create a function that provides probabilities for 
each feature. The function is then fed in as an array. All 
components are sent to the LIME explainer object. After 
inputting an observation, the explainer predicts and 
provides insights into how each feature contributes to 
the classes presented. In this study, we utilize the LIME 
method to analyze the performance of the Random For-
est and CatBoost model.

Figure 16 shows LIME analysis results for interpreting 
the random forest model’s predictions for Severe Malaria 
at a specific instance. The model predicts a 0.92 probabil-
ity that this instance is likely to have severe malaria. The 
key indicators identified are headache, coca-cola urine, 
prostration, age, convulsion, diarrhea, and hyperpyrexia, 
each contributing varying levels of significance to the 
prediction. Headache emerges as the most important 

feature with an importance score of 0.10, followed closely 
by coca-cola urine and prostration, each contributing 
0.06, and age with a contribution of 0.05. Conversely, 
the model predicts a 0.08 probability that this instance is 
unlikely to have malaria. The model considers symptoms 
like rigor, cold, and vomiting, which have minimal impor-
tance in the model’s decision-making process (probabili-
ties ≤ 0.03 ). What this means is that sometimes certain 
signs strongly affect the predictions made by the system, 
hence illuminating various reasons behind diagnosis or 
non-diagnosis of malaria in different cases.

CatBoost model exhibits a slightly lower confidence 
level at 0.85 for severe malaria prediction and 0.15 
towards predicting no malaria as shown in Fig. 17. Key 
factors contributing to the CatBoost model’s malaria 
prediction encompass symptoms like headache, coca-
cola urine, prostration, age, convulsion, diarrhea, and 
hyperpyrexia. Notably, headache holds the highest 
importance at 0.13, trailed by age, prostration, and 
Coca-Cola urine at 0.09 each. Additionally, convulsion, 
diarrhea, and hyperpyrexia significantly contribute to 
predictions with importance values of 0.07, 0.05, and 
0.04, respectively. On the other hand, features such as 
rigor, cold, and vomiting suggest non-malaria predic-
tion, with importance values of 0.06, 0.04, and 0.03, 
respectively. The key factors identified by LIME for the 
Random Forest and CatBoost models include head-
ache, coca-cola urine, prostration, age, convulsion, 
diarrhea, and hyperpyrexia. These factors align well 
with clinical observations, as symptoms like prostra-
tion and hyperpyrexia are indicative of severe malaria 
and high parasitic loads. Coca-cola urine, a sign of 
hemoglobinuria, reflects severe red blood cell destruc-
tion, often associated with Plasmodium falciparum 

Fig. 16 LIME Random Forest
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infections. Age, a critical predictor, corresponds to 
documented variations in immunity and disease sever-
ity across different age groups.

Model explainability with SHapley Additive exPlanations
SHAP (SHapley Additive exPlanations) values are a cru-
cial tool for interpreting machine learning models, espe-
cially in medical contexts like malaria prediction. By 
breaking down the contributions of each feature to the 
model’s output, SHAP helps clinicians and data scientists 
understand which factors most strongly influence the 
prediction of malaria risk. This interpretability allows for 
greater trust in model decisions, especially in high-stakes 
environments like healthcare.

From Fig.  18, which shows the SHAP summary plot, 
we can observe how individual features related to 
malaria symptoms influence the model’s predictions. Age 
emerges as a highly influential factor, with older individu-
als (indicated by red points) contributing positively to the 
malaria prediction. This could be due to age-related or 
susceptibility factors, and this is also supported by pre-
vious studies such as [59] which identified age as a sig-
nificant risk factor for severe Plasmodium falciparum 
malaria in nonimmune patients. Similarly, diarrhea and 
hypoglycemia have a notable spread in their SHAP val-
ues, indicating they significantly affect the likelihood of 
malaria prediction. For instance, higher SHAP values for 
diarrhea suggest that patients exhibiting this symptom 

Fig. 17 LIME CatBoost

Fig. 18 SHAP individual
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are more likely to be predicted as having malaria. Other 
features like anemia, headache, and cold also contribute, 
albeit to a lesser extent. This variability in SHAP values 
across features allows us to see how symptoms com-
monly associated with malaria influence individual pre-
dictions in different ways.

From Fig. 19, the mean absolute SHAP values help us 
understand the overall importance of each feature in pre-
dicting malaria. Age is the most critical feature, with the 
highest mean SHAP value, suggesting that it plays the 
most significant role in determining malaria risk. Fol-
lowing age, diarrhea and hypoglycemia are also promi-
nent features, indicating that these symptoms are highly 
predictive of malaria. Features such as anemia and con-
vulsion, which are commonly associated with severe 
malaria, show moderate importance, suggesting their 
role in specific prediction instances. On the other hand, 
features like vomiting and hyperpyrexia have relatively 
low SHAP values, indicating that, on average, they con-
tribute less to the model’s predictions.

Model explainability with permutation feature importance
In addition to LIME, which explains individual pre-
dictions, we also used Permutation Feature Impor-
tance (PFI) to know what features are important for our 
machine learning models on average. By shuffling a fea-
ture’s values and thus breaking the relationship between 

that feature and the target variable, PFI disrupts its meas-
ures of how much this affects the model’s performance - 
the larger the drop in performance, the more significant 
that feature is for predicting with this model. LIME gives 
information about particular instances, while PFI shows 
the importance of features across the whole dataset. Such 
a combination allowed us to see how different aspects 
contribute to models’ performance.

Figure 20 shows permutation feature importance (PFI) 
analysis for the Random Forest model. Age emerged as 
the most important factor, highlighting its established 
association with malaria risk in younger children and 
older adults. The model also placed moderate importance 
on various symptoms for prediction, including head-
aches, rigors, the presence of Coca-Cola-colored urine, 
vomiting, diarrhea, and convulsions. Biological indica-
tors like fever, hyperpyrexia, and potential prostration 
also seem to influence the model’s predictions. Hyper-
pyrexia, defined as a fever exceeding 39°C, reflects the 
body’s inflammatory response to Plasmodium falciparum 
infection and is associated with higher parasitic loads, 
highlighting its clinical relevance in severe malaria [60].

Anemia had a negligible PFI score, as shown in the red 
bar, warranting further exploration to understand its role 
in the model. Finally, some symptoms like cold, fatigue 
and bitter taste had lower importance scores, suggesting 
that the model might rely on them less. However, these 

Fig. 19 SHAP overall
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features could still hold some informative value. It’s also 
worth noting that hypoglycemia (low blood sugar) had a 
very low PFI score, suggesting a weaker influence on the 
model’s predictions compared to other features.

Similar to the Random Forest model, permutation 
feature importance (PFI) analysis provided insights into 
feature importance for the CatBoost model as shown in 
Fig.  21. Here too, age emerged as the most important 
factor, aligning with its established role in malaria risk 
assessment. The model also placed moderate importance 
on various symptoms for prediction, such as headaches, 
rigors, prostration, presence of Coca-Cola-colored urine, 
vomiting, diarrhea, and convulsions. These symptoms 
likely play a significant role in the CatBoost model’s 
malaria prediction process.

Interestingly, anemia showed a slight increase in 
importance in the CatBoost model compared to Ran-
dom Forest, although its PFI score remained relatively 
low. Biological indicators like fever and hyperpyrexia also 
gained weight from the CatBoost model, though poten-
tially less than some symptoms. Finally, some symptoms 
like cold, fatigue and bitter taste had lower importance 
scores, suggesting that the model might rely on them less 
for prediction. Malaria, especially in its severe form, is 

characterized by a range of clinical symptoms that reflect 
the physiological impact of the disease on the body. The 
features in our dataset, such as age, fever, rigor, fatigue, 
convulsion, anemia, jaundice, and coca-cola urine are key 
indicators of disease progression. Severe malaria often 
presents with life-threatening complications such as con-
vulsions, anemia, and hypoglycemia, which are common 
in cerebral malaria and severe anemia cases. For example, 
symptoms like jaundice (yellowing of the skin and eyes) 
and dark-colored urine (coca-cola urine) signal organ 
damage, which is critical in identifying severe malaria 
cases. These clinical manifestations create complex inter-
actions between the symptoms, which our models have 
been designed to capture.

From a methodological perspective, Random Forest 
and CatBoost are particularly well-suited to handle this 
complexity. Random Forest excels in managing non-lin-
ear interactions among features and provides interpret-
able models by ranking feature importance, allowing us 
to determine which symptoms most strongly indicate 
severe malaria. For instance, it identifies critical symptom 
combinations like convulsion and prostration, which are 
hallmarks of severe cases. Similarly, CatBoost effectively 
handles categorical features such as symptom presence 

Fig. 20 PFI Random Forest
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(fever, vomiting, convulsion) and continuous variables 
like age without requiring extensive preprocessing, lead-
ing to better performance. Its gradient boosting approach 
enables it to capture subtle differences in symptom sever-
ity and progression, such as distinguishing mild fever 
from hyperpyrexia. Together, the biological relevance 
of these symptoms and the methodological strengths of 
Random Forest and CatBoost provide a clear rationale 
for why these models performed best in predicting severe 
malaria.

Conclusion
Predicting medical conditions like malaria accurately is 
crucial in healthcare analytics, as it aids in timely diagno-
sis and appropriate treatment planning, thereby improv-
ing decision-making regarding patient outcomes and 
reducing healthcare costs. This study compared the per-
formance of five ensemble models: Random Forest, Cat-
Boost, Gradient Boosting, AdaBoost, and XGBoost, using 
a malaria dataset. The results consistently demonstrated 
that both Random Forest and CatBoost significantly 
outperformed the other ensemble models in terms of 
balanced accuracy, precision, recall, and F1 scores. This 
dominance was particularly evident after implementing 

data balancing techniques to address the class imbalance 
issues commonly encountered in healthcare data. Moreo-
ver, hyperparameter tuning played a vital role in enhanc-
ing model performance, optimizing parameters such as 
tree depth, learning rate, and the number of estimators. 
This careful tuning allowed for improved model fitting 
to the data, which translated into better predictive accu-
racy and robustness. In addition to achieving high levels 
of accuracy, these two methods have proven themselves 
capable across various evaluation measures, making 
them ideal tools within healthcare predictive modeling 
systems based on statistical methods.

Using explainable techniques like Local Interpretable 
Model-agnostic Explanations (LIME), SHapley Additive 
exPlanations (SHAP), and Permutation Feature Impor-
tance (PFI), we gained valuable insights into feature 
importance and model decision-making processes. With 
the LIME explanation approach, we were able to see how 
each feature influences the predicted class of a model for 
a given instance. SHAP provided a unified, consistent 
approach to interpreting individual feature contributions 
by quantifying their impact across all predictions, mak-
ing it highly valuable for both global and local interpret-
ability. Permutation Feature Importance helped identify 

Fig. 21 PFI CatBoost
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the most influential features contributing to the model’s 
predictions, enhancing transparency and interpretability. 
We also found that models trained on imbalanced health-
care data can yield biased results that impact patient 
care. These methods helped us understand key predic-
tive features in conditions like malaria. This transpar-
ency aids healthcare professionals in interpreting model 
decisions, promoting trust and informed medical actions, 
and ultimately improving patient outcomes and system 
reliability. This study has established Random Forest and 
CatBoost as best for malaria prediction.

Study benefits, limitations and future directions
This study offers several important benefits. First, the use 
of machine learning models in malaria diagnosis dem-
onstrates the potential for automated and accurate pre-
dictions, which can greatly assist clinicians, especially 
in resource-limited settings. These models are capable 
of analyzing large amounts of data more efficiently than 
traditional diagnostic methods, making them valuable 
tools in detecting patterns that may not be immediately 
visible. The completeness of the dataset, with no missing 
values, enhances the reliability of the model’s predictions 
within the scope of the study, ensuring that the insights 
are based on comprehensive data.

This study has several limitations that are important 
to acknowledge. First, the dataset includes only 337 
patients, which may impact the robustness of our analy-
ses and limit the generalizability of the findings. A larger 
sample size would provide more confidence in the results 
and help uncover more subtle trends. Additionally, the 
data was gathered from a single medical center over a 
four-week period, which may introduce biases related to 
specific local practices and patient demographics. While 
it is a positive aspect that the dataset is complete and has 
no missing values, we must remain cautious of potential 
biases that could arise from how the data was collected. 
Furthermore, the short duration of data collection might 
not fully capture seasonal variations in malaria cases, 
suggesting that a longer study period could offer deeper 
insights into the disease’s dynamics. Another limitation is 
the lack of external data validation; due to limited access 
to external datasets during the study, we were unable to 
validate the model on independent data. This restricts the 
ability to fully assess the generalizability of the findings 
across different populations.

In terms of future work, another key area for improve-
ment is the comparison of machine learning models with 
traditional malaria diagnostic methods. While ML mod-
els offer significant improvements in automation and 
predictive accuracy, traditional methods such as micros-
copy and rapid diagnostic tests remain the gold standard 
in many regions. Future research would focus on hybrid 

approaches that combine traditional methods with 
machine learning models to provide more robust and 
interpretable results. Additionally, future studies should 
aim to gather data from larger, more diverse populations 
over extended periods and incorporate external valida-
tion to enhance the reliability of predictive models and 
their applicability in real-world clinical settings.

Acknowledgements
We wish to thank the editor and anonymous reviewers of this article. Kindly 
note that this article did not receive any funding support from anywhere. We 
would appreciate your help and consideration for a complete APC waiver in 
this regard to enable the publication of our article in your esteemed journal. 
We believe that the publication of our article will attract some citations and 
more esteemed researchers to your journal. Thank you in anticipation!

Authors’ contributions
OOA conceived the research idea, designed the study, and supervised the 
entire project. OOA also contributed to the interpretation of results and manu-
script writing. PNW led the data collection and preprocessing efforts. PNW 
and SKG performed the statistical analysis and contributed to the drafting and 
critical revision of the manuscript. They also developed the ensemble machine 
learning models and conducted the computational experiments. PMW was 
also responsible for implementing the explainable AI techniques used in the 
study. RVE participated in manuscript editing and contributed to the literature 
review and validation of the results. OSO helped in writing and reviewing the 
entire manuscript to ensure scientific rigor. All authors read and approved the 
manuscript for submission.

Funding
This work did not receive any funding.

Data availability
The data and codes used in this study can be found here: Malaria data and 
codes (https:// github. com/ Peter Njoro geMwa ngii/ Expla inable- Machi ne- Learn 
ing- Model- for- Malar ia- Class ifica tion- with- Impro ved- Accur acy).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Statistical Learning Lab, Federal University of Bahia, Salvador, Brazil. 2 Depart-
ment of Data Science, African Institute for Mathematical Sciences (AIMS), 
Limbe, Cameroon. 3 Life and Health Sciences Research Institute (ICVS), School 
of Medicine, University of Minho, Braga, Portugal. 4 Department of Clinical 
Pharmacology and Clinical Pharmacy, Bogomolets National Medical University, 
Kiev, Ukraine. 

Received: 29 July 2024   Accepted: 16 January 2025

References
 1. Bhardwaj R, Nambiar AR, Dutta D. A study of machine learning in 

healthcare. In: 2017 IEEE 41st annual computer software and applications 
conference (COMPSAC). Turin: IEEE; 2017. vol. 2. pp. 236–41. https:// doi. 
org/ 10. 1109/ COMPS AC. 2017. 164.

https://github.com/PeterNjorogeMwangii/Explainable-Machine-Learning-Model-for-Malaria-Classification-with-Improved-Accuracy
https://github.com/PeterNjorogeMwangii/Explainable-Machine-Learning-Model-for-Malaria-Classification-with-Improved-Accuracy
https://doi.org/10.1109/COMPSAC.2017.164
https://doi.org/10.1109/COMPSAC.2017.164


Page 25 of 26Awe et al. BMC Medical Informatics and Decision Making          (2025) 25:162  

 2. Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent 
advances in deep learning techniques for electronic health record (EHR) 
analysis. IEEE J Biomed Health Inform. 2017;22(5):1589–604.

 3. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J 
Med. 2019;380(14):1347–58.

 4. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine 
learning in medicine. Jama. 2017;318(6):517–8.

 5. Awe OO, Adepoju JM, Boniface E, Awe OD. Comparative Analysis of 
Random Forest and Neural Networks for Anemia Prediction in Female 
Adolescents: A LIME-Based Explainability Approach. In: Practical Statistical 
Learning and Data Science Methods: Case Studies from LISA 2020 Global 
Network, USA. STEAM-H: Science, Technology, Engineering, Agriculture, 
Mathematics & Health Practical Statistical Learning and Data Science 
Methods. Switzerland: Springer Nature; 2024. pp. 555–73.

 6. Rasheed K, Qayyum A, Ghaly M, Al-Fuqaha A, Razi A, Qadir J. Explain-
able, trustworthy, and ethical machine learning for healthcare: A survey. 
Comput Biol Med. 2022;149:106043.

 7. Mwangi P, Kotva S, Awe OO. Explainable AI Models for Improved Disease 
Prediction. In: Practical Statistical Learning and Data Science Methods: 
Case Studies from LISA 2020 Global Network, USA. STEAM-H: Science, 
Technology, Engineering, Agriculture, Mathematics & Health Practical 
Statistical Learning and Data Science Methods. Switzerland: Springer 
Nature; 2024. pp. 73–109.

 8. Ali S, Abuhmed T, El-Sappagh S, Muhammad K, Alonso-Moral JM, Con-
falonieri R, et al. Explainable Artificial Intelligence (XAI): What we know 
and what is left to attain Trustworthy Artificial Intelligence. Inf Fusion. 
2023;99:101805.

 9. Oluchukwu Njoku A, Nyunga Mpinda B, Olawale Awe O. Improving the 
Accuracy of Financial Bankruptcy Prediction Using Ensemble Learning 
Techniques. In: Pan African Conference on Artificial Intelligence. Switzer-
land: Springer Nature; 2023. pp. 3–29.

 10. Latha CBC, Jeeva SC. Improving the accuracy of prediction of heart 
disease risk based on ensemble classification techniques. Inform Med 
Unlocked. 2019;16:100203.

 11. Daşkın ZD, Alam MS, Khan MU. Ensemble transfer learning using Maiz-
eSet: A dataset for weed and maize crop recognition at different growth 
stages. Crop Protect. 2024;184:106849.

 12. Sampaio T, Oliveira JP, Marinho DA, Neiva HP, Morais JE. Applications of 
Machine Learning to Optimize Tennis Performance: A Systematic Review. 
Appl Sci. 2024;14(13):5517.

 13. Venkatesan P. The 2023 WHO World Malaria Report. Lancet Microbe. 
2024;5(3):e214.

 14. Aremu TO, Singhal C, Ajibola OA, Agyin-Frimpong E, Appiah-Num Safo 
AA, Ihekoronye MR, et al. Assessing public awareness of the malaria vac-
cine in sub-Saharan Africa. Trop Med Infect Dis. 2022;7(9):215.

 15. Nwele DE, Onyali IO, Iwueze MO, Elom MO, Uguru OES. Malaria endemic-
ity in the rural communities of Ebonyi State, Nigeria. Korean J Parasitol. 
2022;60(3):173.

 16. Islam MR, Nahiduzzaman M, Goni MOF, Sayeed A, Anower MS, Ahsan 
M, et al. Explainable transformer-based deep learning model for 
the detection of malaria parasites from blood cell images. Sensors. 
2022;22(12):4358.

 17. Sato S. Plasmodium-a brief introduction to the parasites causing human 
malaria and their basic biology. J Physiol Anthropol. 2021;40(1):1.

 18. Rosso F, Agudelo Rojas OL, Suarez Gil CC, Lopez Vargas JA, Gómez-Mesa 
JE, Carrillo Gomez DC, et al. Transmission of malaria from donors to solid 
organ transplant recipients: A case report and literature review. Transpl 
Infect Dis. 2021;23(4):e13660.

 19. Agrebi S, Larbi A. Use of artificial intelligence in infectious diseases. In 
Barth D. Ed: Artificial intelligence in precision health. Amsterdam: Elsevier; 
2020. pp. 415–38.

 20. Bhadra S, Kumar CJ. Enhancing the efficacy of depression detection 
system using optimal feature selection from EHR. Comput Methods 
Biomech Biomed Eng. 2024;27(2):222–36.

 21. Bhadra S, Kumar CJ. An insight into diagnosis of depression using 
machine learning techniques: a systematic review. Curr Med Res Opin. 
2022;38(5):749–71.

 22. Lee YW, Choi JW, Shin EH. Machine learning model for predicting malaria 
using clinical information. Comput Biol Med. 2021;129:104151.

 23. Barboza MFX, Monteiro KHDC, Rodrigues IR, Santos GL, Monteiro WM, 
Figueira EAG, et al. Prediction of malaria using deep learning models: A 

case study on city clusters in the state of Amazonas, Brazil, from 2003 to 
2018. Rev Soc Bras Med Trop. 2022;55:e0420–2021.

 24. Hossain MM, Rahim MA, Bahar AN, Rahman MM. Automatic malaria 
disease detection from blood cell images using the variational quantum 
circuit. Inform Med Unlocked. 2021;26:100743.

 25. Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, Hussain 
A. Interpreting black-box models: a review on explainable artificial intel-
ligence. Cogn Comput. 2024;16 (1):45-74.

 26. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Lee SI. From 
local explanations to global understanding with explainable AI for trees. 
Nat Mach Intell. 2020;2(1):56-67.

 27. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
 28. Profillidis V, Botzoris G. Statistical methods for transport demand mod-

eling. Model Transp Demand. 2019;163–224. (Book Chapter)
 29. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minor-

ity over-sampling technique. J Artif Intell Res. 2002;16:321–57.
 30. Ajit P. Prediction of employee turnover in organizations using machine 

learning algorithms. Algorithms. 2016;4(5):C5.
 31. Liaw A, Wiener M, et al. Classification and regression by randomForest. R 

News. 2002;2(3):18–22.
 32. Delport J, Centeno V, Thorp J. Transient Stability Prediction for Load Flow 

Cascading Models Using Random Forests. In: 2018 IEEE/PES Transmission 
and Distribution Conference and Exposition (T &D). Denver: IEEE; 2018. 
pp. 1–9.

 33. Gareth J, Daniela W, Trevor H, Robert T. An introduction to statistical learn-
ing: with applications in R. Switzerland: Springer Nature; 2013.

 34. Mbaabu O. Introduction to random forest in machine learning. 2020. URL: 
https:// www. secti on. io/ engin eering- educa tion/ intro ducti on- to- random- 
forest- inmac hine- learn ing/. Accessed, v. 5, p. 30, 2023.

 35. Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements of statisti-
cal learning: data mining, inference, and prediction. Switzerland: Springer 
Nature; 2009. vol. 2.

 36. Ding Y, Zhu H, Chen R, Li R. An efficient AdaBoost algorithm with the 
multiple thresholds classification. Appl Sci. 2022;12(12):5872.

 37. Freund Y, Schapire R, Abe N. A short introduction to boosting. J Jpn Soc 
Artif Intell. 1999;14(771–780):1612.

 38. Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, 
Cho-Jui Hsieh Proceedings of the 34th International Conference on 
Machine Learning, Sydney, Australia, PMLR. 2017;70:3182-90.

 39. Fafalios S, Charonyktakis P, Tsamardinos I. Gradient boosting trees. Gnosis 
Data Analysis PC.  2020;1. 

 40. Hong WS, Haimovich AD, Taylor RA. Predicting hospital admission at 
emergency department triage using machine learning. PLoS ONE. 
2018;13(7):e0201016.

 41. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In Proceed-
ings of the 22nd ACM Sigkdd International Conference on Knowledge 
Discovery and Data Mining. San Francisco: ACM publishers; 2016. pp. 
785-794.

 42. Goto T, Camargo CA Jr, Faridi MK, Yun BJ, Hasegawa K. Machine learning 
approaches for predicting disposition of asthma and COPD exacerba-
tions in the ED. Am J Emerg Med. 2018;36(9):1650–4.

 43. Klug M, Barash Y, Bechler S, Resheff YS, Tron T, Ironi A, et al. A gradient 
boosting machine learning model for predicting early mortality in the 
emergency department triage: devising a nine-point triage score. J Gen 
Intern Med. 2020;35:220–7.

 44. Ho ETL, Tan IEH, Lee I, Wu PY, Chong HF. Predicting Readmission at Early 
Hospitalization Using Electronic Health Data: A Customized Model Devel-
opment. Int J Integr Care. 2017;17(5):A506. pp. 1-8. https:// dx. doi. org/ 10. 
5334/ ijic. 3826.

 45. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical 
view of boosting (with discussion and a rejoinder by the authors). Ann 
Stat. 2000;28(2):337–407.

 46. Liew XY, Hameed N, Clos J. An investigation of XGBoost-based algorithm 
for breast cancer classification. Mach Learn Appl. 2021;6:100154.

 47. Sagi O, Rokach L. Approximating XGBoost with an interpretable decision 
tree. Inf Sci. 2021;572:522–42.

 48. Ogunleye A, Wang QG. XGBoost model for chronic kidney disease diag-
nosis. IEEE/ACM Trans Comput Biol Bioinforma. 2019;17(6):2131–40.

 49. Pan B. Application of XGBoost algorithm in hourly PM2. 5 concentration 
prediction. In: IOP conference series: earth and environmental science. 
vol. 113. Bristol: IOP Publishing; 2018. p. 012-127.

https://www.section.io/engineering-education/introduction-to-random-forest-inmachine-learning/
https://www.section.io/engineering-education/introduction-to-random-forest-inmachine-learning/
https://dx.doi.org/10.5334/ijic.3826
https://dx.doi.org/10.5334/ijic.3826


Page 26 of 26Awe et al. BMC Medical Informatics and Decision Making          (2025) 25:162 

 50. Ghoshroy D, Alvi DP, Santosh K. Explainable AI to Predict Male Fertility 
Using Extreme Gradient Boosting Algorithm with SMOTE. Electronics. 
2022;12:15. https:// doi. org/ 10. 3390/ elect ronic s1201 0015.

 51. Friedman JH. Greedy function approximation: a gradient boosting 
machine. Ann. Statist. 2001;29(5):1189–232. https:// doi. org/ 10. 1214/ aos/ 
10132 03451.

 52. Mason L, Baxter J, Bartlett P, Frean M. Boosting algorithms as gradient 
descent. Adv Neural Inf Process Syst. 1999;12. NIPS’99: Proceedings of the 
13th International Conference on Neural Information Processing Systems, 
Denver CO. pp. 512 - 51.

 53. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel 
O, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res. 
2011;12:2825–30.

 54. Modu B, Polovina N, Lan Y, Konur S. Machine learning analysis and agent-
based modelling of malaria transmission. In: Fuzzy Systems and Data 
Mining IV. Amsterdam: IOS Press; 2018. pp. 465–472.

 55. Brock PM, Fornace KM, Grigg MJ, Anstey NM, William T, Cox J, et al. Predic-
tive analysis across spatial scales links zoonotic malaria to deforestation. 
Proc R Soc B. 1894;2019(286):20182351.

 56. Sturrock HJ, Woolheater K, Bennett AF, Andrade-Pacheco R, Midekisa A. 
Predicting residential structures from open source remotely enumerated 
data using machine learning. PLoS ONE. 2018;13(9):e0204399.

 57. Valletta JJ, Recker M. Identification of immune signatures predictive of 
clinical protection from malaria. PLoS Comput Biol. 2017;13(10):e1005812.

 58. Li Yan-Fu, Wang H, Sun M. "ChatGPT-like large-scale foundation models 
for prognostics and health management: A survey and roadmaps," Reli-
ability Engineering and System Safety, Elsevier. 2024;243(C).

 59. Schwartz E, Sadetzki S, Murad H, Raveh D. Age as a risk factor for severe 
Plasmodium falciparum malaria in nonimmune patients. Clin Infect Dis. 
2001;33(10):1774–7.

 60. White NJ. Severe malaria. Malar J. 2022;21(1):284.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3390/electronics12010015
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451

	Explainable AI for enhanced accuracy in malaria diagnosis using ensemble machine learning models
	Abstract 
	Background 
	Objectives 
	Methods 
	Results 
	Conclusion 

	Introduction
	Related works
	Methodology
	Study area
	Design of the study
	Data preparation methods
	Spearman Rank Correlation Coefficient
	Standardization
	Over-sampling

	Ensemble machine learning models
	Random Forest
	AdaBoost
	Gradient boosting
	XGBoost
	CatBoost


	Data analyses and results
	Data description and preprocessing
	Model results

	Discussion
	Model explainability with LIME
	Model explainability with SHapley Additive exPlanations
	Model explainability with permutation feature importance

	Conclusion
	Study benefits, limitations and future directions

	Acknowledgements
	References


