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Abstract
Background The integration of big data and artificial intelligence (AI) in healthcare, particularly through the analysis 
of electronic health records (EHR), presents significant opportunities for improving diagnostic accuracy and patient 
outcomes. However, the challenge of processing and accurately labeling vast amounts of unstructured data remains 
a critical bottleneck, necessitating efficient and reliable solutions. This study investigates the ability of domain specific, 
fine-tuned large language models (LLMs) to classify unstructured EHR texts with typographical errors through 
named entity recognition tasks, aiming to improve the efficiency and reliability of supervised learning AI models in 
healthcare.

Methods Turkish clinical notes from pediatric emergency room admissions at Hacettepe University İhsan Doğramacı 
Children’s Hospital from 2018 to 2023 were analyzed. The data were preprocessed with open source Python libraries 
and categorized using a pretrained GPT-3 model, “text-davinci-003,” before and after fine-tuning with domain-
specific data on respiratory tract infections (RTI). The model’s predictions were compared against ground truth labels 
established by pediatric specialists.

Results Out of 24,229 patient records classified as poorly labeled, 18,879 were identified without typographical errors 
and confirmed for RTI through filtering methods. The fine-tuned model achieved a 99.88% accuracy, significantly 
outperforming the pretrained model’s 78.54% accuracy in identifying RTI cases among the remaining records. 
The fine-tuned model demonstrated superior performance metrics across all evaluated aspects compared to the 
pretrained model.

Conclusions Fine-tuned LLMs can categorize unstructured EHR data with high accuracy, closely approximating the 
performance of domain experts. This approach significantly reduces the time and costs associated with manual data 
labeling, demonstrating the potential to streamline the processing of large-scale healthcare data for AI applications.
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Introduction
The healthcare industry is undergoing a transforma-
tive era, fueled by the rapid advancement of technol-
ogy and the ever-increasing volume of data. The advent 
of Big Data (BD), characterized by its vastness, velocity, 
and variety, has unlocked unprecedented opportunities 
for healthcare providers and researchers [1–3]. In recent 
years, artificial intelligence (AI) applications have dem-
onstrated significant improvements in safety, quality, 
and diagnostic accuracy across various clinical settings. 
Leveraging BD from Electronic Health Records (EHR), 
these AI-based techniques offer the potential to revolu-
tionize medicine by enhancing outcomes and providing 
numerous benefits [2, 4–11]. However, these large-scale 
data are often unstructured, requiring extensive pro-
cessing and labeling, which poses the most significant 
bottleneck [12]. In a precise field like medicine, errors in 
the labeling and preprocessing process can lead to poor 
outcomes in terms of the reliability of AI models and the 
impact of model results [11, 13–17]. Therefore, domain 
experts are often employed for labeling tasks in the pres-
ent day, a process that is both time-consuming and costly 
[6, 18].

Moreover, when considering non-English datasets such 
as those in Turkish, the challenges intensify. The Turkish 
language presents distinct challenges for automated text 
analysis due to its agglutinative nature, morphological 
richness, and extensive inflection [19]. These linguistic 
characteristics can significantly complicate the extraction 
and classification of information from medical records, 
where precision is crucial [20, 21]. Addressing these chal-
lenges, our study leverages a fine-tuned large language 
model to effectively interpret and categorize unstruc-
tured EHR in Turkish. This adaptation not only enhances 
the accuracy of data processing but also contributes valu-
able insights into the application of AI in underrepre-
sented linguistic contexts within the healthcare domain.

Challenges in generating datasets and data extractions 
from clinical notes for artificial intelligence models from 
BD sources containing unstructured EHR texts are pri-
marily attributed to the complex process required for 
structuring and standardizing these texts for effective 
supervised learning AI models utilization. Unstructured 
EHRs are characterized by a wide array of data formats, 
including free-text clinical notes, laboratory findings, and 
imaging narratives. Each of these formats exhibits unique 
terminological and syntactical features, ambiguous jar-
gon, and non-standard phrasal structures [17, 22–26]. 
To mitigate such complexity, the encoding of patients’ 
diseases in EHRs using universally accepted disease clas-
sification coding systems like the International Classifica-
tion of Disease (ICD) facilitates the clustering of patients, 
providing convenience. However, these codes can some-
times be misencoded due to intentional or unintentional 

information transfer by the patient or clinician [27], 
and these inaccuracies can significantly impact the per-
formance of supervised learning AI models, including 
machine learning (ML), deep learning (DL), time series 
analysis, and Natural Language Processing (NLP) [26, 28, 
29].

Recently, NLP methods for EHR-based computational 
phenotyping have seen extensive development, in infor-
mation technology, the knowledge graph can transform 
complex unstructured data into structured form [30, 31]. 
Serving as a pivotal task in the construction of knowl-
edge graphs, Named Entity Recognition (NER) enables 
the automatic extraction of predefined entities from 
extensive volumes of intricate texts, thereby facilitating 
the structuring of information. Through NER methods, 
the extraction of information from large-scale unstruc-
tured text-based datasets is substantially simplified 
[32–37]. However, human-induced typo errors, such as 
homophone, typographical, grammatical, and spacing 
errors, can still be present in manually entered data, with 
reported error rates ranging from 5 to 17% [38, 39]. These 
errors significantly impact the performance of NER meth-
ods [26, 40, 41]. In 2017, Google’s introduction of trans-
former architecture marked a significant breakthrough in 
artificial intelligence, paving the way for the creation of 
advanced large language models (LLM). Trained on vast 
amounts of internet data using self-supervised learning 
techniques, these LLMs showcased an unprecedented 
ability to comprehend and produce text closely resem-
bling human writing [6, 42]. Furthermore, in NER tasks, 
transformer-based language models have demonstrated 
the highest performance [26]. Unlike other LLMs, Ope-
nAI’s GPT model is used more frequently than others 
due to its availability through the ChatGPT interface and 
an API [43]. It has been demonstrated that ChatGPT 
can accurately predict diagnoses for patients based on 
clinical notes, achieving results comparable to those of 
human practitioners in the domain of clinical informa-
tion extraction from such notes [6, 44–47].

In this research, the ability to precisely classify target 
labels containing typographical errors through NER tasks 
was explored, aiming to alleviate the detrimental effects 
of missing data on the efficacy of supervised learning 
AI models. This investigation was conducted utilizing 
domain specific, fine-tuned LLMs, highlighting their 
potential to enhance model accuracy and reliability.

Method
Data structure
In the present study, the primary data source comprised 
clinical notes from Pediatric Emergency Department 
(PED) admissions, which were extracted from the EHR 
system of Hacettepe University İhsan Doğramacı Chil-
dren’s Hospital. The structure of the data is centered 
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around the initial assessments conducted by pediat-
ric residents at the PER triage point. These assessments 
include a variety of patient information, such as pre-
senting complaints, evaluations based on the pediatric 
assessment triangle [45], body temperature, heart rate, 
respiratory rate, and SpO2% levels. This information 
forms the basis of the triage process, wherein patients 
are categorized for further examination. Notably, during 
this initial triage phase, patients are not assigned specific 
diagnostic codes due to the preliminary nature of the 
assessments. Instead, patient complaints are categorized 
into specific, institution-prepared complaint categories 
such as abdominal pain, headache, and fever, in a struc-
tured format. When the patient’s presenting complaint 
does not align with these predefined structured catego-
ries, the physician recording the triage selects the “Oth-
ers ()” category, and this input is taken as unstructured 
Turkish text. Consequently, this results in poorly labeled 
data, which poses challenges for researchers in subse-
quent retrospective studies.

Data collection
Data collection for this study was conducted by encom-
passing all patient visits to the PED at Hacettepe Uni-
versity İhsan Doğramacı Children’s Hospital during the 
period from 2018 to 2023. Records were obtained from 
the hospital’s Electronic Health Record (EHR) system, 
through which a systematic approach was employed to 
compile relevant clinical notes and assessment data.

Data preprocessing
For preprocessing tasks, open-source Python libraries 
such as Pandas, NLTK, and Re (regex) were utilized. Ini-
tially, poorly labeled unstructured texts categorized as 
“Others (Complaints)” from structured categorical diag-
nostic descriptions were selected, ensuring that the ano-
nymized dataset contained only the complaints without 
any personal patient information. These categories were 
then normalized by removing the “Others ()” part to leave 
only ‘Complaints,’ and subsequently, all characters were 
converted to lowercase as ‘complaints’ using a regular 
expression task designed with the NLTK and Re libraries. 
After this normalization, the filtered data were iteratively 
classified syntactically using common NLP methods to 
determine if they contained various combinations of 
well-known respiratory tract infections (RTI) findings, 
such as fever, cough, and shortness of breath. Using a 
simple NER task, findings were extracted from the low-
ercase poorly labeled texts and subsequently categorized 
with rule-based methods using a series of dictionaries. 
Subsequently, words that could not be processed in the 
iteration were identified as either typographical errors 
or combinations of extremely rare findings. A dataset 
containing these poorly labeled data, which included 

typographical errors and those that could not be classi-
fied with simple NLP methods, was prepared for further 
queries using GPT.

Prompt engineering and fine-tuning of a GPT-3 model and 
prediction
In this study, we utilized the “text-davinci-003” model, 
a GPT-3 language model accessible through OpenAI’s 
API, established as of May 2023. This low-code approach 
allowed us to provide preprocessed, poorly labeled data 
directly to the model without extensive coding require-
ments. Using a predefined prompt, “Based on the symp-
toms and findings presented, does this align with the 
characteristics of an RTI? If the evidence strongly sug-
gests an RTI, please respond with ‘True’. If the findings 
do not support an RTI diagnosis, respond with ‘False’,” 
we iteratively collected model responses. These were 
recorded in a Boolean list to capture the model’s diag-
nostic alignment with the RTI characteristics. Following 
this initial application, the “text-davinci-003” model was 
fine-tuned using a specific corpus describing RTI symp-
toms in Turkish, enhancing its diagnostic accuracy. The 
fine-tuned model was then reapplied to the dataset with 
the same prompt to evaluate improvements in prediction 
accuracy.

Ground truth establishment
For the ground truth labels, four pediatric specialists 
were asked to determine whether the presenting com-
plaint data, which were distributed equally and randomly 
among them, indicated findings of an RTI.

Model evaluation and data analysis
In the evaluation of the model outcomes, assessments 
were conducted using classification metrics from the 
Scikit Learn library, including accuracy, ROC-AUC, pre-
cision, recall, F1 score, and MCC metrics. For this proj-
ect, Python version 3.9 and OpenAI’s Python library 
version 0.26.5 were used.

Results
Between 2018 and 2023, 321,672 patients presented 
to the Pediatric Emergency Room (PER). In this study, 
31.9% (n = 102,732) of the patients were determined to 
have RTI complaints through standard filtering meth-
ods. Subsequently, 7.53% (n = 24,229) of the patients were 
recorded in the EHR system as “Others ()”, with 77.91% 
(n = 18,879) of these patients accurately identified with 
RTI findings through filtering methods, showing no typo-
graphical errors. Moreover, standard filtering methods 
revelaed that 20.2% (n = 3,828) of these patients had RTI. 
The presenting complaint targets of the remaining 22% 
(n = 5,350) were assessed as poorly labeled. These 5,350 
patients received ground truth labels from four pediatric 
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specialists within two business days. From these labels, 
16.9% (n = 909) were identified as RTI cases. In Table 1, 
the most frequent occurrences of presenting complaints 
containing RTI findings across the data clusters are dis-
played. Following the correction of errors within the 
unstructured poorly labeled data and typographical 
error-containing data cluster, the most frequently pre-
senting complaints were, in order, control revisits, fall-
ing, diarrhea, patients sent for hospitalization from the 
outpatient clinic, patients with suspected COVID among 
upper respiratory tract infections, epistaxis, constipation, 
patients receiving injections, nasal discharge, and cough.

The labeling process, which was conducted by four 
pediatric specialists, each of whom dedicated two busi-
ness days, was completed within a total of eight business 
days, resulting in a labeling rate of 27 labels per hour. The 
pretrained LLM completed the same task using a zero-
shot approach in approximately six hours, with a label-
ing rate of 891 labels per hour. The fine-tuning process 
of the pretrained model, utilizing a document contain-
ing 4,724 tokens pertaining to RTI findings in Turkish, 
lasted approximately three hours. Similarly, employing a 
zero-shot approach, the fine-tuning process completed 

the entire labeling task in approximately six hours, akin 
to the performance of the pretrained model. The per-
formances of both models were evaluated against the 
established ground truth labels. The pretrained model 
identified 714 (78.54%) patients with RTIs, and the fine-
tuned model identified 908 (99.88%) patients with RTIs. 
The data processing stages are also demonstrated in 
Fig. 1, and the detailed performance metrics are available 
in Table 2.

Discussion
Due to typographical errors, the categorization of 
unstructured text-based EHR clinical notes that cannot 
be classified through standard filtering and NER tasks is 
a costly and time-consuming process when dealing with 
large-scale data. As the data scale increases, it becomes 
imperative to automate the processes of data manipula-
tion that require domain knowledge for more efficient 
supervised learning AI models. In the context of the 
pediatric emergency room visits where this study was 
conducted, nearly one-third of the patients had RTI, rep-
resenting the largest patient cohort. Therefore, it is valu-
able to demonstrate that RTIs as presenting complaints 
can be recognized by LLMs. In this study, a solution to 
this bottleneck is presented, demonstrating that LLMs 
fine-tuned on a specific subject can be categorized with 
an accuracy approaching that of domain experts, in con-
trast to the general-use LLM models.

Our findings are particularly significant given the com-
plexity of the Turkish language, which has been under-
represented in NLP research, especially in medical 
applications. The successful application of LLMs to Turk-
ish EHR texts not only demonstrates the model’s robust-
ness but also its adaptability to diverse linguistic contexts. 
This capability is crucial for extending AI applications to 
non-English datasets, which are often less studied but 
equally in need of advanced analytical tools.

Evaluating the accuracy of LLM in medical data 
classification
In this study, ground truth labels were determined by 
pediatric specialists, and the primary focus was not 
a direct comparison between humans and LLMs, but 
rather an investigation into how closely LLMs could 
approximate domain expert human encoders. Accord-
ingly, the performance of a general-use GPT-3 submodel, 
“text-davinci-003,” resulted in 78% accuracy, while its 
version fine-tuned specifically for RTI findings demon-
strated a significantly higher accuracy of 99.88%, sur-
passing that of the general model and closely matching 
the performance of domain experts. This efficiency and 
the low-code integration of the API not only expedited 
the research process but also minimized the potential 
for errors typically associated with manual coding, thus 

Table 1 Distribution of presenting complaints by data clusters
Presenting Complaints Structured 

text data
Unstructured 
text data 
(“Others ()”)

Typo-
graph-
ical 
errors

Total RTI Patient 98,904 3828 909
Fever 76,408 1131 246
Cough 53,866 890 143
Fatigue 19,926 33 19
Sore throat 10,897 302 47
Ear pain 9568 162 21
Respiratory Distress 4630 31 16
Non-cardiac chest pain 4077 78 8
URTI 3513 70 -
Crackles 718 249 2
Wheezing 246 5 34
COVID 9 289 423
Other RTI complaintsa 80 1449 117
Total words in the textb 717,153 64,529 12,117
Total categorized labelc 183,938 4689 1076
This table summarizes the distribution of presenting complaints from patients 
admitted to the PED. The complaints are categorized into structured text 
data, unstructured text data (“Others ()”), and typographical errors. The data 
includes RTI-related complaints like fever, cough, and sore throat, as well as 
non-respiratory issues such as ear pain and non-cardiac chest pain. The table 
also presents the total word count and categorized labels extracted through 
standard filtering methods. The structured text data contains the highest 
number of RTI complaints, while the unstructured category reflects poorly 
labeled cases, many of which were identified as RTIs after further analysis. a: 
Other RTI labels in English are: Flu, Cold, Nasal congestion, Wheezing, Rhonchi, 
Asthma, Croup, Bronchiolitis, Pneumonia, Febrile convulsion, Lymphadenitis, 
Tonsillitis, Influenza, Laryngitis, Sputum. b: Total words in the text: The total 
counts of words within the text data, segmented by data clusters. c: Total 
categorized label: The number of categorical variables that can be extracted 
from the content of text data through standard filtering methods
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Fig. 1 Data Processing and Model Performance for RTI Identification: This figure shows the filtering of URTI symptoms from the dataset after processing 
all cases. It focuses on the analysis of 5,350 poorly labeled cases, comparing the ROC-AUC performance of the pretrained and fine-tuned GPT-3 models. 
The fine-tuned model demonstrates significant improvement in identifying RTI cases
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enhancing the reliability and speed of medical data anal-
ysis. The ease of API utilization democratizes the use 
of sophisticated AI in clinical research, expanding the 
potential for broader adoption across various medical 
disciplines.

This finding aligns with existing literature, where com-
parisons between humans and LLMs, including a meta-
analysis by Takita et al., revealed that the pooled accuracy 
of all models was 57%. Specifically, for the GPT-3 model 
utilized in this study, the average accuracy was reported 
to be 60% (range 51–69%). Additionally, model perfor-
mance across specialties showed the highest efficacy in 
pediatric studies (93%) [48]. The above-average perfor-
mance of the general-use model in our study could be 
attributed to this relatively high efficacy of LLMs in pedi-
atric contexts.

In a related vein, Rosoł et al.‘s study comparing humans 
and LLMs in medical exam questions found that the 
GPT-4 model, even without fine-tuning, outperformed 
the GPT-3 model [49]. Furthermore, the MedPaLM2 
model, which is fine-tuned for the medical domain, dem-
onstrated a high accuracy of 86.5% in Singhal et al.‘s study, 
matching the performance of the GPT-4 model used in 
the study by Nori et al., which also showed an accuracy 
of 86.1% in USMLE exam questions [50, 51]. These find-
ings highlight the substantial performance improvements 
brought about by fine-tuning, as reaffirmed in our study 
and supported by meta-analyses by Takita et al., where 
the pooled accuracy of the PaLM2 model was 43%. This 
underscores the significant enhancement effect of fine-
tuning on model performance [48, 50, 52–56].

Moreover, another promising method for obtaining 
domain-specific responses through LLMs is the retrieval 
augmented generation (RAG) method [57], which enables 

a pretrained LLM to generate task-specific answers by 
sourcing information from specific external resources. 
This approach may offer an alternative solution for NER 
tasks [58–61]. Naik and colleagues, for instance, devel-
oped a language model that performs binary classifica-
tion of clinical outcomes from EHR clinical notes using 
RAG methods, which have been shown to enhance 
answer generation performance [62, 63]. Balaguer et 
al.‘s study comparing LLMs utilized with RAG and fine-
tuning found that while the fine-tuned model produced 
correct answers 47% of the time, the use of RAG alone 
increased this to 72%, and to 74% when both were used in 
conjunction. The utilization of RAG methods in unstruc-
tured text-based EHR data holds significant potential for 
NER tasks, as demonstrated in various studies, and could 
provide a cost-effective alternative to solely fine-tuning 
models [64].

Time efficiency and cost comparison
Compared with humans, LLMs are capable of labeling 
both more rapidly and in a continuous, uninterrupted 
manner. Wang et al. demonstrated that labeling with 
GPT-3 is not only faster but also less expensive. Their 
comparison involved the GPT-3 model and human 
labellers on the Google Cloud Platform, where billing 
is based on the number of tokens. According to their 
findings, utilizing GPT resulted in a cost reduction of 
50–96%, translating into an approximate cost of $453 
for this study [65]. The work of the human encoders 
in this research was voluntary, with no compensation 
requested, and the study itself was not focused on cost 
analysis. However, the comparison is considered striking. 
Approximately $13 was spent on the labeling process in 
this study, including the use of a fine-tuning model that 
can be subsequently utilized with GPT-3. Consequently, 
achieving an accuracy of 98%, this method, which oper-
ates 33 times faster and can be 34 times less expensive, 
allows expert clinicians to allocate their time more effec-
tively to other tasks.

Agarwal et al. work highlights the potential of using 
weak supervision to deploy smaller, task-specific mod-
els, thereby emphasizing the importance of models that 
are cost-effective and capable of generating more issue-
specific responses [17]. Recently, various open-source, 
fine-tunable tiny language models have become available. 
Tasks such as those in our study can be trained on these 
models, significantly reducing costs through local usage 
while also addressing ethical concerns by enhancing local 
security.

Ethical consideration and data security
There are major concerns about the impact of LLMs on 
patient data. The large datasets used in the training of 
LLMs may contain sensitive patient information, which is 

Table 2 Comparison of performance between pretrained 
models and fine-tuned models
Performance Metrics Pretrained Model (%) Fine-

tuned 
Model 
(%)

Accuracy 78.54 99.88
ROC-AUC 64.07 97.29
Precision 50.96 98.88
Recall 51.46 97.78
F1 Score 41.79 97.22
MCC 47.05 97.24
This table compares the performance metrics of the pretrained GPT-3 model 
and the fine-tuned model in identifying RTI cases from unstructured clinical 
notes. Key performance indicators, including accuracy, ROC-AUC, precision, 
recall, F1 score, and MCC, are provided for both models. The fine-tuned 
model significantly outperforms the pretrained model across all metrics, 
demonstrating improved diagnostic accuracy and precision. The fine-tuned 
model achieved an accuracy of 99.88%, with a MCC of 97.24, reflecting its 
enhanced capability in identifying RTI cases based on the fine-tuned Turkish 
RTI-specific dataset. ROC-AUC: Receiver Operating Characteristic - Area Under 
the Curve, MCC: Matthews Correlation Coefficient
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thought to increase the risk of data breaches or unauthor-
ized access [66]. In this study, a language model accessed 
via API provided by OpenAI was used, and OpenAI’s 
data usage policy guarantees that data used through APIs 
cannot be accessed or used by anyone, including model 
developers. This security is ensured through special pro-
tocols such as SAML SSO, SOC2, AES-256, and TLS. 
Some countries have their own data policies, and for this 
study, Turkey’s personal data protection law was consid-
ered. No personal information of the patient was pres-
ent in any text sent to the model via API, thus in these 
processes, data security is more dependent on developer 
compliance. Additionally, as mentioned by Agrawal et 
al. and Jimenez et al., security can be enhanced by using 
smaller, task-specific language models that can run on 
local systems, avoiding the use of APIs [67].

Conclusion
In conclusion, this study demonstrates that fine-tuned 
LLMs can effectively categorize unstructured EHR data 
with high accuracy, mirroring the performance of domain 
experts. By utilizing a fine-tuned GPT-3 model, the clas-
sification of pediatric emergency room data on respira-
tory tract infections achieved a remarkable accuracy of 
99.88%. Notably, this performance was achieved even 
with data in a non-English language, highlighting the 
model’s versatility and effectiveness. This approach sig-
nificantly enhances the efficiency and cost-effectiveness 
of data labeling, reducing reliance on manual processes. 
Moreover, the successful adaptation to diverse linguistic 
contexts suggests a scalable model for global health sys-
tems, potentially addressing language barriers in medi-
cal data analytics. The findings underscore the potential 
of LLMs to streamline large-scale healthcare data pro-
cessing, paving the way for more efficient and reliable AI 
applications in clinical settings.
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