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Abstract

Background Acute respiratory distress syndrome (ARDS) is a serious threat to human life. Hence, early and accurate
diagnosis and treatment are crucial for patient survival. This meta-analysis evaluates the accuracy of artificial intelli-
gence in the early diagnosis of ARDS and provides guidance for future research and applications.

Methods A search on PubMed, Embase, Cochrane, Web of Science, CNKI, Wanfang, Chinese Biomedical Literature
(CBM), and VIP databases was systematically conducted, from their establishment to November 2023, to obtain eligi-
ble studies for the analysis and evaluation of the predictive effect of Al on ARDS. The retrieved literature was screened
according to inclusion and exclusion criteria, the quality of the included studies was assessed using QUADAS-2,

and the included studies were statistically analyzed.

Results Among the 2, 996 studies, 33 were included in this meta-analysis, which showed that the pooled sen-

sitivity of Al in predicting ARDS was 0.81 (0.76-0.85), the pooled specificity was 0.88 (0.84-0.91), and the area

under the receiver operating characteristic curve (AUC) was 0.91 (0.88-0.93). The analyzed studies included 28 mod-
els, with a pooled sensitivity of 0.79 (0.76-0.82), a pooled specificity of 0.85 (0.83-0.88), and an AUC of 0.89 (0.86-0.91).
In the subgroup analysis, the pooled AUC of the Al models ANN, CNN, LR, RF, SVM, and XGB were 0.86 (0.83-0.89),

0.91 (0.88-0.93), 0.86 (0.83-0.89), and 0.89 (0.86-0.91), 0.90 (0.87-0.92), 0.93 (0.90-0.95), respectively. In an additional
subgroup analysis, we evaluated the predictive performance of the Al models trained using different predictors. This
meta-analysis was registered in PROSPERO (CRD42023491546).

Conclusion Al has good sensitivity and specificity for predicting ARDS, indicating a high clinical application value.
Algorithmic models such as CNN, SVYM, and XGB have improved prediction performance. The subgroup analysis
revealed that the model trained using images combined with other predictors had the best predictive performance.
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Background

Acute respiratory distress syndrome (ARDS) is a severe
condition, affecting more than 3 million patients world-
wide every year. Further, the mortality rate of severe
ARDS can reach up to 46.1%, indicating a severe threat
to patients’ lives [1]. The etiology of ARDS is complex
and its disease progression is rapid, thus accurate early
prediction, diagnosis, and individualized treatment
plans are crucial for improving patient survival rates.
However, the early identification of potentially high-risk
ARDS requires the timely integration and analysis of
basic patient information, disease characteristics, labo-
ratory assays, imaging data, and respiratory mechanical
characteristics for predictive analytics [2]. Developing
methods or tools to accurately predict ARDS early is
crucial for effectively treating patients with ARDS.

With the rapid development of artificial intelli-
gence (Al) technology, its application in medicine has
attracted widespread attention. AI technologies, such
as machine learning and deep learning, show great
potential for analyzing medical images, bioinformatics,
and clinical decision support. Their ability to process
data and recognize patterns makes them powerful tools
for processing large-scale clinical data. These technolo-
gies have been applied to the early diagnosis of dis-
eases, patient management, and prognosis assessment
in clinical medicine [3, 4].

Patients with ARDS often exhibit complex and highly
heterogeneous conditions, accompanied by an abundance
of clinical, biomarker, and imaging data. This establishes a
solid informational foundation for Al research in the field
of ARDS. Studies have demonstrated that Al technology
can effectively be utilized for early prediction of ARDS,
by conducting in-depth analysis of clinical data, imaging
materials, and monitoring information. This aids doctors
in achieving more rapid and precise diagnoses and predic-
tions, thereby facilitating timely interventions and improv-
ing patient outcomes [5]. However, no meta-analyses of
the efficacy of Al in the prediction and diagnosis of ARDS
have been conducted. A search on research databases
shows that studies on Al in ARDS have been proliferating,
especially since 2021. Hence, this study conducted a meta-
analysis of Al prediction for ARDS to evaluate the accu-
racy of Al in predicting ARDS, providing useful guidance
for future research and applications.

Methods

This meta-analysis was conducted according to the
PRISMA guidelines [6]. This meta-analysis was regis-
tered in PROSPERO (CRD42023491546).

(2025) 25:44

Page 2 of 20

Literature search strategy and screening

We searched PubMed, Embase, Cochrane, Web of Sci-
ence, CNKI, Wanfang, Chinese Biomedical Literature
(CBM), and VIP databases from their earliest available
records up to November 2023.The search terms were
“acute respiratory distress syndrome,” “artificial intelli-
gence,” “computer intelligence,” “machine learning,” “com-
puter reasoning,” “deep learning,” and “random forest”
(The specific search strategy is described in Supplemen-

tary Material 3)

Inclusion and exclusion criteria

Articles were screened against the inclusion crite-
ria by two independent researchers, first by title or
abstract. If this step did not provide clear results, the
entire text was examined to determine whether the
article satisfied the inclusion criteria. Disagreements
between researchers were resolved by consulting a
third researcher.

The studies included in this paper were retrospective,
and satisfied the following inclusion criteria: (1) literature
in different languages; (2) studies conducted in patients
with ARDS or those likely to develop ARDS; (3) studies
that provide direct or indirect data to calculate the true
positive (TP), false positive (FP), true negative (TN),
and false negative (FN) values of the study to construct
a complete four-fold table; (4) studies that present clear
descriptions of the AI models and predictors used; (5)
studies that clearly illustrate the source of the dataset
used.

The exclusion criteria were as follows: (1) studies
with incomplete data in the literature and inability to
obtain TP, FP, TN, and FN directly or indirectly; (2)
reviews, conference reports, letters, and experiments
with animals; and (3) Literature duplicating experi-
mental data.

Data extraction and literature quality assessment
Information was extracted and crosschecked inde-
pendently by two researchers. Disagreements were
resolved through discussion or consultation with a third
researcher. We extracted the results from the valida-
tion or test sets of the study, and when there were no
clear grouping in the text, we analyzed them using the
total sample size. Data extracted included authors, year
of publication, study population, study area, study type,
sample size, prevalence, cross-validation method, TP,
FP, TN, EN, sensitivity, and specificity. Quality evalua-
tion of the included studies was performed using QUA-
DAS-2 [7].
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Statistical analysis

Statistical analysis was performed for the included stud-
ies. Sensitivity, specificity, positive likelihood ratio (PLR),
negative likelihood ratio (NLR), and diagnostic odds
ratio (DOR) were summarized using a bivariate mixed-
effects model (MIDAS), and a summary receiver oper-
ating characteristic (SROC) curve was plotted, with the
area under the curve (AUC) value calculated. All results
were expressed with 95% confidence intervals. Calcu-
late the Spearman correlation coefficient to detect het-
erogeneity caused by threshold effects. The magnitude of
heterogeneity was assessed using the I? statistic. Hetero-
geneity was considered high if I* was >50%, and sources
of heterogeneity were explored through meta-regres-
sion. The stability of the results of diagnostic studies is
tested through sensitivity analysis. The Deeks test was
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employed to assess the publication bias of the included
studies, which were deemed to have publication bias
when P<0.05.

Results

Literature search results and characteristics of the included
studies

A total of 2, 996 studies were searched through data-
bases. After removing duplicates, the titles and
abstracts of 1919 studies were reviewed, and the full
text of 126 studies was screened. Ultimately, 33 stud-
ies were included in the pooled analysis [2, 8-39]. The
specific literature screening process is shown in Fig. 1.
The characteristics of the included studies are summa-
rized in Table 1. The selected studies were conducted
in eight countries and regions, with 21 single-center

[ Identification of new studies via databases J
Records identified from: Records removed before
PubMed (n = 603) >
3 Cochrane (n = 95) screening:
k=l ; _ Duplicate records removed
= Web of Science (n = 762) -
S Embase (n = 994) o (n=1077)
= CNKI (n = 137) g Records marked as ineligible
5 W _ by automation tools (n = 0)
anfang database (n = 113)
o - Records removed for other
VIP database (n = 20) reasons (n = 0)
CBM (n =272)
S
v Records excluded:
() Letter (n = 31)
Records screened > Review (n = 241)
(n=1919) Not relevent (n = 1432)
Animal (n =73)
Conference (n = 16)
o \ 4
£
= Reports sought for retrieval o| Reports not retrieved
g (n=126) l n=0)
(7]
v Reports excluded:
Not relevent (n = 52)
Reports assessed for eligibility o gsm‘;?g;éz (=n7=) 1)
(n=126) Abstract (n = 17)
— Same data (n = 2)

Reports of total included studies
(n=33)

Fig. 1 Literature screening flow

Data not available (n = 14)
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Fig. 2 Forest plots of the pooled sensitivity and specificity for best models
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Fig. 4 Forest plots of the pooled DOR for best models
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Fig. 8 Forest plots of the pooled DOR for XGB models

and 12 multicenter studies. All 33 studies were

retrospective.

Literature quality evaluation

According to the QUADAS-2 tool, the overall risk of bias
in patient selection was “high” for 1 study and “unclear”
for 6 studies. The risk of bias related to the index test
and the flow and timing was “low” for all studies. The
risk of bias for the reference standard test was “unclear”
for 6 studies. In terms of overall applicability, the risk of
patient selection bias was “unclear” for 5 studies, and the
risk of bias for the reference standard test was “unclear”
for 6 studies. (Supplementary Material 2 Figures S1, S2)

Results of the meta-analysis

Best models

The performance of the best Al model in predicting
ARDS was evaluated in the 33 studies. The pooled sensi-
tivity was 0.81 (0.76—0.85), the pooled specificity was 0.88
(0.84-0.91), the pooled PLR was 6.66 (4.97-8.93), the
pooled NLR was 0.22 (0.17-0.27), the pooled diagnostic
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odds ratio (DOR) was 31 (20-48), and the overall pooled
AUC was 0.91 (0.88-0.93). (Figures 2, 3, 4 and 5) After
excluding seven studies with patient selection bias risk
and six studies with reference standard test bias risk, it
was found that their impact on the final results was very
limited, with AUC values of 0.91 (0.88-0.93) and 0.91
(0.89-0.94), respectively. (Supplementary Material 1
Table S2) Five studies included external test data, and 12
studies were multicenter studies. Their pooled AUC val-
ues were 0.91 (0.88-0.93) and 0.92 (0.89-0.94), respec-
tively, further validating the reliability of our research
findings. (Supplementary Material 1 Table S3)

All models

A total of 28 models predicted ARDS. The pooled sen-
sitivity was 0.79 (0.76—0.82), the pooled specificity was
0.85 (0.83-0.88), the pooled PLR was 5.37 (4.55-6.35),
the pooled NLR was 0.25 (0.21-0.28), the DOR was 22
(17-28), and the overall pooled AUC was 0.89 (0.86—
0.91). (Supplementary Material 2 Figures S3-56)
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Different types of Al models

In this meta-analysis, we analyzed the performance of
XGB, RE, LR, CNN, SVM, and ANN models in predict-
ing ARDS. Their pooled AUCs were 0.93 (0.90-0.95),
0.89 (0.86-0.91), 0.86 (0.83-0.89), 0.91 (0.88-0.93),
0.90 (0.87-0.92), and 0.86 (0.83-0.89), respectively.
The XGB was the best predictive model, with the
pooled sensitivity of 0.84 (0.75-0.89), the pooled
specificity of 0.89 (0.83-0.93), the pooled PLR of 7.66
(4.92-11.92), the pooled NLR of 0.19 (0.12-0.28), the
pooled DOR of 41 (20-85) (Table 2; Figs. 6, 7, 8 and
9). (Forest plots and SROC curves for the other ana-
lyzed models are shown in Supplementary Material 2
Figures S7-526.)

Table 2 Different types of Al models

Models with different predictors

The effectiveness of different predictors as variables to
train models for predicting ARDS was analyzed by train-
ing the models with images, images combined with other
predictors, mechanical ventilation parameters, labora-
tory assays, and other predictors. Their pooled AUC were
0.90 (0.88-0.93), 0.92 (0.89-0.94), 0.87 (0.83-0.89), 0.91
(0.88-0.93), and 0.78 (0.74—0.81) respectively. In particu-
lar, the model trained with images combined with other
predictors exhibited the best prediction with the pooled
sensitivity of 0.85 (0.80-0.89), the pooled specificity of
0.86 (0.82-0.89), the pooled PLR of 6.10 (4.98-7.46), the
pooled NLR of 0.18 (0.14-0.22), and the pooled DOR
of 35 (29-41) (Table 3; Figs. 10, 11, 12 and 13). (Forest

Model Study Sensitivity Sen-I? Specificity Spe-I2 AUC

XGB 7 0.84 (0.75-0.89) 98.11 (97.44-98.78) 0.89(0.83-0.93) 99.01 (98.73-99.30) 0.93 (0.90-0.95)
RF 5 0.80 (O 73-0.86) 75.58 (53.66-97.50) 0.90 (0.80-0.96) 94.03 (90.34-97.72) 0.89 (0.86-0.91)
LR 17 0.80(0.71-0.86) 97.91 (97.44-98.39) 0.80 (0.74-0.84) 96.98 (96.22-97.75) 0.86 (0.83-0.89)
CNN 7 0.80 (O 72-0.86) 95.30(93.07-97.52) 91 (0.83-0.96) 99.47 (99.35-99.59) 91 (0.88-0.93)
SVM 12 0.72 (0.54-0.85) 94.43 (92.36-96.49) 0.89 (0.82-0.94) 98.80 (98.53-99.07) 0.90 (0.87-0.92)
ANN 5 0.74 (0.64-0.83) 95.72 (93.32-98.12) 0.88 (0.77-0.94) 98.92 (98.53-99.31) 0.86 (0.83-0.89)

XGB Xtreme Gradient Boosting, RF Random forest, LR Logistic regression, CNN Convolutional neural network, SVM Support vector machine, ANN Artificial neural

network
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Fig. 10 The pooled sensitivity and specificity for models trained with images combined with other predictors

plots and SROC curves for training models for differ-
ent predictors are shown in Supplementary Material 2
Figures S27-542) (Details of the predictors are shown in
Supplementary Material 1 Table S1)

Model trained with specific factors

We conducted a thorough analysis of models trained
using specific predictive variables. Specifically, CNNs
were primarily trained using Images data, achieving an
AUC of 0.91 (0.88-0.93); LR focused on Mechanical ven-
tilation parameters, yielding an AUC of 0.80 (0.76—0.83);
and Laboratory assays were utilized to train LR, ANN,
and SVM, with their respective AUCs being 0.88 (0.85—
0.90), 0.92 (0.89-0.94), and 0.91 (0.89-0.94). (Supple-
mentary Material 1 Table S4)

Publication bias detection

The publication bias test using Deeks showed P=0.95
(P>0.05). The Deeks funnel plot (Fig. 14) revealed that
the angle between the regression line and the DOR axis

was close to 90, and no significant asymmetry was pre-
sent, suggesting a low likelihood of publication bias.

Heterogeneity analysis

Threshold effect analysis

The threshold effect analysis showed a Spearman correla-
tion coefficient of 0.090 and a P-value of 0.619. There was
no threshold effect between the studies in this inclusion.

Meta-regression analysis

In the combined analysis of the optimal models from 33
studies, significant heterogeneity was observed in both
sensitivity and specificity (with I* values of 92.86% and
99.00%, respectively). To explore the underlying causes
of this heterogeneity, we conducted a meta-regression
analysis, examining factors such as study region, defini-
tion of ARDS, type of research center (multi-center vs.
single-center), number of patients, incidence of ARDS,
type of Al model, and type of predictor variable. As illus-
trated in fig. 15 all factors except for the type of research
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Fig. 11 The pooled PLR and NLR for models trained with images combined with other predictors

center were considered as sources of heterogeneity (with
P-values <0.05).

Sensitivity analysis

We conducted a comprehensive sensitivity analysis on the
included studies, with particular attention to the impact
of excluding each of the studies by Suganya D/2023,
Wanyue Zhang/2023, Anoop Mayampurath/2020, and
Yu Wang/2023. After recalculating the I* values for the
remaining studies, we found that heterogeneity still per-
sisted (I* value>50%). Using MIDAS to integrate the
effect sizes, the combined AUC value did not exhibit sig-
nificant fluctuation compared to the total combined AUC
value of 0.91 (0.88-0.93). (Fig. 16; Table 4) This suggests
that these four studies have a limited impact on the accu-
racy of Al in predicting ARDS, and the research findings
are stable and reliable. Additionally, we performed sen-
sitivity analyses on various subgroups and observed that
after excluding the study by Wanyue Zhang/XGB 2023,
the combined AUC value for the XGB group decreased to
0.82 (with a total combined AUC value of 0.93). Similarly,
after removing the study by Suganya D/Mask R-CNN

2023, the combined AUC values for the CNN group and
the image group decreased to 0.80 (with a total combined
AUC value of 0.91) and 0.82 (with a total combined AUC
value of 0.90), respectively. (Supplementary Material 1
Table S5, Supplementary Material 2 Figs. 43, 44, 45, 46,
47,48, 49, 50 and 51).

Discussion

Al with several powerful algorithms, has significantly
progressed the fields of image recognition, analysis of
big data, natural language processing, and decision-mak-
ing assistance, substantially developing various medical
fields. In recent years, Al has been gradually applied to
predict, recognize, and diagnose multiple diseases. Bacci
et al. systematically evaluated the use of AI models in AKI
prediction. The authors reported that the AUC results of
the included studies could reach up to 0.70 [40]. Moreo-
ver, Silva et al. also indicated that Al performed well to
detect prostate cancer with an optimal sensitivity of 1.0
(0.93-1.0) and a specificity of 0.78 (0.64—0.89) [41]. Sev-
eral studies have conducted systematic evaluations on the
application of AI in ARDS, yet these studies have solely
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Fig. 12 The pooled DOR for models trained with images combined with other predictors

focused on analyzing AI models that interpret imaging
data [42-45]. In contrast, the research by Muhammed
Rashid et al. provides a comprehensive examination of
the multifaceted applications of Al in ARDS, highlight-
ing its promising role in diagnosis, risk stratification,
severity prediction, management, mortality prediction,
and decision-making analysis [46]. Similarly, T.K. Tran
et al. have analyzed the utilization of machine learning in
ARDS research, encompassing a broad range of research
areas spanning seven distinct categories, notably includ-
ing diagnosis [47]. However, none of these studies con-
ducted a meta-analysis to delve deeper into the research
questions. This study addresses this gap by assessing the
accuracy of Al in predicting ARDS, as well as the actual
effectiveness and advantages of Al in managing ARDS.

In this meta-analysis, the best models exhibited a
pooled sensitivity of 0.81 (0.76-0.85), a pooled speci-
ficity of 0.88 (0.84-0.91), and a pooled AUC of 091
(0.88-0.93). This suggests that Al can recognize sick and
non-sick people with credible results. The results of sub-
group analysis conducted on various artificial intelligence

models indicate that XGB demonstrates optimal perfor-
mance, with an AUC value of 0.93 (0.90-0.95), which
aligns with the general trends observed in machine learn-
ing. As an ensemble tree model, XGB excels in handling
data with complex interactions and high dimensional-
ity. Compared to other machine learning models, XGB
not only leads in prediction accuracy but also exhibits
superior training efficiency and scalability [48]. A study
suggests that AI models with high AUC values should
incorporate additional predictive indicators [48]. How-
ever, Izadi et al. suggested that a large number of predic-
tors might not improve the predictive performance of a
model. In particular, selecting appropriate predictors
may be crucial, which is more practical in clinical prac-
tice [26]. In this meta-analysis, the model trained with
images combined with other predictors had an AUC of
0.92 (0.89-0.94), showing the best prediction perfor-
mance. The AUCs of the models trained for images and
laboratory assays were 0.90 (0.88—0.93) and 0.91 (0.88-
0.93), respectively. This suggests that imaging and labo-
ratory assays may be more suitable for training ARDS
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Fig. 13 SROC of models trained with images combined with other predictors for predicting ARDS

prediction models. The two subgroups analyzed in this
study provide useful references for selecting appropriate
models and predictors in future research.

We further observed that CNNs, a deep learning model
specialized for processing image and video data, yielded
promising prediction outcomes. Models trained based
on laboratory examinations encompassed LR, ANN, and
SVM. Among them, ANNs demonstrated the superior
predictive performance, attributed to their high accuracy,
parallel distributed processing capabilities, and robust-
ness against noise. In our dataset, LR models were more
frequently utilized in conjunction with mechanical ven-
tilation parameters for training; however, their predic-
tive performance was not satisfactory, with an AUC of
0.80 (0.76—0.83). This may be attributed to the fact that
LR models typically only consider pairwise interactions
while neglecting other variables and are susceptible to

Table 3 Models with different predictors

disturbances from nonlinear relationships among predic-
tor variables [35, 49]. In conclusion, selecting an appro-
priate model according to the specific task and data
characteristics is crucial for achieving satisfactory predic-
tion results and performance.

The implementation of artificial intelligence algorithms
for real-time prediction aids in timely stratified care for
high-risk patients with ARDS, optimizes resource allo-
cation in ICUs, and enhances treatment efficiency. Our
comprehensive analysis, integrating numerous related
studies, reveals that the application of artificial intelli-
gence in predicting ARDS is accurate and reliable. How-
ever, significant challenges persist in data sharing and
regulation during the implementation of Al algorithms.
To address these issues, the establishment of unified
data standards and sharing mechanisms, along with the
enhancement of data regulation, is imperative.

Predictors Study Sensitivity Sen-I? Specificity Spe-12 AUC

Images 10 0.81(0.75-0.86)  93.27 (90.36-96.18)  0.90 (0.82-0.94)  99.25 (99.09-99.41)  0.90 (0.88-0.93)
Images combined with other predictors 8 0.85(0.80-0.89)  78.94 (64.80-93.08)  0.86 (0.82-0.89)  96.81 (95.57-98.05)  0.92 (0.89-0.94)
Mechanical ventilation parameters 18 0.82(0.78-0.86) 9863 (98.37-98.89)  0.78 (0.75-0.81)  98.99 (98.82-99.16)  0.87 (0.83-0.89)
Laboratory assays 31 0.77 (0.70-0.83)  90.26 (87.67-92.86)  0.90 (0.87-0.93)  94.20(92.88-95.52)  0.91 (0.88-0.93)
Other predictors 14 0.68 (0.62-0.74)  81.65 (72.82-90.48)  0.77(0.70-0.83)  98.36(97.98-98.74)  0.78 (0.74-0.81)
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Fig. 14 Funnel plot of studies included in the meta-analysis

Protecting patient privacy is a fundamental principle
that must be adhered to in the clinical application of Al
The studies included in this meta-analysis have adopted
rigorous data encryption and anonymization measures
to ensure the security of patient data, and future research
should also focus on this to ensure the reasonable, safe,
and sustainable application of Al technology.

This study acknowledges its limitations as well.
Firstly, all 33 studies included were retrospective, lead-
ing to a high degree of heterogeneity among them.
Meta-regression analysis identified various sources
of heterogeneity, including study region, definition of
ARDS, type of research center, patient number, inci-
dence of ARDS, type of AI model used, and type of pre-
dictor variables utilized. High heterogeneity was also
observed within subgroups. Different models vary in
algorithmic principles, data processing methods, and
predictive capabilities, which may serve as sources of
heterogeneity. Furthermore, different studies employed
various predictors for model training, reflecting differ-
ent aspects of patients’ pathophysiological processes
with different sensitivities and specificities, thereby
influencing the study results. Sensitivity analysis indi-
cated a lack of robustness in the study outcomes for the
XGB group. Within this group, the study by Wanyue
Zhang/XGB 2023 reported good prediction results,

potentially due to the selection of more appropri-
ate predictors. Upon excluding this study, the com-
bined effect size of the remaining studies significantly
decreased. The study by Suganya D/Mask R-CNN 2023
had a large sample size and excellent predictive perfor-
mance; after excluding this study, the combined effect
sizes of both the CNN group and the imaging group
declined. Future studies should include more high-
quality research for further analysis. Secondly, during
the literature retrieval process, we only searched Eng-
lish and Chinese databases, and all articles eventually
included in the meta-analysis were published in either
English or Chinese. This outcome may inadvertently
exclude important studies in other languages, intro-
ducing language bias and affecting the comprehensive-
ness and accuracy of the results. While we did conduct
a comprehensive search across multiple authoritative
databases and adhered to a systematic literature review
method, even the most thorough search may fail to
capture all relevant studies, particularly those that are
unpublished or difficult to access, which may result
in selection bias in the literature. Lastly, the included
studies lacked data on model calibration metrics (such
as the Brier score), which hindered our accurate assess-
ment of the model’s reliability. The interpretability of
a model is crucial for understanding its practicality.
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Table 4 The results of excluding each of the four studies one by one
Excluded studies Sensitivity Sen-I? Specificity Sep-I2 AUC
Suganya D 2023 [30] 0.80 (0.75-0.84) 90.32 0.87 (0.83-0.90) 97.89 0.90 (0.87-0.93)
Wanyue Zhang 2023 [36] 0.80 (0.75-0.84) 92.21 0.88 (0.84-0.91) 99.01 0.90 (0.87-0.93)
Anoop Mayampurath 2020 [2] 0.82(0.78-0.85) 91.94 0.88(0.84-0.91) 99.05 0.91 (0.88-0.93)
YuWang 2023 [11] 0.80 (0.76-0.85) 9292 0.88 (0.84-0.91) 99.03 0.91 (0.88-0.93)
All four studies were excluded 0.79 (0.75-0.82) 84.69 0.87 (0.83-0.90) 98.03 0.89 (0.85-0.91)

In the studies included in this paper, although various
variables such as imaging, vital signs, and laboratory
indicators were used to train the model, the lack of data
that can quantify variable contributions, such as SHAP
values, prevented us from conducting an in-depth inte-
grated analysis of these variables

Conclusion

Al models show good sensitivity and specificity for pre-
dicting ARDS, promising future clinical applications.
Among them, CNN, SVM, and XGB models exhibited

the best prediction performance. The subgroup analy-
ses revealed that models trained with images combined
with other predictors showed the best predictive perfor-
mance. A future work could focus on selecting the model
and predictors according to the specific task and data
characteristics.

Abbreviations

ARDS Acute respiratory distress syndrome
Al Artificial intelligence

XGB Xtreme Gradient Boosting

RF Random forest

LR Logistic regression
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CNN Convolutional neural network

SVM Support vector machine

GBT Gradient boosted trees

KNN k-nearest neighbors

GLMNET The lasso and elastic-net regularized generalized linear models

BAYESGLM  Bayesian generalized linear models
GAM Generalized additive models

GBM Gradient boosting machines

NN Neural networks

EDTs Ensembles of Decision Trees

BC Bayesian Classifier

SLP-FNN Single hidden layer feedforward neural network
L2-LR L2 regularized logistic regression
AdaBoost Adaptive boosting

ML Machine learning

PCA Principal Component Analysis

LDA Linear Discriminant Analysis

DoT Decision tree

DNN Deep Neural Network

ANN Artificial neural network

SLR Stepwise logistic regression algorithm
RNN Recurrent Neural Network

NLR Negative likelihood ratio

PLR Positive likelihood ratio

DOR Diagnostic odds ratio

SEN Sensitivity

SPE Specificity

TP True positive

FP False positive

™ True negative

FN False negative

AUC Area under the curve

SROC Summary receiver operating characteristic
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