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Abstract 

Background  Acute respiratory distress syndrome (ARDS) is a serious threat to human life. Hence, early and accurate 
diagnosis and treatment are crucial for patient survival. This meta-analysis evaluates the accuracy of artificial intelli-
gence in the early diagnosis of ARDS and provides guidance for future research and applications.

Methods  A search on PubMed, Embase, Cochrane, Web of Science, CNKI, Wanfang, Chinese Biomedical Literature 
(CBM), and VIP databases was systematically conducted, from their establishment to November 2023, to obtain eligi-
ble studies for the analysis and evaluation of the predictive effect of AI on ARDS. The retrieved literature was screened 
according to inclusion and exclusion criteria, the quality of the included studies was assessed using QUADAS-2, 
and the included studies were statistically analyzed.

Results  Among the 2, 996 studies, 33 were included in this meta-analysis, which showed that the pooled sen-
sitivity of AI in predicting ARDS was 0.81 (0.76–0.85), the pooled specificity was 0.88 (0.84–0.91), and the area 
under the receiver operating characteristic curve (AUC) was 0.91 (0.88–0.93). The analyzed studies included 28 mod-
els, with a pooled sensitivity of 0.79 (0.76–0.82), a pooled specificity of 0.85 (0.83–0.88), and an AUC of 0.89 (0.86–0.91). 
In the subgroup analysis, the pooled AUC of the AI models ANN, CNN, LR, RF, SVM, and XGB were 0.86 (0.83–0.89), 
0.91 (0.88–0.93), 0.86 (0.83–0.89), and 0.89 (0.86–0.91), 0.90 (0.87–0.92), 0.93 (0.90–0.95), respectively. In an additional 
subgroup analysis, we evaluated the predictive performance of the AI models trained using different predictors. This 
meta-analysis was registered in PROSPERO (CRD42023491546).

Conclusion  AI has good sensitivity and specificity for predicting ARDS, indicating a high clinical application value. 
Algorithmic models such as CNN, SVM, and XGB have improved prediction performance. The subgroup analysis 
revealed that the model trained using images combined with other predictors had the best predictive performance.
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Background
Acute respiratory distress syndrome (ARDS) is a severe 
condition, affecting more than 3 million patients world-
wide every year. Further, the mortality rate of severe 
ARDS can reach up to 46.1%, indicating a severe threat 
to patients’ lives [1]. The etiology of ARDS is complex 
and its disease progression is rapid, thus accurate early 
prediction, diagnosis, and individualized treatment 
plans are crucial for improving patient survival rates. 
However, the early identification of potentially high-risk 
ARDS requires the timely integration and analysis of 
basic patient information, disease characteristics, labo-
ratory assays, imaging data, and respiratory mechanical 
characteristics for predictive analytics [2]. Developing 
methods or tools to accurately predict ARDS early is 
crucial for effectively treating patients with ARDS.

With the rapid development of artificial intelli-
gence (AI) technology, its application in medicine has 
attracted widespread attention. AI technologies, such 
as machine learning and deep learning, show great 
potential for analyzing medical images, bioinformatics, 
and clinical decision support. Their ability to process 
data and recognize patterns makes them powerful tools 
for processing large-scale clinical data. These technolo-
gies have been applied to the early diagnosis of dis-
eases, patient management, and prognosis assessment 
in clinical medicine [3, 4]. 

Patients with ARDS often exhibit complex and highly 
heterogeneous conditions, accompanied by an abundance 
of clinical, biomarker, and imaging data. This establishes a 
solid informational foundation for AI research in the field 
of ARDS. Studies have demonstrated that AI technology 
can effectively be utilized for early prediction of ARDS, 
by conducting in-depth analysis of clinical data, imaging 
materials, and monitoring information. This aids doctors 
in achieving more rapid and precise diagnoses and predic-
tions, thereby facilitating timely interventions and improv-
ing patient outcomes [5]. However, no meta-analyses of 
the efficacy of AI in the prediction and diagnosis of ARDS 
have been conducted. A search on research databases 
shows that studies on AI in ARDS have been proliferating, 
especially since 2021. Hence, this study conducted a meta-
analysis of AI prediction for ARDS to evaluate the accu-
racy of AI in predicting ARDS, providing useful guidance 
for future research and applications.

Methods
This meta-analysis was conducted according to the 
PRISMA guidelines [6]. This meta-analysis was regis-
tered in PROSPERO (CRD42023491546).

Literature search strategy and screening
We searched PubMed, Embase, Cochrane, Web of Sci-
ence, CNKI, Wanfang, Chinese Biomedical Literature 
(CBM), and VIP databases from their earliest available 
records up to November 2023.The search terms were 
“acute respiratory distress syndrome,” “artificial intelli-
gence,” “computer intelligence,” “machine learning,” “com-
puter reasoning,” “deep learning,” and “random forest.” 
(The specific search strategy is described in Supplemen-
tary Material 3)

Inclusion and exclusion criteria
Articles were screened against the inclusion crite-
ria by two independent researchers, first by title or 
abstract. If this step did not provide clear results, the 
entire text was examined to determine whether the 
article satisfied the inclusion criteria. Disagreements 
between researchers were resolved by consulting a 
third researcher.

The studies included in this paper were retrospective, 
and satisfied the following inclusion criteria: (1) literature 
in different languages; (2) studies conducted in patients 
with ARDS or those likely to develop ARDS; (3) studies 
that provide direct or indirect data to calculate the true 
positive (TP), false positive (FP), true negative (TN), 
and false negative (FN) values of the study to construct 
a complete four-fold table; (4) studies that present clear 
descriptions of the AI models and predictors used; (5) 
studies that clearly illustrate the source of the dataset 
used.

The exclusion criteria were as follows: (1) studies 
with incomplete data in the literature and inability to 
obtain TP, FP, TN, and FN directly or indirectly; (2) 
reviews, conference reports, letters, and experiments 
with animals; and (3) Literature duplicating experi-
mental data.

Data extraction and literature quality assessment
Information was extracted and crosschecked inde-
pendently by two researchers. Disagreements were 
resolved through discussion or consultation with a third 
researcher. We extracted the results from the valida-
tion or test sets of the study, and when there were no 
clear grouping in the text, we analyzed them using the 
total sample size. Data extracted included authors, year 
of publication, study population, study area, study type, 
sample size, prevalence, cross-validation method, TP, 
FP, TN, FN, sensitivity, and specificity. Quality evalua-
tion of the included studies was performed using QUA-
DAS-2 [7].
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Statistical analysis
Statistical analysis was performed for the included stud-
ies. Sensitivity, specificity, positive likelihood ratio (PLR), 
negative likelihood ratio (NLR), and diagnostic odds 
ratio (DOR) were summarized using a bivariate mixed-
effects model (MIDAS), and a summary receiver oper-
ating characteristic (SROC) curve was plotted, with the 
area under the curve (AUC) value calculated. All results 
were expressed with 95% confidence intervals. Calcu-
late the Spearman correlation coefficient to detect het-
erogeneity caused by threshold effects. The magnitude of 
heterogeneity was assessed using the I² statistic. Hetero-
geneity was considered high if I² was > 50%, and sources 
of heterogeneity were explored through meta-regres-
sion. The stability of the results of diagnostic studies is 
tested through sensitivity analysis. The Deeks test was 

employed to assess the publication bias of the included 
studies, which were deemed to have publication bias 
when P < 0.05.

Results
Literature search results and characteristics of the included 
studies
A total of 2, 996 studies were searched through data-
bases. After removing duplicates, the titles and 
abstracts of 1919 studies were reviewed, and the full 
text of 126 studies was screened. Ultimately, 33 stud-
ies were included in the pooled analysis [2, 8–39]. The 
specific literature screening process is shown in Fig. 1. 
The characteristics of the included studies are summa-
rized in Table 1. The selected studies were conducted 
in eight countries and regions, with 21 single-center 

Fig. 1  Literature screening flow
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Fig. 2  Forest plots of the pooled sensitivity and specificity for best models

Fig. 3  Forest plots of the pooled PLR and NLR for best models
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Fig. 4  Forest plots of the pooled DOR for best models

Fig. 5  SROC of best models for predicting ARDS
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Fig. 6  Forest plots of the pooled sensitivity and specificity for XGB models

Fig. 7  Forest plots of the pooled PLR and NLR for XGB models
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and 12 multicenter studies. All 33 studies were 
retrospective.

Literature quality evaluation
According to the QUADAS-2 tool, the overall risk of bias 
in patient selection was “high” for 1 study and “unclear” 
for 6 studies. The risk of bias related to the index test 
and the flow and timing was “low” for all studies. The 
risk of bias for the reference standard test was “unclear” 
for 6 studies. In terms of overall applicability, the risk of 
patient selection bias was “unclear” for 5 studies, and the 
risk of bias for the reference standard test was “unclear” 
for 6 studies. (Supplementary Material 2 Figures S1, S2)

Results of the meta‑analysis
Best models
The performance of the best AI model in predicting 
ARDS was evaluated in the 33 studies. The pooled sensi-
tivity was 0.81 (0.76–0.85), the pooled specificity was 0.88 
(0.84–0.91), the pooled PLR was 6.66 (4.97–8.93), the 
pooled NLR was 0.22 (0.17–0.27), the pooled diagnostic 

odds ratio (DOR) was 31 (20–48), and the overall pooled 
AUC was 0.91 (0.88–0.93). (Figures  2, 3, 4 and 5) After 
excluding seven studies with patient selection bias risk 
and six studies with reference standard test bias risk, it 
was found that their impact on the final results was very 
limited, with AUC values of 0.91 (0.88–0.93) and 0.91 
(0.89–0.94), respectively. (Supplementary Material 1 
Table S2) Five studies included external test data, and 12 
studies were multicenter studies. Their pooled AUC val-
ues were 0.91 (0.88–0.93) and 0.92 (0.89–0.94), respec-
tively, further validating the reliability of our research 
findings. (Supplementary Material 1 Table S3)

All models
A total of 28 models predicted ARDS. The pooled sen-
sitivity was 0.79 (0.76–0.82), the pooled specificity was 
0.85 (0.83–0.88), the pooled PLR was 5.37 (4.55–6.35), 
the pooled NLR was 0.25 (0.21–0.28), the DOR was 22 
(17–28), and the overall pooled AUC was 0.89 (0.86–
0.91). (Supplementary Material 2 Figures S3-S6)

Fig. 8  Forest plots of the pooled DOR for XGB models
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Different types of AI models
In this meta-analysis, we analyzed the performance of 
XGB, RF, LR, CNN, SVM, and ANN models in predict-
ing ARDS. Their pooled AUCs were 0.93 (0.90–0.95), 
0.89 (0.86–0.91), 0.86 (0.83–0.89), 0.91 (0.88–0.93), 
0.90 (0.87–0.92), and 0.86 (0.83–0.89), respectively. 
The XGB was the best predictive model, with the 
pooled sensitivity of 0.84 (0.75–0.89), the pooled 
specificity of 0.89 (0.83–0.93), the pooled PLR of 7.66 
(4.92–11.92), the pooled NLR of 0.19 (0.12–0.28), the 
pooled DOR of 41 (20–85) (Table  2; Figs.  6, 7, 8 and 
9). (Forest plots and SROC curves for the other ana-
lyzed models are shown in Supplementary Material 2 
Figures S7-S26.)

Models with different predictors
The effectiveness of different predictors as variables to 
train models for predicting ARDS was analyzed by train-
ing the models with images, images combined with other 
predictors, mechanical ventilation parameters, labora-
tory assays, and other predictors. Their pooled AUC were 
0.90 (0.88–0.93), 0.92 (0.89–0.94), 0.87 (0.83–0.89), 0.91 
(0.88–0.93), and 0.78 (0.74–0.81) respectively. In particu-
lar, the model trained with images combined with other 
predictors exhibited the best prediction with the pooled 
sensitivity of 0.85 (0.80–0.89), the pooled specificity of 
0.86 (0.82–0.89), the pooled PLR of 6.10 (4.98–7.46), the 
pooled NLR of 0.18 (0.14–0.22), and the pooled DOR 
of 35 (29–41) (Table  3; Figs.  10, 11, 12 and 13). (Forest 

Fig. 9  SROC of XGB models for predicting ARDS

Table 2  Different types of AI models

XGB Xtreme Gradient Boosting, RF Random forest, LR Logistic regression, CNN Convolutional neural network, SVM Support vector machine, ANN Artificial neural 
network

Model Study Sensitivity Sen-I2 Specificity Spe-I2 AUC​

XGB 7 0.84 (0.75–0.89) 98.11 (97.44–98.78) 0.89 (0.83–0.93) 99.01 (98.73–99.30) 0.93 (0.90–0.95)

RF 5 0.80 (0.73–0.86) 75.58 (53.66–97.50) 0.90 (0.80–0.96) 94.03 (90.34–97.72) 0.89 (0.86–0.91)

LR 17 0.80 (0.71–0.86) 97.91 (97.44–98.39) 0.80 (0.74–0.84) 96.98 (96.22–97.75) 0.86 (0.83–0.89)

CNN 7 0.80 (0.72–0.86) 95.30 (93.07–97.52) 0.91 (0.83–0.96) 99.47 (99.35–99.59) 0.91 (0.88–0.93)

SVM 12 0.72 (0.54–0.85) 94.43 (92.36–96.49) 0.89 (0.82–0.94) 98.80 (98.53–99.07) 0.90 (0.87–0.92)

ANN 5 0.74 (0.64–0.83) 95.72 (93.32–98.12) 0.88 (0.77–0.94) 98.92 (98.53–99.31) 0.86 (0.83–0.89)
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plots and SROC curves for training models for differ-
ent predictors are shown in Supplementary Material 2 
Figures S27-S42) (Details of the predictors are shown in 
Supplementary Material 1 Table S1)

Model trained with specific factors
We conducted a thorough analysis of models trained 
using specific predictive variables. Specifically, CNNs 
were primarily trained using Images data, achieving an 
AUC of 0.91 (0.88–0.93); LR focused on Mechanical ven-
tilation parameters, yielding an AUC of 0.80 (0.76–0.83); 
and Laboratory assays were utilized to train LR, ANN, 
and SVM, with their respective AUCs being 0.88 (0.85–
0.90), 0.92 (0.89–0.94), and 0.91 (0.89–0.94). (Supple-
mentary Material 1 Table S4)

Publication bias detection
The publication bias test using Deeks showed P = 0.95 
(P > 0.05). The Deeks funnel plot (Fig.  14) revealed that 
the angle between the regression line and the DOR axis 

was close to 90, and no significant asymmetry was pre-
sent, suggesting a low likelihood of publication bias.

Heterogeneity analysis
Threshold effect analysis
The threshold effect analysis showed a Spearman correla-
tion coefficient of 0.090 and a P-value of 0.619. There was 
no threshold effect between the studies in this inclusion.

Meta‑regression analysis
In the combined analysis of the optimal models from 33 
studies, significant heterogeneity was observed in both 
sensitivity and specificity (with I² values of 92.86% and 
99.00%, respectively). To explore the underlying causes 
of this heterogeneity, we conducted a meta-regression 
analysis, examining factors such as study region, defini-
tion of ARDS, type of research center (multi-center vs. 
single-center), number of patients, incidence of ARDS, 
type of AI model, and type of predictor variable. As illus-
trated in fig. 15 all factors except for the type of research 

Fig. 10  The pooled sensitivity and specificity for models trained with images combined with other predictors
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center were considered as sources of heterogeneity (with 
P-values < 0.05).

Sensitivity analysis
We conducted a comprehensive sensitivity analysis on the 
included studies, with particular attention to the impact 
of excluding each of the studies by Suganya D/2023, 
Wanyue Zhang/2023, Anoop Mayampurath/2020, and 
Yu Wang/2023. After recalculating the I² values for the 
remaining studies, we found that heterogeneity still per-
sisted (I² value > 50%). Using MIDAS to integrate the 
effect sizes, the combined AUC value did not exhibit sig-
nificant fluctuation compared to the total combined AUC 
value of 0.91 (0.88–0.93). (Fig. 16; Table 4) This suggests 
that these four studies have a limited impact on the accu-
racy of AI in predicting ARDS, and the research findings 
are stable and reliable. Additionally, we performed sen-
sitivity analyses on various subgroups and observed that 
after excluding the study by Wanyue Zhang/XGB 2023, 
the combined AUC value for the XGB group decreased to 
0.82 (with a total combined AUC value of 0.93). Similarly, 
after removing the study by Suganya D/Mask R-CNN 

2023, the combined AUC values for the CNN group and 
the image group decreased to 0.80 (with a total combined 
AUC value of 0.91) and 0.82 (with a total combined AUC 
value of 0.90), respectively. (Supplementary Material 1 
Table S5, Supplementary Material 2 Figs. 43, 44, 45, 46, 
47, 48, 49, 50 and 51).

Discussion
AI, with several powerful algorithms, has significantly 
progressed the fields of image recognition, analysis of 
big data, natural language processing, and decision-mak-
ing assistance, substantially developing various medical 
fields. In recent years, AI has been gradually applied to 
predict, recognize, and diagnose multiple diseases. Bacci 
et al. systematically evaluated the use of AI models in AKI 
prediction. The authors reported that the AUC results of 
the included studies could reach up to 0.70 [40]. Moreo-
ver, Silva et  al. also indicated that AI performed well to 
detect prostate cancer with an optimal sensitivity of 1.0 
(0.93–1.0) and a specificity of 0.78 (0.64–0.89) [41]. Sev-
eral studies have conducted systematic evaluations on the 
application of AI in ARDS, yet these studies have solely 

Fig. 11  The pooled PLR and NLR for models trained with images combined with other predictors
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focused on analyzing AI models that interpret imaging 
data [42–45]. In contrast, the research by Muhammed 
Rashid et  al. provides a comprehensive examination of 
the multifaceted applications of AI in ARDS, highlight-
ing its promising role in diagnosis, risk stratification, 
severity prediction, management, mortality prediction, 
and decision-making analysis [46]. Similarly, T.K. Tran 
et al. have analyzed the utilization of machine learning in 
ARDS research, encompassing a broad range of research 
areas spanning seven distinct categories, notably includ-
ing diagnosis [47]. However, none of these studies con-
ducted a meta-analysis to delve deeper into the research 
questions. This study addresses this gap by assessing the 
accuracy of AI in predicting ARDS, as well as the actual 
effectiveness and advantages of AI in managing ARDS.

In this meta-analysis, the best models exhibited a 
pooled sensitivity of 0.81 (0.76–0.85), a pooled speci-
ficity of 0.88 (0.84–0.91), and a pooled AUC of 0.91 
(0.88–0.93). This suggests that AI can recognize sick and 
non-sick people with credible results. The results of sub-
group analysis conducted on various artificial intelligence 

models indicate that XGB demonstrates optimal perfor-
mance, with an AUC value of 0.93 (0.90–0.95), which 
aligns with the general trends observed in machine learn-
ing. As an ensemble tree model, XGB excels in handling 
data with complex interactions and high dimensional-
ity. Compared to other machine learning models, XGB 
not only leads in prediction accuracy but also exhibits 
superior training efficiency and scalability [48]. A study 
suggests that AI models with high AUC values should 
incorporate additional predictive indicators [48]. How-
ever, Izadi et al. suggested that a large number of predic-
tors might not improve the predictive performance of a 
model. In particular, selecting appropriate predictors 
may be crucial, which is more practical in clinical prac-
tice [26]. In this meta-analysis, the model trained with 
images combined with other predictors had an AUC of 
0.92 (0.89–0.94), showing the best prediction perfor-
mance. The AUCs of the models trained for images and 
laboratory assays were 0.90 (0.88–0.93) and 0.91 (0.88–
0.93), respectively. This suggests that imaging and labo-
ratory assays may be more suitable for training ARDS 

Fig. 12  The pooled DOR for models trained with images combined with other predictors
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prediction models. The two subgroups analyzed in this 
study provide useful references for selecting appropriate 
models and predictors in future research.

We further observed that CNNs, a deep learning model 
specialized for processing image and video data, yielded 
promising prediction outcomes. Models trained based 
on laboratory examinations encompassed LR, ANN, and 
SVM. Among them, ANNs demonstrated the superior 
predictive performance, attributed to their high accuracy, 
parallel distributed processing capabilities, and robust-
ness against noise. In our dataset, LR models were more 
frequently utilized in conjunction with mechanical ven-
tilation parameters for training; however, their predic-
tive performance was not satisfactory, with an AUC of 
0.80 (0.76–0.83). This may be attributed to the fact that 
LR models typically only consider pairwise interactions 
while neglecting other variables and are susceptible to 

disturbances from nonlinear relationships among predic-
tor variables [35, 49]. In conclusion, selecting an appro-
priate model according to the specific task and data 
characteristics is crucial for achieving satisfactory predic-
tion results and performance.

The implementation of artificial intelligence algorithms 
for real-time prediction aids in timely stratified care for 
high-risk patients with ARDS, optimizes resource allo-
cation in ICUs, and enhances treatment efficiency. Our 
comprehensive analysis, integrating numerous related 
studies, reveals that the application of artificial intelli-
gence in predicting ARDS is accurate and reliable. How-
ever, significant challenges persist in data sharing and 
regulation during the implementation of AI algorithms. 
To address these issues, the establishment of unified 
data standards and sharing mechanisms, along with the 
enhancement of data regulation, is imperative.

Fig. 13  SROC of models trained with images combined with other predictors for predicting ARDS

Table 3  Models with different predictors

Predictors Study Sensitivity Sen-I2 Specificity Spe-I2 AUC​

Images 10 0.81 (0.75–0.86) 93.27 (90.36–96.18) 0.90 (0.82–0.94) 99.25 (99.09–99.41) 0.90 (0.88–0.93)

Images combined with other predictors 8 0.85 (0.80–0.89) 78.94 (64.80–93.08) 0.86 (0.82–0.89) 96.81 (95.57–98.05) 0.92 (0.89–0.94)

Mechanical ventilation parameters 18 0.82 (0.78–0.86) 98.63 (98.37–98.89) 0.78 (0.75–0.81) 98.99 (98.82–99.16) 0.87 (0.83–0.89)

Laboratory assays 31 0.77 (0.70–0.83) 90.26 (87.67–92.86) 0.90 (0.87–0.93) 94.20 (92.88–95.52) 0.91 (0.88–0.93)

Other predictors 14 0.68 (0.62–0.74) 81.65 (72.82–90.48) 0.77 (0.70–0.83) 98.36 (97.98–98.74) 0.78 (0.74–0.81)



Page 16 of 20Xiong et al. BMC Medical Informatics and Decision Making           (2025) 25:44 

Protecting patient privacy is a fundamental principle 
that must be adhered to in the clinical application of AI. 
The studies included in this meta-analysis have adopted 
rigorous data encryption and anonymization measures 
to ensure the security of patient data, and future research 
should also focus on this to ensure the reasonable, safe, 
and sustainable application of AI technology.

This study acknowledges its limitations as well. 
Firstly, all 33 studies included were retrospective, lead-
ing to a high degree of heterogeneity among them. 
Meta-regression analysis identified various sources 
of heterogeneity, including study region, definition of 
ARDS, type of research center, patient number, inci-
dence of ARDS, type of AI model used, and type of pre-
dictor variables utilized. High heterogeneity was also 
observed within subgroups. Different models vary in 
algorithmic principles, data processing methods, and 
predictive capabilities, which may serve as sources of 
heterogeneity. Furthermore, different studies employed 
various predictors for model training, reflecting differ-
ent aspects of patients’ pathophysiological processes 
with different sensitivities and specificities, thereby 
influencing the study results. Sensitivity analysis indi-
cated a lack of robustness in the study outcomes for the 
XGB group. Within this group, the study by Wanyue 
Zhang/XGB 2023 reported good prediction results, 

potentially due to the selection of more appropri-
ate predictors. Upon excluding this study, the com-
bined effect size of the remaining studies significantly 
decreased. The study by Suganya D/Mask R-CNN 2023 
had a large sample size and excellent predictive perfor-
mance; after excluding this study, the combined effect 
sizes of both the CNN group and the imaging group 
declined. Future studies should include more high-
quality research for further analysis. Secondly, during 
the literature retrieval process, we only searched Eng-
lish and Chinese databases, and all articles eventually 
included in the meta-analysis were published in either 
English or Chinese. This outcome may inadvertently 
exclude important studies in other languages, intro-
ducing language bias and affecting the comprehensive-
ness and accuracy of the results. While we did conduct 
a comprehensive search across multiple authoritative 
databases and adhered to a systematic literature review 
method, even the most thorough search may fail to 
capture all relevant studies, particularly those that are 
unpublished or difficult to access, which may result 
in selection bias in the literature. Lastly, the included 
studies lacked data on model calibration metrics (such 
as the Brier score), which hindered our accurate assess-
ment of the model’s reliability. The interpretability of 
a model is crucial for understanding its practicality. 

Fig. 14  Funnel plot of studies included in the meta-analysis
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Fig. 15  Meta-regression of heterogeneous sources
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In the studies included in this paper, although various 
variables such as imaging, vital signs, and laboratory 
indicators were used to train the model, the lack of data 
that can quantify variable contributions, such as SHAP 
values, prevented us from conducting an in-depth inte-
grated analysis of these variables

Conclusion
AI models show good sensitivity and specificity for pre-
dicting ARDS, promising future clinical applications. 
Among them, CNN, SVM, and XGB models exhibited 

the best prediction performance. The subgroup analy-
ses revealed that models trained with images combined 
with other predictors showed the best predictive perfor-
mance. A future work could focus on selecting the model 
and predictors according to the specific task and data 
characteristics.
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