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Abstract
Background This study aimed to assess the risk of death from non-traumatic intracerebral hemorrhage (ICH) using a 
machine learning model.

Methods 1274 ICH patients who met the specified inclusion and exclusion criteria were analyzed retrospectively 
in the MIMIC IV 3.0 database. Patients were randomly divided into training, validation, and testing datasets in a ratio 
of 6:2:2 based on the outcome distribution. Data from the Second Hospital of Lanzhou University were used as an 
external validation set. This study used LASSO regression and multivariable logistic regression analysis to screen 
for features. We then employed XGBoost to construct a machine-learning model. The model’s performance was 
evaluated using ROC curve analysis, calibration curve analysis, clinical decision curve analysis, sensitivity, specificity, 
accuracy, and F1 score. Conclusively, the SHapley Additive exPlanations (SHAP) method was employed to interpret 
the model’s predictions.

Results Deaths occurred in 572 out of the 1274 ICH cases included in the study, resulting in an incidence rate 
of 44.9%. The XGBoost model achieved a high AUC when predicting deaths in ICH patients (train: 0.814, 95%CI: 
0.784 − 0.844; validation: 0.715, 95%CI: 0.653 − 0.777; test: 0.797, 95%CI: 0.743 − 0.851). The importance of SHAP 
variables in the model ranked from high to low was: ’GCS motor’, ’Age’, ’GCS eyes’, ’Low density lipoprotein (LDL)’, ’ 
Albumin’, ’ Atrial fibrillation’, and ’Gender’. The XGBoost model demonstrated good predictive performance in both the 
validation and external validation datasets.

Conclusions The XGBoost machine learning model we built has demonstrated strong performance in predicting the 
risk of death from ICH. Furthermore, the SHAP provides the possibility of interpreting machine learning results.
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Introduction
Nontraumatic intracerebral hemorrhage (ICH) is the 
second most common type of stroke globally, affect-
ing 20% [1] of the estimated 17.9 million stroke patients 
worldwide [2]. Despite advancements in understanding 
the natural history, treatment approaches, and prognosis 
of ICH, its incidence and mortality rates remain alarm-
ingly high [3]. Within the first month after injury, 54% of 
ICH patients succumb to the condition, underscoring the 
urgent need for improved strategies to guide supportive 
treatment and prognostic management [4]. A critical step 
in improving outcomes is the early prediction of long-
term results, such as mortality risk. At the time of admis-
sion, clinicians often have access to limited information, 
such as vital signs, Glasgow Coma Scale (GCS) scores, 
and laboratory test results. Accurately predicting patient 
mortality using these data is critical for enabling early 
intervention and informed clinical decision-making.

The large volume of data generated for ICH patients 
presents significant challenges for traditional statistical 
methods, which struggle to account for complex inter-
actions and nonlinear relationships among variables. 
Machine learning (ML) algorithms, which excel at han-
dling such complexities, have been widely adopted in the 
analysis of medical big data [5–7]. Nevertheless, clinical 
prediction models for ICH are rarely implemented in 
routine practice. This underutilization may partly stem 
from the limitations of existing models in terms of gener-
alizability and predictive performance. Furthermore, few 
studies have specifically focused on mortality risk as the 
primary outcome in ICH patients. To address these gaps, 
this study aims to develop an interpretable ML model to 
accurately predict mortality risk in patients with non-
traumatic ICH. Specifically, the objectives of this study 
are to: (1) identify key predictors of mortality using clini-
cal data available at admission, such as vital signs, GCS 
scores, and laboratory test results; (2) evaluate the pre-
dictive performance of the proposed model and com-
pare it with results from previous studies; and (3) ensure 
the interpretability of the model to enhance its potential 
application in routine clinical decision-making.

Literature review
The PubMed published literature on death prediction 
of ICH patients was searched by a combination of com-
puter-based and manual searches was employed. The 
search was carried out by combining subject words and 
free words. English search terms included: (“intracere-
bral hemorrhage” OR “ICH” OR “non-traumatic intra-
cerebral hemorrhage” OR “spontaneous intracerebral 
hemorrhage”) AND (“mortality prediction” OR “risk pre-
diction” OR “prognostic model” OR “predictive model”) 
AND (“machine learning” OR “artificial intelligence” 
OR “XGBoost” OR “logistic regression” OR “SHAP” OR 

“Shapley additive explanations” OR “interpretability” OR 
“explainability”) AND (“critical care” OR “intensive care” 
OR “clinical decision-making” OR “MIMIC database” OR 
“MIMIC-IV”). After excluding irrelevant studies, we con-
ducted a comprehensive review of the selected studies to 
support the development of our model. We conducted 
a comprehensive review of the literature to support the 
development of our model. The key characteristics of the 
included literature are available in the supplementary 
Excel document (Supplementary File 1).

Design and methods
This study adhered to the reporting guidelines outlined 
in the STROBE guidelines. The overall workflow chart as 
illustrated in Fig. 1.

Data source
The datasets used for model training, validation, and test-
ing are accessible through the MIMIC-IV 3.0 database 
(https://mimic.mit.edu/). Established in 2003 with  fi  n a n 
c i a l support from the National Institutes of Health(NIH), 
the database represents a joint endeavor spearheaded by 
the Computational Physiology Laboratory at the Massa-
chusetts Institute of Technology in partnership with Beth 
Israel Deaconess Medical Center (BIDMC), an affiliate 
of Harvard Medical School, and Philips Medical Systems 
[8]. The MIMIC IV database collected clinical data from 
more than 190,000 patients and 450,000 hospital admis-
sions at BIDMC from 2008 to 2019. The author obtained 
access to the database (certificate number: 12228131).

To externally validate the prediction model, medical 
records of 129 patients with ICH treated at the Second 
Hospital of Lanzhou University (Lanzhou, China) from 
January 2022 to January 2024 were retrospectively ana-
lyzed. The study protocol was approved by the institu-
tional review boards of the Second Hospital of Lanzhou 
University (Approval Number: [2024  A-1393]), which 
waived the need to obtain patient informed consent.

Inclusion criteria and exclusion criteria.
A total of 34 variables (Table S1) with a total of 11,178 

data were collected in this study. These data correspond 
to patients who were admitted for the first time with an 
ICH. Consistent with previous studies [9], diagnoses in 
this study, including death, type 2 diabetes, pulmonary 
embolism, atrial fibrillation, lower extremity venous 
thrombosis, and hypertension, were based on the Inter-
national Classification of Diseases (ICD-10) codes, as 
detailed in Additional Table S2.

Data cleaning
After excluding variables with missing data rates greater 
than 30%, 22 variables were retained for analysis, encom-
passing a total of 1274 cases (Figure S1). The proportions 

https://mimic.mit.edu/
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Fig. 1 Workflow diagram for the study
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of missing data for these retained variables are summa-
rized in Table S3.

Missing data imputation
All absent data points were filled using predictive mean 
matching methods, with five imputations carried out 
using the Multivariate Imputation via Chained Equations 
(MICE) function in R [10]. The data were then split into 
three subsets (training, validation, and testing) in a 6:2:2 
ratio based on the distribution of outcomes. The base-
line characteristics of the three groups, including clini-
cal characteristics and mortality rates, are summarized 
in Table  1. No statistically significant differences were 
observed among the three groups.

Feature collection and screening
We employed a meticulous strategy for selecting vari-
ables to pinpoint the most pertinent predictors for con-
structing the prediction model. As a first step, we applied 
the least absolute shrinkage and selection operator 
(LASSO) regression, recognized as a potent technique 
for high-dimensional predictions [11]. Concurrently, 
we ascertained the optimal λ value through ten-fold 
cross-validation. Due to the large number of character-
istic variables in this study, using λ min (0.010) as the 
optimal λ value would include 22 variables in the final 
model, making it overly complex and potentially lead-
ing to overfitting. In contrast, selecting λ 1se (0.027) as 
the optimal λ value results in a more streamlined model 

Table 1 Baseline Data for the training, validation, and testing datasets
Total(n = 1274) Train(n = 764) Validation (n = 255) Test(n = 255) p

Age(years) 69.00 (59.00, 79.00) 69.00 (59.00,80.00) 69.00 (58.50,77.00) 70.00 (59.00,80.00) 0.582
PO2(mmHg) 136.00 (81.00, 136.00) 136.00(91.00,136.00) 136.00 (71.00,136.00) 136.00 (72.50,136.00) 0.002
Platelet(K/µL) 215.00

(171.25, 263.75)
215.00 (169.00,259.25) 213.00 (171.50,275.00) 217.00 (180.50,259.00) 0.331

ALT(IU/L) 22.00 (15.00, 33.00) 22.00 (15.00,33.00) 23.00 (15.00,33.00) 20.00 (15.00,33.00) 0.852
AST(IU/L) 27.00 (19.00, 46.00) 27.00 (19.00,45.00) 28.00 (20.00,48.00) 26.00 (19.00,40.50) 0.373
PCO2(mmHg) 40.00 (38.00, 41.00) 40.00 (38.00,41.00) 40.00 (37.50,42.00) 40.00 (37.00,42.00) 0.627
White blood cell(K/µL) 8.60 (6.70, 11.90) 8.50 (6.70,11.62) 8.50 (6.80,12.90) 9.10 (6.80,11.80) 0.232
Creatinine(mg/dL) 0.90 (0.70, 1.10) 0.90 (0.70,1.10) 0.80 (0.70,1.05) 0.90 (0.70,1.20) 0.422
Cholesterol(mg/dL) 172.00 (156.00, 180.00) 172.00 (156.00,179.00) 172.00 (161.50,178.00) 172.00 (153.00,186.50) 0.918
LDL(mg/dL) 95.00 (83.00, 100.00) 95.00 (83.00,100.00) 95.00 (84.50,99.00) 95.00 (80.00,100.00) 0.906
HDL(mg/dL) 52.00 (45.00, 53.75) 52.00 (46.00,54.00) 52.00 (45.50,52.00) 52.00 (45.00,53.50) 0.595
PH(units) 7.40 (7.39, 7.41) 7.40 (7.39,7.42) 7.40 (7.38,7.41) 7.40 (7.39,7.42) 0.419
Albumin(g/dL) 3.80 (3.60, 4.20) 3.80 (3.60,4.20) 3.80 (3.60,4.20) 3.80 (3.60,4.20) 0.822
GCS min 12.00 (9.00, 14.00) 12.00 (10.00,14.00) 11.00 (9.00,14.00) 12.00 (9.00,14.00) 0.052
GCS motor 5.00 (5.00, 6.00) 5.00 (5.00,6.00) 5.00 (5.00,6.00) 5.00 (5.00,6.00) 0.439
GCS eyes 3.00 (2.00, 3.00) 3.00 (2.00,3.00) 3.00 (2.00,3.00) 3.00 (2.00,3.00) 0.238
Death: 0.996
 No 702 (55.10%) 421 (55.10%) 140 (54.90%) 141 (55.29%)
 Yes 572 (44.90%) 343 (44.90%) 115 (45.10%) 114 (44.71%)
 Type 2 diabetes: 0.205
 No 935 (73.39%) 573 (75.00%) 185 (72.55%) 177 (69.41%)
 Yes 339 (26.61%) 191 (25.00%) 70 (27.45%) 78 (30.59%)
Atrial fibrillation: 0.943
 No 1040 (81.63%) 626 (81.94%) 207 (81.18%) 207 (81.18%)
 Yes 234 (18.37%) 138 (18.06%) 48 (18.82%) 48 (18.82%)
Pulmonary embolism: 0.936
 No 1194 (93.72%) 716 (93.72%) 238 (93.33%) 240 (94.12%)
 Yes 80 (6.28%) 48 (6.28%) 17 (6.67%) 15 (5.88%)
Deep vein thrombosis: 0.261
 No 1201 (94.27%) 725 (94.90%) 235 (92.16%) 241 (94.51%)
 Yes 73 (5.73%) 39 (5.10%) 20 (7.84%) 14 (5.49%)
Gender: 0.851
 Male 651 (51.10%) 386 (50.52%) 131 (51.37%) 134 (52.55%)
 Female 623 (48.90%) 378 (49.48%) 124 (48.63%) 121 (47.45%)
Hypertension: 0.224
 No 417 (32.73%) 257 (33.64%) 72 (28.24%) 88 (34.51%)
 Yes 857 (67.27%) 507 (66.36%) 183 (71.76%) 167 (65.49%)



Page 5 of 12Chen et al. BMC Medical Informatics and Decision Making           (2025) 25:35 

with 7 variables, while still maintaining good predictive 
performance. Therefore, λ 1se was ultimately chosen 
as the optimal λ value for this study. Subsequently, we 
conducted a multivariable logistic regression analysis, 
incorporating the features chosen by the LASSO regres-
sion model, to identify statistically significant predictors. 
Lastly, we undertook a correlation analysis to alleviate 
any adverse effects of multicollinearity on the model.

XGBoost machine learning
XGBoost is a non-parametric approach leveraging the 
training of numerous sequential decision trees, enabling 
it to optimize and treat a wide array of variable types 
and imbalanced datasets [12]. In order to build a more 
accurate and generalizable model, the training and test 
data were normalized to prevent data leakage, and grid 
search was used for hyperparameter tuning to improve 
model performance. The optimized parameters of the 
XGBoost algorithm are as follows: objective: binary: 
logistic, learning_rate: 0.3, max_depth: 4, min_child_
weight: 6, reg_lambda: 0.5. To assess the model’s per-
formance, we utilized the ROC curve, calibration curve, 
and clinical decision curve analysis (DCA). The predicted 
probabilities were transformed into binary outcomes 
using a threshold of 0.5. Subsequently, we computed and 
reported accuracy, sensitivity, specificity, and other rele-
vant metrics for both the training and validation datasets 
[13].

SHAP
The R package “shapviz” is dedicated to interpreting the 
predictions of machine learning models by providing 
visual explanations that are grounded in SHAP (Shapley 
Additive exPlanations) values [14]. SHAP values illus-
trate the extent to which each feature contributes to the 
model’s predictions, either in a positive or negative direc-
tion. A feature importance plot highlights the features 
that most significantly affect the model’s predictions, 
with rankings determined by the average absolute SHAP 
values. Additionally, the generation of a force diagram is 
based on two samples selected, providing a visual repre-
sentation of SHAP values for single-sample prediction 
and interpretation.

Statistics analysis
Data visualization and statistical analysis were carried 
out using R version 4.3.1. In general, for continuous vari-
ables, data that are normally distributed are described 
by the mean ± standard deviation, while skewed data are 
described by the median and interquartile range (IQR). 
Categorical variables are expressed as frequencies (per-
centages). The independent samples t-test or nonpara-
metric tests were applied to evaluate differences between 
groups for continuous variables, whereas the Chi-square 

test was used for analyzing categorical variables. In this 
study, the “tidyverse,” “pROC,” “CBCgrps,” “rms,” and 
“rmda” packages were employed for data collation and 
visualization.

Results
Basic characteristics
The study included 1,274 patients with cerebral hem-
orrhage, of which 572 died, resulting in a mortality 
rate of 44.9%. Some basic characteristics of patients 
are shown in Table  2. The following variables showed 
statistically significant differences between the two 
groups: Age (p < 0.001), PO2 (p < 0.001), platelet 
(p = 0.041), AST (p = 0.888), cholesterol (p = 0.008), 
low density lipoprotein(LDL) (p = 0.002), albumin 
(p < 0.001), GCS min (p < 0.001), GCS motor (p < 0.001), 
GCS eyes(p < 0.001), type 2 diabetes (p = 0.038), atrial 
fibrillation(p = 0.003) and gender(p = 0.007). The com-
parison of the following indicators between the two 
groups revealed no statistical significance: ALT, 
PCO2, white blood cell(WBC), creatinine, high den-
sity lipoprotein(HDL), PH, pulmonary embolism, 
deep vein thrombosis and hypertension, among others 
(p-value > 0.05).

LASSO regression for feature selection
We preliminarily selected predictive factors for death in 
patients with intracerebral hemorrhage using LASSO 
regression. (Fig.  2A). Using a lambda value set to one 
standard deviation from the minimum lambda, where 
the error remains within one standard error of the mini-
mum, we were able to identify seven variables that exhib-
ited the highest predictive power: ‘Age’, ‘Albumin’, ‘LDL’, 
‘Atrial fibrillation’, ‘GCS motor’, ‘GCS eyes’, and ‘Gender’ 
(Fig. 2B). These seven variables, which demonstrated the 
strongest association with the outcome variable, were 
selected to ensure the model’s simplicity and to address 
concerns about overfitting. By conducting a multivariate 
logistic regression analysis, we confirmed that these vari-
ables were all independent risk factors for death (Fig. 2C). 
The Spearman correlation test was used to examine 5 
continuous variables. The heatmap results showed that 
there is no significant correlation between the variables, 
indicating that there is no multicollinearity (Fig. 2D).

XGBoost ML model performance evaluation
The XGBoost model exhibits superior AUC performance 
(train: 0.814, 95%CI: 0.784 − 0.844; validation: 0.715, 
95%CI: 0.653 − 0.777; test: 0.797, 95%CI: 0.743 − 0.851) 
in predicting mortality among ICH patients (Fig. 3A, D, 
G). The model shows good generalization ability, as its 
performance on the training and testing datasets is con-
sistent, suggesting strong adaptability to new data. Addi-
tionally, the F1 scores for the training and testing datasets 
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are similar, indicating the model’s balanced performance 
in terms of sensitivity and precision. Moreover, specific-
ity remains stable across all three datasets, particularly 
in the training and validation datasets, where the model 
effectively identifies negative cases. (Table 3). The defini-
tions of all the performance metrics used in this study, 
along with their respective calculation methods, are pro-
vided in the supplementary statement.

We analyzed calibration curves and clinical deci-
sion curves from the training, validation, and testing 
datasets to assess the accuracy of the XGBoost model 
in predicting the risk of death in patients with ICH. By 
utilizing the Bootstrap resampling method to assess the 
XGBoost model 500 times, we observed that the model’s 
calibration curve deviates only slightly from the ideal 

linear relationship, indicating a high consistency between 
model predictions and observed outcomes (Fig. 3B, E and 
H). Additionally, we used decision curve analysis. The 
X-axis represents the threshold probability for predict-
ing death risk, while the Y-axis indicates the net benefit. 
The blue line reflects the performance of the XGBoost 
model across the three datasets, showing its predictive 
improvement. The red line represents the scenario where 
all patients are treated based on the XGBoost model, and 
the green line represents the assumption that no patients 
are treated based on the XGBoost model [15]. Our study 
demonstrated a wide threshold range for net benefit 
across all three datasets, indicating the clinical utility of 
the XGBoost model in decision-making. (Fig. 3C, F and 
I).

Table 2 Baseline characteristics of the study population
Level Total(n = 1274) Non-Death(n = 702) Death(n = 572) p
Age(years) 69.00(59.00;79.00) 66.00 (55.00;76.00) 74.00 (64.00;82.25) <0.001
PO2(mmHg) 136.00 (81.00;136.00) 136.00 (113.25;136.00) 136.00 (66.75;142.25) <0.001
Platelet(K/µL) 215.00 (171.25;263.75) 218.00 (181.00;260.50) 210.00 (162.75;267.00) 0.041
ALT(IU/L) 22.00 (15.00;33.00) 22.00 (15.00;33.00) 22.00 (15.00;33.00) 0.888
AST(IU/L) 27.00 (9.00;46.00) 25.00 (18.00;41.00) 29.50 (21.00;48.00) <0.001
PCO2(mmHg) 40.00 (8.00;41.00) 40.00 (40.00;40.00) 40.00 (36.00;44.00) 0.404
WBC(K/µL) 8.60 (6.70;11.90) 8.50 (6.70;11.50) 8.70 (6.70;12.30) 0.389
Creatinine(mg/dL) 0.90 (0.70;1.10) 0.90 (0.70;1.10) 0.90 (0.70;1.20) 0.076
Cholesterol(mg/dL) 172.00 (156.00;180.00) 172.00 (155.25;191.00) 172.00 (159.00;172.00) 0.008
LDL(mg/dL) 95.00 (83.00;100.00) 95.00 (83.00;110.00) 95.00 (83.00;95.00) 0.002
HDL(mg/dL) 52.00 (45.00;53.75) 52.00 (43.00;56.00) 52.00 (49.00;52.00) 0.460
PH(units) 7.40 (7.39;7.41) 7.40 (7.40;7.40) 7.40 (7.36;7.42) 0.051
Albumin(g/dL) 3.80 (3.60;4.20) 3.90 (3.70;4.30) 3.80 (3.40;4.10) <0.001
GCS min 12.00 (9.00;14.00) 13.00 (11.00;14.00) 11.00 (8.00;14.00) <0.001
GCS motor 5.00 (5.00;6.00) 6.00 (5.00;6.00) 5.00 (4.00;6.00) <0.001
GCS eyes 2.663 (2.605,2.722) 2.964 (2.897,3.032) 2.294 (2.201,2.386) < 0.001
Type 2 diabetes (%) 0.038
 No 935 (73.39%) 532 (75.78%) 403 (70.45%)
 Yes 339 (26.61%) 170 (24.22%) 169 (29.55%)
Atrial fibrillation (%) 0.003
 No 1040 (81.63%) 594 (84.62%) 446 (77.97%)
 Yes 234 (18.37%) 108 (15.38%) 126 (22.03%)
Pulmonary embolism (%) 0.406
 No 1194 (93.72%) 662 (94.30%) 532 (93.01%)
 Yes 80 (6.28%) 40 (5.70%) 40 (6.99%)
Deep vein thrombosis (%) 0.676
 No 1201 (94.27%) 664 (94.59%) 537 (93.88%)
 Yes 73 (5.73%) 38 (5.41%) 35 (6.12%)
Gender (%) 0.007
 Male 651 (51.10%) 383 (54.56%) 268 (46.85%)
 Female 623 (48.90%) 319 (45.44%) 304 (53.15%)
Hypertension (%) 0.878
 No 417 (32.73%) 228 (32.48%) 189 (33.04%)
 Yes 857 (67.27%) 474 (67.52%) 383 (66.96%)
Describe the statistical results table. This results table counts the mean of each continuous variable and its 95% confidence interval, as well as the frequency and 
percentage of categorical variables. The p-values are derived from the results of comparing the means of two groups (t-test), or comparing the means of more than 
two groups (ANOVA)
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Interpretation of the XGBoost ML model
The SHAP beeswarm plot reveals how individual features 
influence the model’s predictions. (Fig.  4A). The fea-
tures included are ranked from most to least important: 
’GCS motor’, ’Age’, ’GCS eyes’, ’ LDL’, ’ Albumin’, ’ Atrial 
fibrillation’, and ’Gender’, respectively. In the predictive 
model, a greater SHAP value for a feature indicates a 
higher probability of mortality. To illustrate the XGBoost 
model’s assessment of a single observation features’ con-
tributions, we present an interpretation of the predic-
tion based on the SHAP model for both cases. The color 
coding reflects the impact of each feature on the predic-
tion: purple signifies a detrimental influence on the fore-
cast (with an arrow to the left indicating a decrease in 
the SHAP value), while yellow denotes a beneficial effect 
(with an arrow to the right indicating an increase in the 
SHAP value). The color bars length signifies the mag-
nitude of the contribution, while E[f(x)] represents the 
SHAP reference value, which corresponds to the model’s 

mean prediction. For the ‘true positive’ patient group, 
the XGBoost model forecasted mortality with a SHAP 
value of -0.261, surpassing the baseline and suggesting 
a heightened likelihood of death, as depicted in Fig. 4B. 
In contrast, the ‘true negative’ patient group had a SHAP 
value of -0.794, which was below the reference threshold, 
suggesting no occurrence of death, as depicted in Fig. 4C.

External validation of the model
The comparison of model-relevant variable data for the 
external independent patient cohort is shown in Table 
S4. The AUC for external validation is 0.847 (95% CI: 
0.768–0.927), which is comparable to the training data-
set (0.814) and superior to the internal validation data-
set (0.715), indicating high discriminative ability. The 
calibration curve demonstrated excellent agreement 
between the predicted probabilities and observed out-
comes, with a mean absolute error of 0.003, further 
supporting the reliability of the predictions. The DCA 

Fig. 2 A. Lasso coefficient path plots for 22 variables. B. Cross-validation curves (10-fold cross-validation). C. Forest plot displaying adjusted odds ratios 
(ORs) with 95% confidence intervals (CIs) for factors associated with the outcome, as determined by multivariate logistic regression analysis. D. Correlation 
heat map of continuous variables
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for external validation shows that the model effectively 
predicts the net benefit for ICH mortality risk across a 
threshold probability range of 1–73%. (Fig. 5)

Discussion
In our study, we employed the SHAP-interpretable 
XGBoost model as a novel approach to predict mortal-
ity risk in ICH patients. The model’s performance was 
assessed using both the training and validation datasets. 
Evaluation metrics, including the ROC curve, calibra-
tion curve, and others, demonstrated the model’s high 
predictive accuracy. Furthermore, we delved into the 

Table 3 Performance Metrics of the XGBoost Model on the 
training, validation, and Testing datasets

Training set Validation set Testing set
Accuracy 0.7402(0.7076, 

0.7709)
0.6378(0.5754, 
0.697)

0.689 (0.6281, 
0.7454)

Sensitivity 0.7071 0.5470 0.7949
Specificity 0.7664 0.7153 0.5985
Precision 0.7050 0.6214 0.6284
F1 score 0.7061 0.5818 0.7019

Fig. 3 (A-C) ROC curve, calibration curve and clinical decision curves of the model on the training set. (D-F) ROC curve, calibration curve, and clinical 
decision curves of the model on the validation set. (G-I) ROC curve, calibration curve, and clinical decision curves of the model on the testing set
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Fig. 5 (A-C) ROC, calibration, and clinical decision curve analysis for external validation

 

Fig. 4 A. SHAP variable importance chart, displaying the included features arranged in descending order based on their average absolute SHAP values. 
B and C. SHAP force plots for two cases: Each feature’s contribution is denoted by color, with purple signifying a negative impact on the prediction (in-
dicated by an arrow pointing left, resulting in a decrease in SHAP value), and yellow signifying a positive impact (indicated by an arrow pointing right, 
increasing in SHAP value). The length of the color bar represents the magnitude of the contribution, while E[f(x)] corresponds to the SHAP reference value, 
which is the model’s mean prediction. f(x) denotes the individual SHAP value
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interpretation of the XGBoost model using SHAP. The 
SHAP analysis revealed that the key features, in order 
of importance, are ’GCS motor’, ’Age’, ’GCS eyes’, ’LDL’, ’ 
Albumin’, ’ Atrial fibrillation’, and ’Gender’.

Several studies have reported a potential association 
between age and mortality subsequent to ICH. Daniel 
et al. found that in their analysis of ICH patients from 
diverse racial and ethnic backgrounds, advanced age was 
strongly associated with higher post-ICH mortality rates 
[16]. A global meta-analysis on the incidence and mor-
tality of cerebral hemorrhage similarly showed that the 
incidence increases with age, particularly after 85 years 
old [16]. Consistent with these findings, our analysis also 
reveals that in ICH patients, higher SHAP values for age 
are linked to increased mortality rates (Fig. 4A). Further-
more, there is literature to explore the impact of gender 
differences on prognosis after ICH, and the mortality rate 
of men with ICH is higher than that of women, especially 
in the early stages after ICH [17].

The Glasgow Coma Scale (GCS) was created to stan-
dardize the evaluation of neurologically compromised 
patients, aiding in the triage of injury severity and guiding 
management decisions for personalized care [18]. GCS 
motor scores have been found to be significant predictors 
of survival and neurological recovery, while lower GCS 
eye scores are associated with higher mortality rates and 
poorer prognosis [19]. It can be intuitively found in our 
SHAP value graph that the lower the score of GCS motor 
and GCS eyes, pushing the predicted value towards posi-
tive, may imply a higher risk of death (Fig. 4A). Health-
care Professionals should standardize the GCS evaluation 
criteria. Patients with low GCS motor and GCS eye 
scores require close monitoring, and their level of care 
should be enhanced accordingly.

LDL, a lipoprotein found in the blood, has been impli-
cated in vascular health. Research suggests that exces-
sively low levels of LDL may compromise the structural 
integrity of blood vessel walls, increasing the risk of ICH 
[20]. Albumin, a crucial plasma protein primarily synthe-
sized by the liver, exerts antioxidant and anti-inflamma-
tory effects. These properties contribute to the mitigation 
of the inflammatory response following cerebral hemor-
rhage and safeguard brain tissue from oxidative stress-
induced damage. Insufficient albumin levels can worsen 
vascular leakage and cerebral edema, thereby increasing 
the risk of mortality [21, 22]. Thus, it is crucial to care-
fully select appropriate treatments for high-risk patients 
and implement dietary conditioning programs. Addition-
ally, patients with atrial fibrillation receiving anticoagu-
lant therapy—such as warfarin or apixaban—may have 
an elevated risk of cerebral hemorrhage and mortality 
[23–25].

The use of AI in healthcare raises critical ethical con-
cerns, including data privacy, algorithmic transparency, 

fairness, and bias. To address these concerns, robust data 
protection measures must be implemented to minimize 
the risks of data leakage and misuse. In parallel, enhanc-
ing the transparency and interpretability of AI algorithms 
is essential for building trust among healthcare profes-
sionals and patients, ensuring that decisions are both 
fair and understandable [26, 27]. To further ensure fair-
ness, diverse datasets and fairness assessments should 
be employed to prevent bias and guarantee equitable 
outcomes across all demographics [28]. Ultimately, pub-
lic trust in AI applications hinges on transparent com-
munication and strong data privacy protections, both of 
which significantly influence acceptance [29]. Moreover, 
the level of public trust in AI systems is closely related to 
the level of transparency and data privacy protection of 
AI systems, improving public understanding of AI tech-
nology is an effective way to enhance trust, and educating 
the public and addressing cultural differences in AI per-
ception is critical to promoting widespread acceptance of 
AI technology in healthcare [30].

We utilized LASSO regression and multivariable logis-
tic regression analysis to screen variables efficiently while 
simultaneously reducing their number, this approach was 
adopted. It improved clinical applicability and effectively 
mitigated the risk of model overfitting. The seven param-
eters included in our model are all common clinical indi-
cators, with advantages of accessibility and convenience, 
which contribute to clinical application and popular-
ization of the model. Our machine-learning-developed 
model serves as a screening tool for the identification 
of high-risk patients and provides information that aids 
clinical decision-making. Lastly, the model developed 
in this study undergoes external validation, wherein the 
results of said validation demonstrate its commendable 
discriminative capabilities and practical utility in fore-
casting death.

This study is not without its limitations. Firstly, this was 
a retrospective study, selection bias was inevitable. Fur-
ther prospective studies are required to improve the level 
of evidence to support our findings. Secondly, it is still a 
challenge to interpret machine learning models, although 
SHAP enhances model interpretability [31]. The deci-
sion-making process of the model may still be unclear. 
Consequently, our next step involves integrating predic-
tive models into digital health record systems to forecast 
individual patient cases by extracting patient information 
and indicators. Furthermore, we aim to present the fore-
casted outcomes directly to all users, thereby enhancing 
the practical applicability of the model. Although the 
SHAP method has been used to visually illustrate the 
relative importance of features, a web- or portable elec-
tronic equipment-based user-friendly program integrat-
ing our developed predictive model should be designed 
and produced to improve the chances of early detection 
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of the risk of death in ICH patients. Finally, we only con-
sider the most commonly used XGBoost machine learn-
ing methods, some of the more advanced methods may 
show higher predictive power [31, 32]. We encourage 
collaboration from teams at different centers to pro-
vide additional multi-center data, thereby expanding the 
scope and enhancing the robustness of our research.
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