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Abstract 

Background  Post bariatric hypoglycaemic (PBH) is a late complication of weight loss surgery, characterised by criti-
cally low blood glucose levels following meal-induced glycaemic excursions. The disabling consequences of PBH 
underline the need for the development of a decision support system (DSS) that can warn individuals about upcom-
ing PBH events, thus enabling preventive actions to avoid impending episodes. In view of this, we developed various 
algorithms based on linear and deep learning models to forecast PBH episodes in the short-term.

Methods  We leveraged a dataset obtained from 50 patients with PBH after Roux-en-Y gastric bypass, monitored 
for up to 50 days under unrestricted real-life conditions. Algorithms’ performance was assessed by measuring Preci-
sion, Recall, F1-score, False-alarms-per-day and Time Gain (TG).

Results  The run-to-run forecasting algorithm based on recursive autoregressive model (rAR) outperformed the other 
techniques, achieving Precision of 64.38%, Recall of 84.43%, F1-score of 73.06%, a median TG of 10 min and 1 false 
alarm every 6 days. More complex deep learning models demonstrated similar median TG but inferior forecasting 
capabilities with F1-score ranging from 54.88% to 64.10%.

Conclusions  Real-time forecasting of PBH events using CGM data as a single input imposes high demands on vari-
ous types of prediction algorithms, with CGM data noise and rapid postprandial glucose dynamics representing 
the key challenges. In this study, the run-to-run rAR yielded most satisfactory results with accurate PBH event predic-
tive capacity and few false alarms, thereby indicating potential for the development of DSS for people with PBH.
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Background
Bariatric surgery is a potent anti-obesity treatment 
resulting in durable weight loss and improvement, or 
even resolution, of obesity-related comorbidities such as 
type 2 diabetes [1]. Despite these benefits, the surgery-
related anatomical rearrangements induce substantial 
glycaemic variability in response to food intake [2]. In a 
subset of patients, this high postprandial glycaemic vari-
ability is linked with episodes of hypoglycaemia, typically 
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occurring 90–150 min after carbohydrate intake [3]. The 
condition, also known as postbariatric hypoglycaemia 
(PBH), is more common in people undergoing Roux-en-
Y gastric bypass (RYGB) but can also occur after sleeve 
gastrectomy [4]. Episodes of PBH are characterized by 
rapid, meal-induced rises in blood glucose (BG), followed 
by a sharp decrease to hypoglycaemic levels (i.e., BG < 54 
mg/dL). Hypoglycaemia can predispose to acute health 
hazards (e.g. accidents, falls) and, if recurrent, may be 
also a risk factor for neurocognitive decline and cardio-
vascular comorbidity [5]. Although most evidence indi-
cating hypoglycaemia-related comorbidity stems from 
studies in people with diabetes, PBH was recently shown 
to impair driving performance when compared to stable 
normoglycaemia, in a vehicle simulation environment 
[6]. Additionally, recurrent episodes of PBH can lead to 
anxiety, dependencies and constraints in daily activi-
ties with negative impact on quality of life [6, 7]. Thus, 
forecasting PBH events by means of glucose prediction 
algorithm in daily life may provide helpful assistance by 
alerting people to take preventive or corrective actions. 
Glucose prediction algorithms are usually fed by con-
tinuous glucose monitoring (CGM) data, which can trace 
glucose trajectories with high resolution (e.g. every 5min) 
[8]. Unlike for people with diabetes, [9, 10] the develop-
ment of hypoglycaemia predictive algorithms for the 
PBH population is at its early stage, with only two main 
literature contributions. The first one is a heuristic-based 
algorithm directing glucagon in response to predicted or 
detected low glucose levels [11]. The other one is a proof-
of-concept study from our research group which dem-
onstrated the feasibility of developing PBH predictive 
algorithms based on black-box models using noise-free 
CGM data in a small sample size [12]. Moving forwards 
towards real-world application, the aim of this work was 
to develop a CGM-based algorithm for real-time predic-
tion of PBH events in a larger, unfiltered dataset gener-
ated by 50 individuals under daily life conditions. To this 
end, we explored various forecasting algorithms based on 
linear and deep learning models and provided a robust 
evaluation of their performance.

Methods
Dataset
The data was collected within a prospective obser-
vational clinical study (NCT05212207) involving 50 
post-RYGB adults with a confirmed diagnosis of PBH. 
Participants wore the Dexcom G6 CGM sensor (Dex-
com Inc., San Diego, CA, USA) for up to 50 days, which 
was linked to IMPACT [13], a dedicated mobile appli-
cation integrating data from CGM with input from 
other connected devices (e.g., smartwatches) and 
manually logged events (e.g., meal intakes, symptoms, 

etc.). During the data collection period, participants 
were blinded to their CGM values and were asked to 
follow their usual habits without study-specific modi-
fications. None of the participants were on pharmaco-
therapies that interfered with glucose metabolism. We 
only included individuals with CGM data availability 
of more than 10 days to avoid imbalanced data con-
tributions, leading to exclusion of data from 3 partici-
pants. Table 1 summarizes the key glucometrics of the 
included participants (n = 47).

As shown in Table 1, median duration of CGM availa-
bility was 39 days. Mean glucose was 107 mg/dL, in line 
with levels of non-operated healthy individuals [14], 
but the std of the CGM traces (32.5 mg/dL) and the 
elevated MAGE (55 mg/dL), which measures the major 
BG fluctuations from peak to nadir, indicated a high 
glucose variability in the PBH population. The total 
number of Level 2 hypoglycaemic episodes amounted 
to 821 (i.e., almost 4 every 10 days per subject), with a 
median duration of 25 min.

For the evaluation of the algorithms’ performance, 
the data of each eligible subject was split into a training 
(70%, i.e., 28 monitoring days on average), a validation 
(15%, i.e., 5 monitoring days on average), and a test set 
(15%, i.e., 5 monitoring days on average). This resulted 
in a total of 520 PBH episodes included in the training, 
134 in the validation and 167 in the test set.

During the monitoring period, common real-life 
challenges such as data gaps from transmission failures 
or CGM device replacements, and irregular sampling 
due to temporary sensor issue, may occur. For this rea-
son, original CGM data were aligned to a 5-min time 
grid. Then, on the training set, data gaps shorter than 

Table 1  Dataset characteristics. Metrics are reported as median 
[25th-75th percentiles] for n = 47 PBH study participants. 
Abbreviations: standard deviation (std), mean amplitude 
of glucose excursion (MAGE), Level 1 hypoglycaemia: 
sensor glucose < 70mg/dL, Level 2 hypoglycaemia: sensor 
glucose < 54mg/dL

CGM availability (days) 39.5 [31.0–45.0]

Mean Glucose [mg/dL] 106.5 [103.1–116.8]

Std Glucose [mg/dL] 32. 5 [28.2–38.6]

MAGE [mg/dL] 55.3 [40.5–78.2]

Time in Level 1 Hypoglycaemia (%) 4.3 [2.7–7.6]

Time in Level 2 Hypoglycaemia (%) 1.0 [0.5–1.4]

Time with glucose levels 70–180 mg/dL (%) 90.1 [87.1–93.1]

Time with glucose levels > 180mg/dL (%) 4.2 [2.5–7.4]

Total number of Level 2 Hypoglycaemic epi-
sodes

821

Duration of Level 2 Hypoglycaemic episodes 
(min)

25 [20–30]
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30 min were interpolated with a first-order polynomial, 
while for the test set, a causal zero-order-hold extrapo-
lation was used.

Glucose prediction models
Based on our previous work [12], we implemented and 
tested the following models for the real-time prediction 
of future glycaemia and the generation of hypoglycaemic 
alerts: a run-to-run approach based on an autoregres-
sive model with recursive parameter estimation (rAR) 
[15], which is an adaptive method based on a well-known 
recursive scheme [16]; an autoregressive integrated mov-
ing average (ARIMA) model [17], which was the best 
performer in our previous work [12]; and a feed forward 
neural network (NN) [18]. In this study, we also investi-
gated the use of two deep learning models: a long-short 
term memory (LSTM) neural network and a convolu-
tional neural network stacked to a LSTM (CNN-LSTM). 
These methodologies have proved to be effective in pre-
dicting glucose levels and hypoglycaemic events in peo-
ple with type 1 diabetes due to their ability to learn both 
short and long-term dependencies in time-series data 
[19–22]. For these reasons, once tailored to PBH indi-
viduals, deep learning algorithms should enable a more 
in-depth description of the nonlinear dynamics of the 
glucose-insulin systems [23, 24] as well as the rapid gly-
caemic excursions that characterize PBH episodes after 
meal ingestion. As an additional contribution, Random 
Forest (RF) and Light Gradient-Boosting Machine (LGB), 
representing bagging and boosting models respectively, 
were included in the comparison.

In the following, a detailed description of the final 
structure and hyperparameters of the predictive models 
developed in this work has been reported.

•	 rAR: rAR model employs a first-order autoregressive 
model based on recursive parameter estimation. A 
key element of rAR is the forgetting factor µ , which 
is typically used to model nonstationary signals and 
it regulates the “memory” of the system. Specifi-
cally, the forgetting factor is in the range (0, 1) and it 
exponentially discounts old measurements such that 
a CGM sample that is τ samples old has a weight of 
µτ . Hence, CGM measurements older than τ = 1

1−µ
 

have only a minimal influence to model parameter 
estimation and model prediction. For the current 
study, after a grid search approach (grid ranges [0.1–
0.9]), we selected µ = 0.675, thus indicating that the 
3 most recent CGM samples have a large impact for 
parameter estimation and prediction.

•	 ARIMA: the order of the ARIMA model were 
selected by minimizing the Bayesian Information 
Criterion using an exhaustive grid-search approach. 

In particular, the following ranges for the AR (p), 
I (d) and MA (q) part were considered: p = [1–15], 
q = [0–1], d = [1–15]. The final structure is an 
ARIMA model of p = 3, d = 1, q = 1. It is interesting 
to see that the order of the AR part of the ARIMA 
model indicates that the last 3 CGM samples con-
tribute to the model prediction, similarly to the 
rAR.

For NN, LSTM and CNN-LSTM models, manual 
hyperparameter tuning was performed based on our 
expertise on glucose forecasting in type 1 diabetes. More 
than 20 different hyperparameter sets were tested, vary-
ing number of layers, neurons per layers, optimizers, 
learning rates, and batch sizes. The output of the optimi-
zation step yields to the following structures:

•	 NN: two hidden layers of 32 and 16 neurons with 
exponential linear unit (ELU) and linear activation 
functions for the first and the second layer, respec-
tively;

•	 LSTM: two hidden layers of 24 and 12 neurons with 
ELU and standard activation functions for the first 
and the second layer, respectively;

•	 CNN-LSTM: two blocks of stacked convolutional lay-
ers (equipped with 16 and 8 filters), batch normali-
zation (to center and rescale the input for reducing 
the internal covariance shift) and a pooling layer fol-
lowed by a set of LSTM layers of 12 and 6 neurons 
with ELU activation functions.

For all these models, the output is a fully connected 
layer with 6 neurons (i.e., 30-min prediction horizon). 
The training is carried out for 300 epochs with an early 
stop point by monitoring changes in validation loss 
throughout a 30-epoch period. A batch size of 32 is used 
to optimize parameters using Root Means Squared Prop-
agation with and initial learning rate of 1e-5.

The NN, LSTM and CNN-LSTM, have been developed 
within Python (Keras library) and trained using a Root 
Mean Squared Propagation (RMSprop) optimization 
algorithm on a Nvidia Titan RTX.

Concerning RF and LGB, more than 15 different sets 
of hyperparameters were evaluated. Particularly, for RF, 
these included number and max depth of tree, minimum 
number of observations in any node and minimum num-
ber of samples in the leaf node. The sets of hyperparam-
eters for LGB included the number of boosting trees, 
learning rate, number of leaves for each tree. Addition-
ally, we opted for leaving the trees growing until they 
reach the maximum number of leaves. The identifica-
tion of the best set of hyperparameters led to the final 
structures:
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•	 RF: the RF model is composed by 100 trees, each of 
them limited to 15 levels and with at least 10 samples 
per split;

•	 LGB: the LGB model is composed by 200 trees, each 
of them with 31 leaves (the maximum depth for each 
tree) and a learning rate = 0.02.

RF and LGB were implemented in Python using sci-kit 
learn library and the lightGBM package, respectively.

As a final remark, the real-time application of all the 
proposed algorithms requires that all the pre-processing 
technique applied prior to the forecasting step be causal. 
Therefore, the anti-causal zero-phase filter employed 
in [12], cannot be practically implemented. In addition, 
any casual real-time filter would introduce a phase shift, 
which translates into a delay in the filtered CGM data 
with respect to the original one, limiting the practical and 
clinical utility of the predictive algorithms. Considering 
these points, we opted to use the original CGM data as 
the only input for the predictive algorithms.

Hypoglycaemia forecasting pipeline
The block scheme overview for hypoglycaemia forecast-
ing is shown in Fig.  1 and consisted of three different 
phases. The first step (phase A) was the identification of 
a population-wise model (i.e., one model for each pre-
diction methodology: rAR, ARIMA, NN, LSTM, CNN-
LSTM, RF and LGB) using the training set. In accordance 
with the recently published consensus guidelines for 
artificial intelligence and machine learning developers 
in the field of diabetes [25], all the models were trained 
using only past CGM data to predict future sensor glu-
cose levels. Particularly, linear models (rAR and ARIMA) 
have been identified by resorting to the state-of-art pre-
diction error method (PEM) which requires the mini-
mization of the one-step ahead prediction error. The 
deep learning models have been designed as sequence-
to-sequence (seq2seq) models aimed to predict future 

glucose trajectory. This is a well-known strategy to deal 
with temporal sequences in deep learning for time series 
forecasting purposes [26] and it has been widely applied 
for glucose prediction in type 1 diabetes [27, 28].

The second step (phase B) was the prediction of future 
glucose levels at a specific prediction horizon (PH, i.e., 
how far ahead in time the algorithm forecasts), by simu-
lating the acquisition of CGM data in real-time. While 
the identified linear models can forecast glucose levels by 
iterating the one-step ahead prediction up to the consid-
ered PH, the trained deep learning models can directly 
output the forecast sequence of future glucose sensor 
levels up to a maximum PH (i.e., 30 min in this work). 
Finally, the last step (phase C) was the generation of a 
hypoglycaemic alert when the forecasted glucose concen-
tration was below a triggering threshold, named Alarm-
Level. The AlarmLevel is a predictive threshold and 
serves as a hyperparameter within the glucose forecast-
ing model, and its value can be set lower or higher than 
the hypoglycaemia threshold. When the predicted glu-
cose level is forecasted to fall below this level, an alarm 
is triggered. The AlarmLevel should not be confused with 
the hypoglycaemia threshold, which serves as the clinical 
marker of hypoglycaemia, which was set to 54 mg/dL in 
the present study. Please note that the use of the valida-
tion and test set is intended only for phases B-C.

While receiving preventive alerts is crucial to avoid/
mitigate the upcoming hypoglycaemia, getting too many 
alarms cause burden and frustration. To avoid multiple 
consecutive alarms, a shut-off mechanism, ignoring new 
alarms in the event of a recent one (i.e., within the time-
frame of the PH) or if the current CGM value remained 
below the hypoglycaemic threshold, was implemented.

Differently from previously published work on PBH fore-
casting [12], here one of the novelties is that we consider 
both the PH and AlarmLevel as two hyperparameters of 
the hypoglycaemic predictive algorithms. In fact, as already 
demonstrated in studies about CGM data forecasting in 

Fig. 1  Pipeline for hypoglycaemia forecasting. Once the model has been identified on the training set (step A), it was used (step B) to forecast 
glucose at a certain prediction horizon (PH). Finally (step C), if the predicted concentration was below a suitable triggering threshold (AlarmLevel), 
the algorithm raises a hypo-alarm



Page 5 of 11Prendin et al. BMC Medical Informatics and Decision Making           (2025) 25:33 	

people with diabetes [29], the fine tuning of hyperparam-
eters (PH and AlarmLevel in this work) allows to increase 
the performance of the algorithms and compensate for 
inaccurately predicted glucose concentration (i.e., the out-
put of phase B) that are common when dealing with data 
acquired in unrestricted daily-life conditions. In line with 
standard machine learning approaches, the validation set 
was used to learn the best combination of PH and Alarm-
Level for each model. The tuning of PH and AlarmLevel 
is discussed in Sect.  "  Hyperparameters tuning: PH and 
alarmLevel".

Regression-based approaches for predicting hypogly-
caemia are not new in the field. They have already been 
adopted in Laguna Sanz et al. [11] for the prediction/detec-
tion of PBH episodes and in our previous proof-of-concept 
study [12]. This framework is widely established in the field 
of type 1 diabetes [30–33] and is currently implemented 
in several commercial CGM systems [34]. Additionally, a 
recent study has shown that no clear advantages seems to 
emerge when using a standard binary classification frame-
work instead of a regression-based one [35].

Performance assessment criteria
An alarm was considered as a true positive (TP) if a PBH 
event occurred within 45 min after the raised alarm; and 
a false positive (FP) if no PBH events occurred within 
that time window. A false negative (FN) was defined as 
lack of alarm activation despite the occurrence of a PBH 
event. The algorithms’ performance was evaluated with 
the following metrics: i) Precision (describing the frac-
tion of alarms correctly raised by the algorithm over the 
total number of raised alarms); ii) Recall (also known as 
sensitivity or true positive ratio, being the percentage of 
events correctly predicted over the total number of PBH 
events); iii) F1-score (the harmonic mean of the Precision 
and Recall); iv) False Alarms per day (FP/day) and v) Time 
Gain (TG, defined as the temporal distance between a TP 
alarm and the onset of a PBH event). The TG is particularly 
relevant as it represents the time window during which a 
patient can act to prevent an impending event.

Although the primary aim of this work is predicting PBH 
events, it could be useful to quantify the accuracy of the 
predicted profiles generated by the glucose predictive mod-
els described in Sect. " Glucose prediction models" (step B, 
Fig. 1). To this end, for each PH, we computed the mean 
absolute error (MAE) defined as:

where N is the length of the CGM trace, y(t + PH) is 
the future glucose concentration and ŷ(t + PH |t) is the 

MAE(PH) =
1

N

N

t=1

y(t + PH)− y(t + PH |t)

PH-step ahead prediction that is computed by using all 
the past glucose data up to the current time t.

Hyperparameters tuning: PH and alarmLevel
A perfect glucose forecasting model would obviate the 
need to fine-tune PH and AlarmLevel hyperparameters 
because the predicted glucose levels would perfectly 
match with the future CGM values, resulting in a fore-
casting error of 0. The trivial consequence would be 
equality of TG and PH as well as AlarmLevel and hypo-
glycaemic threshold. However, a model identified on 
real-world data cannot be perfect by definition and, as 
described in Sect.  "  Glucose prediction models", high-
lighting the need for tuning of PH and AlarmLevel to 
ensure satisfactory PBH prediction performance. To 
achieve this goal, a grid-search approach has been imple-
mented with PH ranging from 15 to 30 min and Alarm-
Level spanning from 35 mg/dL to 80 mg/dL. For each pair 
(PH, AlarmLevel) and for each sensor glucose predictive 
model, the hypoglycaemic prediction performance was 
assessed on the validation set. Finally, the optimal com-
bination of hyperparameters was determined as the one 
maximizing the F1-score on the validation set.

Results
Tables  2 and 3 summarize the performance of the 
evaluated models on the validation and the test set, 
respectively.

Hyperparameter assessment on the validation set
Figure 2 displays Precision and Recall for all tested mod-
els and combinations of hyperparameter values. As a 
common pattern, a rise of the AlarmLevel from 40 mg/dL 
to 80 mg/dL, let the models’ performance change from 
high Precision and low Recall to the opposite situation 
(i.e., high Recall and low Precision). In contrast, increas-
ing PH did not have a clear impact on the model’s per-
formance. Table 2 shows that rAR with the combination 
of PH = 25 min and AlarmLevel = 42 mg/dL achieved the 
best predictive performance among all the considered 
methodologies, with Precision = 68.24%, Recall = 86.57% 
and F1-score = 76.32%, a very limited number of FP/
day (0.2) and a median TG of 10 min. Compared to 
rAR, ARIMA yielded an inferior Precision (about 60%) 
and Recall (about 72%), which combines resulted into 
a F1-score of 65.53%. Both the FP/day and the median 
time gain were in line with those of rAR (0.3 and 10 min, 
respectively). In this case, the best combination of hyper-
parameters was PH = 15 min and AlarmLevel = 52 mg/
dL.

NN provided a F1-score = 64.41%, comparable to that 
of ARIMA, with higher Precision (74.51% vs 60.38%) 
and lower Recall (56.72% vs 71.64%) and a median TG 
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of 10 min. Also, the number of FP/day (0.1) was slightly 
lower than both rAR and ARIMA.

LSTM achieved inferior performance than rAR in 
terms of Recall and F1-score (64.18% and 72.27%, 
respectively) but it was the best performing among the 
nonlinear models with Precision = 82.69% and TG = 10 
min. Additionally, by granting the lowest number of FP/
day in the validation set (i.e., 0.1), LSTM appeared to 
be a promising approach to predict PBH events. Finally, 
CNN-LSTM provided a larger Precision with respect to 
NN (79.80% vs 74.51%, respectively) and similar Recall 
(58.96% vs 56.72%, respectively). The number of FP/day 
was 0.1 (similar to LSTM) and the median TG = 10 min, 
in line with the other methodologies.

Compared to rAR and ARIMA models, RF provides 
a larger Precision (79.13% vs 68.24% vs 60.38%) that is 
in line with the Precision achieved by the other nonlin-
ear methodologies which span from 74.51% (for NN) 
to 82.69% (for LSTM). In terms of Recall, RF achieved 
67.91% which is larger than NN, LSTM and CNN-LSTM 
but it is inferior to the Recall provided by both rAR and 
ARIMA (86.57% and 71.64%, respectively). LGB dem-
onstrated performance comparable to RF and LSTM, 
achieving the largest F1-Score = 75.09% among non-
linear models. This value resulted from a well-balanced 
hypoglycaemia prediction performance, with a Preci-
sion = 79.83% and a Recall = 70.89%. Finally, the low num-
ber of false alarms raised by LGB (on average, 1 every 10 
days), indicate that this algorithm is a suitable candidate 
for predicting post-bariatric hypoglycaemic episodes.

Performance on the test set
Results presented in Table  3 show that, among all the 
predictive models, rAR achieved the best performance 
also on the test set by granting F1-score = 73.08%, Preci-
sion = 64.38%, Recall = 84.43% with approximately 1 false 
alarm every 6 days and a median TG of 10 min. Like in 
the validation set, ARIMA granted an inferior F1-score 
(about 55%) with respect to rAR due to a drastically dete-
rioration of the Precision (about 45%) and a Recall of 
about 71%. The FP/day was 0.31 (almost twice the FP/day 
provided by rAR) and the median time gain was 10 min.

NN provided slightly better performance with respect 
to ARIMA in terms of F1-score = 59.62% and Preci-
sion = 64.14%, but it yielded to a lower Recall = 55.69%, 
as also reported in the validation set. Compared to 
rAR, NN raised only 1 false alerts every 10 days with 
a median time gain of 10 min. Among deep learn-
ing models, LSTM achieved the best performance 

Table 2  Performance for the best set of hyperparameters (PH, AlarmLevel) on validation set for the algorithms under investigation 
(rAR, ARIMA, NN, LSTM and CNN-LSTM). Results of TG are reported as median [25th-75th] percentile. Abbreviations: FP/day, false 
positives per day; TG, time gain; rAR, recursive Autoregressive model; ARIMA, Autoregressive Integrated Moving Average; NN, Neural 
Network; LSTM, Long Short-Term Memory Neural Network; CNN-LSTM, Convolutional Long Short-Term Memory Neural Network; RF, 
Random Forest; LGB, LightGBM

Performance Metrics Best Hyperparameters

Model Precision (%) Recall (%) F1-score (%) FP/day TG (min) PH (min) AlarmLevel 
(mg/dL)

rAR 68.24 86.57 76.32 0.2 10 [5–10] 25 42

ARIMA 60.38 71.64 65.53 0.3 10 [10–15] 15 52

NN 74.51 56.72 64.41 0.1 10 [10–15] 25 59

LSTM 82.69 64.18 72.27 0.1 10 [5–10] 15 57

CNN-LSTM 79.80 58.96 67.81 0.1 10 [5–10] 15 56

RF 79.13 67.91 73.09 0.1 10 [10–15] 15 58

LGB 79.83 70.89 75.09 0.1 10 [5–10] 15 56

Table 3  Performance on the test set with the best set of 
hyperparameters identified on the validation set. Results of TG 
are reported as median [25th-75th] percentile. Abbreviations: 
FP/day, false positives per day; TG, time gain; rAR, recursive 
Autoregressive model; ARIMA, Autoregressive Integrated Moving 
Average; NN, Neural Network; LSTM, Long Short-Term Memory 
Neural Network; CNN-LSTM, Convolutional Long Short-Term 
Memory Neural Network; RF, Random Forest; LGB, LightGBM

Model Precision 
(%)

Recall (%) F1-Score 
(%)

FP/day TG (min)

rAR 64.38 84.43 73.06 0.17 10 [5–15]

ARIMA 44.87 70.66 54.88 0.31 10 [10–15]

NN 64.14 55.69 59.62 0.11 10 [10–15]

LSTM 68.97 59.88 64.10 0.1 10 [10–15]

CNN-LSTM 68.70 53.89 60.40 0.1 10 [5–10]

RF 70.07 57.49 63.16 0.08 10 [5–15]

LGB 67.52 63.47 65.43 0.1 10 [5–10]
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with F1-score = 64.10%, Precision = 68.97% and 
Recall = 59.88% with 10 min of time anticipation. Com-
pared to rAR, LSTM provide a higher Precision and it 
granted a lower number of daily false alarms (i.e., less 
than 1 every 10 days). Finally, CNN-LSTM provided a 
Precision which is almost equal to the one provided by 
LSTM (68.70% vs 68.97%, respectively) and an inferior 
Recall (53.89% vs 59.88%, respectively). The FP/day and 
the median time gain (i.e., 0.09 and 10 min, respec-
tively) were in line with the other methodologies.

RF provided the highest Precision (70.07%) at the 
cost of a lower Recall (57.49%) leading to an inferior 
F1-Score compared to rAR (63.16% vs 73.06%). Addi-
tionally, RF raised slightly fewer daily false alarms 
(0.08 vs 0.17), while the median TG remained similar 
(10 min). Similarly, LGB provided a Precision = 67.52%, 
which is comparable with RF (slightly larger than rAR) 
and a Recall = 63.47% which is instead larger than RF 
and the other nonlinear models but remained inferior 
to rAR (84.43%).

An additional assessment of the algorithms, exploit-
ing leave-one-patient-out validation and provided in the 
Supplementary Material, further confirmed the main 
findings presented in Table 3.

Table  4 detailed the performance of the CGM-based 
models in terms of MAE between the CGM traces and 
predicted profiles for all the PH employed in this work.

Among the models, LSTM is the best performing in 
terms of predicted glucose profiles, with a MAE spanning 
from 10.22 mg/dL to 18.18 mg/dL. Other nonlinear mod-
els (i.e., NN, CNN-LSTM, RF and LGB) provided similar 
but slightly larger MAE ranging from about 10.3 to 18.8. 
The less accurate is rAR with a MAE = 13.18 mg/dL and 
29.77 mg/dL, for PH = 15 min and 30 min, respectively. 
The larger MAE of the rAR model is consistent with find-
ings in the literature [17] and it is attributed to its adap-
tive nature: to promptly track rapid glucose excursion, 
rAR is sensitive to noisy data, resulting in an oscillating 
predicted profile that overestimates high and underesti-
mate low glucose levels.

This could seem inconsistent with the results provided 
in Table  3, which identifies rAR as the best performing 
algorithm for PBH forecasting. However, it should be 
noticed that the MAE only measures the ability of the 
model to predict glucose levels across the entire glycemic 
range and it does not account for its performance in pre-
dicting hypoglycaemic events that, instead, requires the 
predicted glucose level to fall below a suitable threshold 

Fig. 2  Tuning of PH and AlarmLevel on validation set. Precision-Recall plot for NN (red line), LSTM (green line), CNN-LSTM (blue line), rAR (black 
line), ARIMA (cyano line), RF (yellow line) and LGB (magenta line). The red triangle indicates the combination of hyperparameters that maximizes 
the F1-score
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(i.e., AlarmLevel). Consequently, the underestimation of 
low glucose levels provided by rAR, although contrib-
uting to a higher MAE, is crucial for raising preventive 
hypoglycemic alarms when current glucose levels are 
rapidly approaching critically low concentrations.

Discussion
Working towards a decision support system to help peo-
ple lowering the burden of post-bariatric hypoglycaemia, 
we evaluated a set of CGM-based algorithms to forecast 
hypoglycaemia in real-time. The assessment involved 
two linear (rAR and ARIMA), three deep learning mod-
els (NN, LSTM and CNN-LSTM) and bagging/boosting 
models (RF and LGB) on the basis of a dataset generated 
by 47 patients suffering from PBH monitored for about 
50 days in unrestricted daily-life conditions.

Among all the models evaluated in this paper, the run-
to-run rAR model yielded the best results with PH = 25 
min and AlarmLevel = 42 mg/dL, enabling accurate and 
timely real-time forecasting of PBH events. With a Pre-
cision = 64.4%, Recall = 84.4% and 1 false alarm every 
6 days, the run-to-run rAR model demonstrated a rea-
sonable balance between sensitivity and number of false 
alerts. Further, with a Time Gain of 10 min the rAR can 
provide a sufficient time anticipation for preventive 
actions (e.g., ingestion of rapid-acting carbohydrates 
or administration of mini doses of glucagon). The high 
Recall and the low number of false alarms are important 
for potential safety and usability claims of hypoglycae-
mia forecasting algorithms. In fact, missed hypoglycae-
mia alarms can predispose to patient harm and frequent 
false alarms can result in unnecessary anxiety and lower 
responsiveness and disengagement from self-manage-
ment. Additionally, unnecessary preventive corrections 
and the related excess of calories due to false alarms pre-
dispose to weight gain and rebound hypoglycaemia.

Compared to the other methodologies, rAR achieved 
the highest F1-score and Recall, while the Precision 
was only marginally lower than highest observed value 
(i.e., precision of LSTM was 69%). The slightly inferior 
Precision might be attributed to the fact that rAR, as a 
consequence of its adaptivity, is more susceptible to 
measurement noise, which could trigger false alarms. To 
compensate for this potential weakness, an optimal tun-
ing of rAR model internal hyperparameters has been per-
formed, which led to set AlarmLevel to 42 mg/dL.

The worst performance in terms of F1-score was 
achieved by ARIMA and NN (54.88% and 59.62%, 
respectively). LSTM and CNN-LSTM, which were spe-
cifically designed for time series forecasting tasks, both 
provided a F1-score > 60% with a similar median time 
gain (10 min) and the lowest number of daily false alarms 
(i.e., less than 1 every 10 days).

It is noteworthy that unlike under ideal conditions, 
where one might expect the AlarmLevel to align precisely 
with the hypoglycaemia threshold (54 mg/dL), the opti-
mal AlarmLevel values selected in the validation set for 
both rAR and ARIMA models was below this threshold 
(i.e., 42 mg/dL and 52 mg/dL, respectively). On the con-
trary, for NN, LSTM, and CNN-LSTM models, the opti-
mal AlarmLevel values were higher, at 59 mg/dL, 57 mg/
dL, and 56 mg/dL, respectively.

Our findings suggest that, when using CGM data 
acquired in unrestricted daily-life conditions, linear 
models tend to be prone to generate false PBH alerts [31], 
requiring the threshold to be lowered to compensate for 
it. On the other hand, the developed deep learning mod-
els tend to present a possible positive bias and to overes-
timate low glucose levels [36], requiring AlarmLevel to be 
increased to compensate for such a behaviour.

A possible explanation for the positive bias could 
be linked with the low proportion of glucose values 

Table 4  Mean Absolute Error (MAE) on the test set. Results are reported as median [25th-75th] percentile. Abbreviations: FP/day, false 
positives per day; TG, time gain; rAR, recursive Autoregressive model; ARIMA, Autoregressive Integrated Moving Average; NN, Neural 
Network; LSTM, Long Short-Term Memory Neural Network; CNN-LSTM, Convolutional Long Short-Term Memory Neural Network; RF, 
Random Forest; LGB, LightGBM

MAE [mg/dL]

Model PH = 15 min PH = 20 min PH = 25 min PH = 30 min

rAR 13.18 [11.46–16.10] 18.18 [15.97–22.70] 23.62 [20.87–28.76] 29.77 [24.99–36.82]

ARIMA 11.37 [10.31–13.25] 14.59 [13.00–17.40] 17.54 [15.36–21.05] 19.59 [17.29–23.49]

NN 10.63 [9.70–11.87] 13.63 [12.48–15.02] 16.09 [14.81–18.19] 18.10 [16.36–20.74]

LSTM 10.22 [9.47–11.56] 13.35 [12.35–14.59] 15.89 [14.46–17.99] 18.18 [16.19–20.49]

CNN-LSTM 10.28 [9.49–11.59] 13.35 [12.25–14.68] 15.75 [14.41–17.83] 18.01 [16.07–20.59]

RF 10.85 [9.86–12.39] 13.83 [12.58–16.21] 16.81 [15.59–19.51] 19.16 [17.44–21.87]

LGB 10.90 [9.97–12.46] 14.01 [12.50–16.15] 16.87 [15.41–19.08] 18.88 [17.12–21.55]
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(approximately 1.0%) falling below the hypoglycaemic 
threshold in the dataset. This may be associated with 
the behaviour of individuals already diagnosed with 
PBH, who were trained to take specific measures to pre-
vent hypoglycaemic episodes, such as spacing meals 
and reducing the carbohydrate intake. Indeed, it is well 
known from the literature that deep and machine learn-
ing algorithms would require balanced datasets [37–39], 
i.e., with comparable CGM sample size in each glycae-
mic region, to learn CGM data characteristics appropri-
ately. However, on this dataset, the distribution of CGM 
samples is highly unbalanced, being ~ 90% in normogly-
caemia, ~ 4% in hyperglycaemia, only ~ 5% in hypoglycae-
mia. This may have played a crucial role in the training 
process of deep learning models, particularly by leading 
to the development of predictive models that were more 
likely to learn the glucose dynamics in the normoglycae-
mic region where most data samples were concentrated 
rather than in hypoglycaemia. Similar findings were also 
reported in [40–42].

Compared to our previous study [12], which identi-
fied ARIMA model as the best performing, the current 
findings show that rAR achieves the best hypoglycaemic 
prediction performance with the largest F1-Score. This 
could be attributed to 2 main factors. The first concerns 
the more challenging real-world dataset employed in 
this work. In fact, in our previous work, the predictive 
algorithms were developed and tested in an ideal/noise-
free scenario with a limited test set comprising only few 
patients [8] and few hypoglycemic events (53). Here, the 
dataset comprises a wide range of individuals with PBH, 
monitored for 50 days in daily-life conditions, with a 
total of 167 hypoglycemic events in the test set. The sec-
ond concerns the adoption of AlarmLevel as a hyper-
parameter of the hypoglycemia forecasting algorithm. 
In fact, AlarmLevel acts as a further degree of freedom 
which allows finding the best trade-off between Preci-
sion, Recall and daily false alarms, thus compensating for 
possibly inaccurate predictions due to the more challeng-
ing scenario triggered by the use of free-living condition 
dataset.

A key aspect of this work concerns the use of real-time 
CGM data as the only input of the models. As a matter 
of fact, the developed algorithms can be integrated in a 
decision support system without requiring any additional 
intervention from the users. According to [43, 44], the 
integration of the additional signals generated from wear-
able devices recorded by IMPACT during the trial, for 
instance meal information, heart rate or physical activ-
ity, into hypoglycaemia prediction algorithms have the 
potential to improve the predictive performance of glu-
cose dynamics and hypoglycaemia. However, the devel-
opment of a multi-input predictive algorithm requires a 

careful balance between the potential benefits, additional 
technical complexities (e.g., gathering, synchronizing and 
integrating data from various sources, inaccurate infor-
mation, interdependencies between signals) as well as 
user burden (e.g. need to wear additional devices, manual 
inputs). Further challenges that we experienced in the 
development of CGM-based PBH prediction algorithms 
comprised the presence of noise, artefacts, and data gaps 
due to transmission failures (e.g., due to Bluetooth issues) 
or temporary sensor errors. A possible solution, partially 
investigated in [11], is the implementation of real-time 
filtering techniques as a pre-processing step, prior to 
model forecasting. However, these techniques introduce 
an additional delay in the prediction process [16], which 
can further reduce the time for preventive or corrective 
actions and thus diminish clinical benefits.

Finally, research progress towards decision support 
systems for daily management of PBH requires to link 
hypoglycaemia forecasting algorithms with specific 
nutritional or drug dosing advice, tailored to individual 
patient situations and needs [45]. In this context, the 
metrics of specific predictive algorithm are a critical for 
the intended use of the decision support. For instance, 
patients who are regularly engage in high-risk tasks such 
as driving, and experience frequent and disabling PBH 
events need a predictive algorithm with high sensitivity 
able to detect promptly all PBH events (despite the risk 
of generating some false alarms). Conversely, for people 
with milder and less frequent episodes a predictive algo-
rithm with high specificity that minimises the nuisance 
due to false alerts may be preferable. With respect to the 
development of individualised preventive and/or correc-
tive strategies that are triggered by a predicted event, the 
implementation of ad-hoc digital twin methodologies 
has recently emerged as a promising avenue [46–48] but 
requires further research in the PBH population.

Conclusions
Real-time CGM-based forecasting of PBH events chal-
lenges predictive algorithms due to the rapid post-prandial 
glucose dynamics, thus allowing little time for generat-
ing alerts. Among the different algorithmic approaches 
evaluated in this study using real world data, a run-to-run 
forecasting algorithm based on a recursive autoregressive 
model yielded the most satisfactory balance between recall 
and false alarms, suggesting that the use of adaptive tech-
niques appears to effectively address real-world glucose 
dynamics in PBH population. Consequently, future work-
ing directions are: i) the development of more complex 
adaptive models, like regularized latent variables regression 
methods [49, 50] that allows to exploit exogenous input 
(e.g., meal intake, exercise information) and to incorpo-
rate prior information via suitable kernels (like the stable 
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splines), ii) the development of advanced machine learning 
models leveraging continual learning in order to update, 
accumulate and exploit knowledge during the entire train-
ing period and iii) the use of learning models founded on 
accurate and interpretable engineered features (e.g., rate of 
glucose increase after meal, frequency of hypoglycaemic 
episodes after meal) rather than relying only on the original 
CGM history as well as the development of personalized 
algorithms.
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