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Abstract 

Background Despite the adverse health outcomes associated with longer duration diarrhea (LDD), there are cur-
rently no clinical decision tools for timely identification and better management of children with increased risk. This 
study utilizes machine learning (ML) to derive and validate a predictive model for LDD among children presenting 
with diarrhea to health facilities.

Methods LDD was defined as a diarrhea episode lasting ≥ 7 days. We used 7 ML algorithms to build prognostic 
models for the prediction of LDD among children < 5 years using de-identified data from Vaccine Impact on Diarrhea 
in Africa study (N = 1,482) in model development and data from Enterics for Global Health Shigella study (N = 682) 
in temporal validation of the champion model. Features included demographic, medical history and clinical examina-
tion data collected at enrolment in both studies. We conducted split-sampling and employed K-fold cross-validation 
with over-sampling technique in the model development. Moreover, critical predictors of LDD and their impact 
on prediction were obtained using an explainable model agnostic approach. The champion model was determined 
based on the area under the curve (AUC) metric. Model calibrations were assessed using Brier, Spiegelhalter’s z-test 
and its accompanying p-value.

Results There was a significant difference in prevalence of LDD between the development and temporal validation 
cohorts (478 [32.3%] vs 69 [10.1%]; p < 0.001). The following variables were associated with LDD in decreasing order: 
pre-enrolment diarrhea days (55.1%), modified Vesikari score(18.2%), age group (10.7%), vomit days (8.8%), respira-
tory rate (6.5%), vomiting (6.4%), vomit frequency (6.2%), rotavirus vaccination (6.1%), skin pinch (2.4%) and stool 
frequency (2.4%). While all models showed good prediction capability, the random forest model achieved the best 
performance (AUC [95% Confidence Interval]: 83.0 [78.6–87.5] and 71.0 [62.5–79.4]) on the development and tempo-
ral validation datasets, respectively. While the random forest model showed slight deviations from perfect calibration, 
these deviations were not statistically significant (Brier score = 0.17, Spiegelhalter p-value = 0.219).
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Conclusions Our study suggests ML derived algorithms could be used to rapidly identify children at increased risk 
of LDD. Integrating ML derived models into clinical decision-making may allow clinicians to target these children 
with closer observation and enhanced management.

Keywords Machine Learning, Longer duration diarrhea, Pediatric, Prediction

Background
Diarrhea is still a significant global public health prob-
lem causing approximately 1.7 billion episodes and 
443,832 deaths annually among children < 5  years 
[1]. This burden is disproportionately high in low- 
and middle-income countries (LMICs). Longer 
duration diarrhea (LDD) defined as diarrhea epi-
sode lasting ≥ 7  days encompasses both prolonged 
acute diarrhea (7–13  days) and persistent diarrhea 
(≥ 14  days) [2]. Despite current diarrhea management 
guidelines, which focusses on acute diarrhea, up to 20% 
of diarrhea cases in LMICs end up becoming LDD [3, 
4]. Whilst LDD represents a relatively small portion of 
childhood diarrheal episodes, it accounts for more than 
half the days with diarrhea [5]. LDD has been shown 
to have a higher mortality rate among infants com-
pared to acute diarrhea [5, 6] in addition to associations 
with decreased cognitive function, delayed growth 
and nutritional deficiencies [7, 8]. Evidence on health 
inequalities in diarrhea duration is limited, except for 
severe episodes, which disproportionately affect chil-
dren < 5 years and lead to longer illness duration [9].

A systematic review of predictive modeling for diar-
rhea in pediatric populations, encompassing 38 studies, 
identified that the most common research topics were 
disease forecasts (14 studies, 36.8%), vaccine-related 
predictions (9 studies, 23.7%), and disease/pathogen 
detection (5 studies, 13.2%) with machine learning 
(ML) as the primary modelling technique (32%) [10]. 
The review also highlighted a significant research gap 
in studying the outcomes of diarrheal illness, includ-
ing LDD. This gap is exacerbated by inadequate diag-
nostic capacity in many LMICs, including Kenya, which 
often prevents clinicians from promptly diagnosing and 
treating enteropathogens associated with LDD [11]. 
Developing a highly sensitive model that utilizes socio-
demographic and clinical characteristics of patients 
could facilitate the timely identification of children at 
heightened risk of LDD by clinicians, enabling better, 
timelier care and close monitoring potentially improv-
ing outcomes among this vulnerable group of chil-
dren. Beyond developing a model with good predictive 
accuracy, there is need to assess its transportability in 
light of dynamic nature of data in healthcare includ-
ing underlying patterns, trends, and distributions [12]. 
Consequently, we leverage data from two consecutive 

enteric studies in Kenya to derive and temporally vali-
date a predictive model designed to identify children at 
increased risk of LDD using ML algorithms.

Methods
Study design
This retrospective study leveraged two de-identified diar-
rheal datasets: the Vaccine Impact on Diarrhea in Africa 
(VIDA) study for model development and evaluation; the 
Enteric for Global Health (EFGH) Shigella surveillance 
study for temporal validation. This analysis focuses on 
data collected from the Kenya site in both studies. There 
was no patient and public involvement during the design 
and implementation of the study.

The study design for VIDA have been described else-
where [13]; in summary, VIDA was designed to assess 
diarrheal etiologies, rotavirus vaccine effectiveness, and 
population-based impact of rotavirus vaccine intro-
duction in children aged 0–59  months residing in 
censused populations in 3 African countries. Moderate-
to-severe diarrhea (MSD) cases, defined as children aged 
0–59 months presenting at a sentinel health center with 
diarrhea (defined as ≥ 3 looser-than-normal stools within 
24 h) that began within the past 7 days after ≥ 7 diarrhea-
free days and had ≥ 1 of the following: sunken eyes, poor 
skin turgor, dysentery, required intravenous rehydra-
tion, or hospitalization. Diarrhea-free controls matched 
by age, gender and geographical location were enrolled 
within 14 days of case enrolment. We utilized data from 
cases enrolled in VIDA over a 36 month period from May 
2015 and July 2018.

The EFGH study employed cross-sectional and longi-
tudinal study designs to establish incidence and conse-
quences of Shigella medically attended diarrhea (MAD) 
within 7 country sites in Africa, Asia, and Latin Amer-
ica [14–16]. Eligible MAD cases were children aged 
6–35 months presenting at a sentinel health center with 
diarrhea (defined as ≥ 3 looser-than-normal stools within 
24 h) that began within the past 7 days after ≥ 2 diarrhea-
free days. Additional eligibility criteria included: resid-
ing within the pre-defined EFGH catchment area; plan 
to remain at their current residence for at least the next 
4 months; legal guardian consenting to child’s participa-
tion in the study as well willingness to be followed-up 
for 3 months post-enrolment; child is not being referred 
to a non-EFGH facility at the time of screening; and site 
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enrollment cap has not been met. Our study utilized 
EFGH data collected from 01 August, 2022 and 31 July, 
2023.

The VIDA study was conducted across 15 sentinel 
health centers within the Kenya Medical Research Insti-
tute’s Health and Demographic Surveillance System in 
Siaya County, while the EFGH study is ongoing in six of 
these facilities, selected based on patient volume [17]. 
In both studies, data on demographic, household-level 
characteristics, illness history, anthropometric and clini-
cal characteristics were collected at enrollment by study 
research staff. Data from the two enteric studies were 
used in the current analysis as they followed rigorous 
procedures [13–16], capturing socio-demographic, clini-
cal, and anthropometric data, along with diarrhea dura-
tion over 14 days post-enrollment.

Pre‑Processing
We assessed all demographic, socio-economic and clini-
cal characteristics as potential features. We evaluated the 
missing data patterns and the missing data points in the 
variables were imputed using the Multiple Imputation by 
Chained Equations (MICE) package [18].

Outcome
The outcome variable, LDD, was defined as a diarrheal 
episode lasting ≥ 7 days congruent with previous research 
[5, 19].

Diarrhea duration was determined from two data 
sources. The pre-enrolment duration was based on 
caregiver’s report. The days of diarrhea reported in 
this period were considered to be uninterrupted. The 
post-enrolment duration involved a 14-day follow-up 
period after enrollment and was extracted from the data 
reported by caregiver in a memory aid (Figure S1) and 
diarrhea diary (Figure S2) for VIDA and EFGH, respec-
tively. Additionally, for the EFGH study, if the caretaker 
did not return the diarrhea diary, the post-enrolment 
duration was extracted from the week 4 or month 3 fol-
low-up case report form interview if available.

Based on these two sources, we were able to determine 
the pre-enrolment diarrhea duration covering 7  days 
before enrolment and the post-enrolment diarrhea dura-
tion covering 14 days after enrolment. This period gives a 
possible duration of 20-days (day of enrolment was cap-
tured in both pre-enrolment and post-enrolment dura-
tion). During the post-enrolment period, 2 diarrhea free 
days were considered an end of an episode consistent 
with previous studies [19–22].

Predictors
A total of 68 potential predictors, encompassing demo-
graphic factors, household characteristics, illness history, 

and anthropometric and clinical data, were assessed 
(Table S1). These variables were documented in the non-
medical and medical case report forms of the VIDA 
study.

Sample Size
The determination of sample size was conducted utilizing 
a formula developed by Riley et al. [23].

where P = Candidate predictor parameters; S = 1- shrink-
age; R2cs- Cox-Snell R squared statistic; P was 10 for 
LDD prediction; desired shrinkage level was ≤ 10% S = 0.9 
and  R2

cs is at least 0.1
For LDD prediction:
n = P / ((S-1)ln(1-(R2

cs/S))).
n = 10/((0.9–1)ln(1-(0.1/0.9))).
n = 849 observations.
The estimated sample size in the development cohort 

was at least 849 observations.

Descriptive analysis
We compared patient characteristics of LDD cases versus 
non-LDD cases. Proportions were reported for categori-
cal variables and either chi-square or Fisher`s exact test 
were performed as appropriate. Wilcoxon rank sum tests 
were used to compare continuous variables as appropri-
ate since the Shapiro–Wilk tests showed they did not 
follow a normally distribution (Age (p < 0.001), diarrhea 
days (p < 0.001), vomit days (p < 0.001), respiratory rate 
(p < 0.001) and Vesikari score (p < 0.001)).

Feature selection
We conducted feature selection with the goal of opti-
mizing model accuracy, minimizing computational cost 
and enhancing interpretability of the models. This was 
implemented using the Boruta package [24], an all rel-
evant feature selection wrapper around the random for-
est algorithm that selects relevant features by comparing 
original attributes’ importance with importance achiev-
able at random using their permuted copies. Random 
forest is an algorithm that builds an ensemble of deci-
sion trees trained with a bagging approach to get a more 
accurate and stable prediction [25].Confirmed and tenta-
tive features were subsequently used in model develop-
ment. Although, rectal straining and breastfeeding were 
confirmed features, they were not included in the model 
development since the EFGH study used for temporal 
validation did not collect them. Table 1 presents the final 
set of 10 predictors used for model development.

n = P/(S − 1)ln(1−
R
2
cs

S
)
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Model development and evaluation
The schematic diagram for model development and 
validation is shown in Fig. 1. We modeled two scenar-
ios representing two different use cases: i.) the prob-
ability of an acute diarrheal episode progressing to 

LDD based on the child’s signs and symptoms at pres-
entation to hospital ii.) The probability of a diarrheal 
episode lasting an additional 7 or more days after pres-
entation to hospital (i.e. excluding pre-hospital days of 
diarrhea).

Table 1 Final Predictors used in model development

Variable Description Variable Type Levels

Agegroup Age of child Categorical 1- 0–11 months; 
2- 12–23 months; 3- 
24–59 months

Vesikari_score Severity of diarrhea episode based on Modified Vesikari Score Categorical 1-Mild; 2- Moderate; 3- Severe

Diarr_days Diarrhea days prior to enrolment as reported by caregiver Numeric 1–7 days

resp_rate Respiratory rate of child as measured by clinician at enrolment Numeric

Vomit_days Duration of vomiting as reported by caregiver Numeric 1–7 days

freq_vomit Frequency of vomiting as reported by caregiver Categorical 1–0; 2–1; 3–2-4; 4- ≥ 5

Vomit Vomiting as reported by caregiver Binary 1- Yes; 0-No

Rotavirus_vacc Rotavirus vaccination status based on child immunization card Categorical 1- ≥ 1 dose; 0- 0 doses

Skin_turgor Skin turgor of child as assessed by clinician during enrolment Categorical 1- Slow/Very slow 0-Normal

Stool_count Number of loose stools in 24 h as reported by caregiver Categorical 1- 3; 2- 4–5; 3- ≥ 6

Fig. 1 Model development and validation schematic diagram. *RF-Random Forest; GBM-Gradient Boosting; NB- Naïve Bayes; LR-Logistic 
Regression; SVM- Support vector machine; KNN-K-nearest neighbors; ANN-Artificial Neural Networks, VIDA- Vaccine Impact on Diarrhea in Africa 
Study, EFGH-Enterics for Global Health Shigella Study
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The first scenario aims to aid healthcare providers in 
early identification and better management of children 
at increased risk of LDD. The second scenario hopes to 
address possible caretaker concerns on how long their 
child’s diarrheal episode would last from the day of medi-
cal treatment. To build the LDD prediction model, we 
applied 7 ML algorithms including: Random Forest (RF), 
Gradient Boosting (GBM), Naive Bayes (NB), Logistic 
regression (LR), Support vector machine (SVM), K-near-
est neighbors (KNN) and Artificial Neural Networks 
(ANN). The algorithms were implemented in R version 
4.2.2 using the Caret package [26].

We performed split-sampling by conducting a 75:25% 
data split to partition the development data (VIDA) 
into training and test sets [27]. The partitioned data for 
model training (n = 1,112) exceeded the calculated sam-
ple size. The LDD predictive models were then developed 
in the training dataset. To ensure robust evaluation and 
tuning of these models, we employed tenfold cross-val-
idation [28, 29] to obviate under-fitting or overfitting of 
the model. We employed over-sampling technique [30] 
within the resampling procedure to handle the mod-
est class imbalance in our target variable (LDD) since a 
disparity in the frequencies of the observed classes can 
have a significant negative impact on model fitting. The 
summary of the hyper-parameters assessed for each algo-
rithm, along with the best hyper-parameters identified 
during the grid search are shown in Table S2. The models 
generated probability estimates, which were classified as 
LDD using the default threshold of 0.5. The models from 
the training data were evaluated in the test dataset using 
the following performance metrics: sensitivity, specific-
ity, positive predictive value (PPV), negative predictive 
value (NPV) and F1-score. Receiver operating character-
istic (ROC) curves were constructed and the area under 
the curve (AUC) and the precision-recall area under the 
curve (PRAUC) for each model was computed using the 
precrec package [31].

We assessed calibration in the built models using Brier 
scores (the mean squared error between the actual out-
come and the estimated probabilities), Spiegelhalter’s 
z-test (a formal measurement that serves as a proxy for 
calibration calculated from the decomposition of Brier 
score) and its accompanying p-value [32]. The champion 
model was the best predictive model from the pool of 
developed models based on the AUC metric. We plotted 
the calibration plot for the champion model.

We conducted explanatory model analysis (EMA) for 
the top four models using a model agnostic procedure to 
estimate SHapley Additive exPlanations (SHAPs) attri-
butions. This was implemented using the DALEX pack-
age [33]. The SHAP values were plotted as bar plots in 
descending degree of importance with the red color 

signifying a negative association and green color showing 
a positive association. We further conducted temporal 
validation on the champion model to assess its transport-
ability and generalizability [34]. Due to the difference in 
case definition between the two studies, we also con-
ducted a sensitivity analysis of the temporal validation 
using a subset of EFGH participants who met the VIDA 
inclusion criteria.

To evaluate the business value of the predictive model, 
modelplotr package [35] was used to build valuable eval-
uation plots (cumulative gains, cumulative lift, response 
and cumulative response plots). The cumulative gains 
plot was used to visualize the percentage of the target 
class members that were selected if we decided to select 
up until percentile X while the cumulative lift plot was 
used to explain how much better selecting based on our 
model was compared to taking random selections. The 
response plot was used to plot the percentage of target 
class observations per percentile. Lastly, the cumulative 
response plot was used to show the expected percentage 
of the target class observations in the selection, when we 
apply the model and select up until percentile X. Descrip-
tive analysis, predictive modelling for LDD and plotting 
were all performed in R version 4.2.2 [36].

Results
Patient characteristics
During VIDA (development dataset), 2,895 children 
aged < 5  years sought care for diarrhea in the sentinel 
health centers, of whom 2,009 (69.4%) had MSD and 
1,554 (77.4%) met the study case definition and were sub-
sequently enrolled. Among those enrolled 1, 482 (95.4%) 
had their memory aids completed by the caretakers, of 
whom 478 (32.3%) had LDD. While in EFGH (temporal 
validation dataset), 1,879 children aged < 5  years sought 
care for diarrhea in the SHCs, of whom 1, 365 (72.6%) 
were eligible for screening and 706 (51.7%) met the study 
case definition and were subsequently enrolled. Among 
those enrolled 685 (97.0%) had their diarrhea diaries 
completed by the caretakers, of whom 69 (10.1%) had 
LDD (Fig.  2). There was a statistically significant differ-
ence in prevalence of LDD between VIDA and EFGH 
studies (478 [32.3%] vs 69 [10.1%]; p < 0.001). Addition-
ally, we observed significant differences in the baseline 
characteristics of participants in the two studies. Specifi-
cally, compared to EFGH participants, VIDA participants 
were older (Median age in months [IQR]: 15.0 [9.0–25.0] 
vs 13.6 [8.9–20.4], p = 0.0361), had more severe diarrheal 
episodes (Median Vesikari score [IQR]: 10 [8–13] vs 8 
[6–10], p < 0.001), had a higher respiratory rate (Median 
[IQR]: 36.5 [31.5–41.0] vs 33.0 [28.0–39.0], p < 0.001).

Moreover, VIDA participants were more likely to pre-
sent with vomiting (843 [56.9%] vs 346 [50.5%], p = 0.006), 
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decreased skin turgor (614 [41.4%] vs 137 [20.0%], 
p < 0.001) and severe dehydration (388 [26.2%] vs 22 [3.2%], 
p < 0.001) compared to EFGH participants (Table S3).

The characteristics of VIDA participants stratified 
by LDD status are shown in Table 2. Children who had 
LDD were younger than those who did not (Median 
age in months [IQR]: 13 [7-20] vs 16 [10-27], p < 0.001). 
Furthermore, compared with those who did not have 
LDD, those with LDD had a higher respiratory rate 
(Median [IQR]: 37.5 [33–42.5] vs 36 [31-40], p < 0.001), 
and a higher Vesikari score (Median [IQR]: 11 [9-13] vs 
10 [8-12], p < 0.001). Additionally, caretaker education, 
breastfeeding, stool frequency in 24 h, belly pain, rectal 
straining, cough, number of vomiting episodes, prior 
home oral rehydrating salts use, rotavirus vaccination, 
fast breathing and decreased skin turgor were signifi-
cantly associated with LDD.

The distribution of LDD cases across the development, 
internal validation and temporal validation datasets was 

359/1,112 (32.3%), 119/390 (32.2%) and 69/685 (10.1%), 
respectively.

Feature selection
From the feature selection analysis, the selected varia-
bles in order of importance were diarrhea days prior to 
presentation (55.1%), Vesikari score (18.2%), age group 
(10.7%), vomit days (8.8%), breastfeeding (8.4%), res-
piratory rate (6.5%), vomiting (6.4%), number of vom-
its in last 24 h (6.2%), rotavirus vaccination (6.1%) and 
rectal straining (3.4%). Skin pinch (2.4%) and number 
of loose stools in last 24  h (2.4%) were tentative fea-
tures (Fig. 3).

Model performance
We evaluated seven ML algorithms in the prediction of 
LDD. From the developed models, sensitivity was high-
est in the RF model (80.7%), followed by the LR (76.5%), 
ANN (75.6%), SVM (73.9%), KNN (73.1%), the GBM 

Fig. 2 Enrolment flow diagram of diarrhea cases in VIDA (2015–2018) and EFGH (2022–2023). MSD- Moderate-to-severe diarrhea. MAD- Medically 
attended diarrhea, LDD-Longer duration diarrhea, VIDA-Vaccine Impact on Diarrhea in Africa study, EFGH-Enterics for Global Health Shigella 
Study.β−Children enrolled and successfully followed up at week-4 or have surpassed the upper limit for week-4 follow-up (≥ 67 days 
post enrolment). ¥−Diarrhea duration obtained from Follow-up form where diarrhea diary was not returned but follow-up data was available
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Table 2 Characteristics of children aged < 5 years seeking care for moderate-to-severe diarrhea in Kenya stratified by Diarrhea 
duration, 2015–2018

Longer Duration Diarrhea (LDD)

Characteristics (N = 1,482) Yes (n = 478) No (n = 1,004) p‑value

n (%) n (%)

Demograhic
 Median age [IQR] 13 [7-20] 16 [10-27]  < 0.0001
Age Category

 0–11 months 225 (40.4) 332 (59.6)  < 0.0001
 12–23 months 152 (29.9) 356 (70.1)

 24–59 months 101 (24.2) 316 (75.8)

Gender: Female 213 (31.5) 463 (68.5) 0.574

Household Details
 Caretaker education (> = Secondary) (n = 1,481) 53 (25.7) 153 (74.3) 0.03
 Natural Floor (n = 1,481) 323 (33.4) 644 (66.6) 0.177

 Refined/Electric Primary Fuel Source (n = 1,478) 14 (24.1) 44 (75.9) 0.183

Clinical characteristics
By History
 Breastfeeding before diarrhea onset  < 0.0001
 None 147 (26.3) 411 (73.7)

 Exclusive 42 (43.3) 55 (56.7)

 Partial 289 (35.0) 538 (65.0)

Median diarrhea days [IQR] 4 [3-5] 2 [2,3]  < 0.0001

Stool Count

 3 75 (28.1) 192 (71.9) 0.037
 4–5 256 (31.3) 562 (68.7)

 ≥ 6 147 (37.0) 250 (63.0)

Belly Pain (n = 1,427) 299 (34.5) 568 (65.5) 0.024
Rectal straining 155 (39.7) 235 (60.3)  < 0.0001
Cough 280 (34.7) 526 (65.3) 0.025
Vomiting 255 (30.3) 588 (69.7) 0.058

No. of vomit

 0 223 (34.9) 416 (65.1) 0.026
 1 48 (28.7) 119 (71.3)

 2–4 177 (32.7) 364 (67.3)

 ≥ 5 30 (22.2) 105 (77.8)

Median vomit days [IQR] 2 [1-3] 2 [1,2]  < 0.0001
Home ORS use 58 (43.0) 77 (57.0) 0.005
Rotavirus vaccination (n = 1,389) 414 (35.2) 761 (64.8)  < 0.0001
At enrolment
 Very Thirsty (n = 1,465) 350 (33.5) 695 (66.5) 0.1

 Fast breathing 63 (39.1) 98 (60.9) 0.048
 Median Respiratory rate [IQR] 37.5 [33–42.5] 36 [31-40]  < 0.0001
Dry mouth

 Normal 4 (14.8) 23 (85.2) 0.053

 somewhat Dry 441 (33.1) 891 (66.9)

 Very dry 33 (26.8) 90 (73.2)

 Skin turgor (slow/very slow) 222 (36.2) 392 (63.8) 0.007
Mental Status 0.093

 Normal 199 (31.3) 437 (68.7)

 Restless/Irritable 266 (32.4) 555 (67.6)
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Fig. 3 Feature selection for longer duration diarrhea among children aged < 5 years presenting with moderate to severe diarrhea in rural western 
Kenya, 2015–2023. Green, yellow, red and blue boxplots represent the Z scores of selected, tentative, rejected and shadow features, respectively. 
Selected and tentative features: Diarr_days; Vesikari; Agegroup; Vomit_days;breast_feed; resp_rate; Vomit; freq_vomit; Rotavirus vaccination; Rectal straining; 
Stool_count; Skin_turgor.The following additional features were rejected and are not included in the Figure: No. of children < 5 years in households; Total 
assets; Animal ownership; improved water; improved sanitation; shared facility; stool type; Blood in stool; drinks poorly; unable to drink; fever; restless; lethargy; 
unconscious; rectal prolapse; difficulty breathing; convulsion; sunken eyes; home zinc use; capillary refill; chest indrawing; sunken eyes; Bipedal edema; Abnormal 
hair; Dehydration; ORS at facility; Zinc at facility; IV rehydration; any_antibiotic; Malaria diagnosis; Dysentry diagnosis; Stunting; Wasting 

β−  Includes electricity, propane, butane, natural gas

ORS-Oral rehydration solution.

The following variables had a p-value ≥ 0.2 and are not included in the table: No. of children < 5 years in households; Total assets; Animal ownership; improved water; 
improved sanitation; shared facility; stool type; Blood in stool; drinks poorly; unable to drink; fever; restless; lethargy; unconscious; rectal prolapse; difficulty breathing; 
convulsion; sunken eyes; home zinc use; capillary refill; chest indrawing; sunken eyes; Bipedal edema; Abnormal hair; Dehydration; ORS at facility; Zinc at facility; IV 
rehydration; any_antibiotic; Malaria diagnosis; Dysentry diagnosis; Stunting; Wasting.

Table 2 (continued)

Longer Duration Diarrhea (LDD)

Characteristics (N = 1,482) Yes (n = 478) No (n = 1,004) p‑value

n (%) n (%)

 Lethargic/Unconscious 13 (52.0) 12 (48.0)

 Under Nutrition 65 (37.4) 109 (62.6) 0.125

Vesikari Score  < 0.0001
 Mild 15 (10.3) 130 (89.7)

 Moderate 204 (32.4) 426 (67.6)

 Severe 259 (36.6) 448 (63.4)

Median vesikari score [IQR] 11 [9-13] 10 [8-12]  < 0.0001
Cipro_ceft 20 (24.4) 62 (75.6) 0.117
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model (72.3%) and lowest in the NB model (69.7%). The 
specificity of the GBM and SVM models were the high-
est (76.5%), followed by ANN (74.9%), LR (74.5%), RF 
and NB (74.1%), and lowest in the KNN model (72.1%). 
The PPV ranged between 55.4%—59.9% while the NPV 
ranged between 83.8%—89.0%. The AUC of the models in 
decreasing order was 83.0%, 82.0%, 81.5%, 81.1%, 80.5%, 
79.7% and 77.3% for RF, SVM, ANN, GBM, LR, KNN and 
NB, respectively (Table 3). The RF model emerged as the 
champion model with 80.7%, 74.1%, 59.6%, 89.0%, 68.6%, 
83.0% and 90.0% for sensitivity, specificity, PPV, NPV, 
F1-score, AUC and PRAUC, respectively.

The receiver operating characteristic (ROC) curves for 
LDD prediction models are shown in Figure S3. Further-
more, in the prediction of the duration of diarrhea post-
enrolment (≥ 7  days), the model performance ranged 

between 42.3%-78.8%, 45.3%-72.3%, 16.8%-22.1%, 88.3%-
90.9%, 26.5%-30.7%, 52.9%-64.4%, and 86.9%-92.0% for 
sensitivity, specificity, PPV, NPV, F1-score, AUC and 
PRAUC, respectively (Table  4). The model performance 
in the prediction of LDD when no sub-sampling tech-
nique was employed are shown in Table S4.

Calibration and Explanatory model analysis
Overall the Brier scores were low and ranged between 
0.17–0.21, however the Spiegelhalter’s p-value showed 
that the NB and KNN models did not calibrate well 
in the automated algorithm (p < 0.05) (Table  5). While 
the random forest model showed slight deviations 
from perfect calibration, particularly at the lower end 
of the predicted probability spectrum (Fig.  4), these 

Table 3 Longer Duration Diarrhea (LDD) prediction models with Over-sampling technique used in the resampling procedure: Model 
Performance

*RF Random Forest, GBM Gradient Boosting, NB Naïve Bayes, LR Logistic Regression, SVM Support vector machine, KNN-K nearest neighbors, ANN Artificial Neural 
Networks;

95% CI 95% Confidence Interval, PPV Positive Predictive Value, NPV Negative Predictive Value, AUC  Area under the Curve, PRAUC  Precision Recall Area under the Curve.

LDD Prediction with over-sampling technique

Algorithm Sensitivity % 
[95% CI]

Specificity % 
[95% CI]

PPV % [95% CI] NPV % [95% CI] F1‑Score % [95% 
CI]

AUC % [95% CI] PRAUC % [95% CI]

RF 80.7 [72.4–87.3] 74.1 [68.2–79.4] 59.6 [51.6–67.3] 89.0 [83.9–92.9] 68.6 [56.3–75.3] 83.0 [78.6–87.5] 90.0 [85.9–93.8]

GBM 72.3 [63.3–80.1] 76.5 [70.8–81.1] 59.3 [50.8–67.4] 85.3 [80.0–89.7] 65.2 [41.7–73.1] 81.1 [76.3–86.0] 87.8 [83.3–93.0]

NB 69.7 [60.7–77.8] 74.1 [68.2–79.4] 56.1 [47.7–64.2] 83.8 [78.3–88.4] 62.2 [36.4–68.9] 77.3 [72.1–82.6] 85.7 [82.2–89.0]

LR 76.5 [67.8–83.8] 74.5 [68.6–79.8] 58.7 [50.5–66.5] 87.0 [81.7–91.2] 66.4 [44.1–69.4] 80.5 [75.6–85.4] 88.7 [84.4–92.7]

SVM 73.9 [65.1–81.6] 76.5 [70.8–81.6] 59.9 [51.5–67.9] 86.1 [80.9–90.4] 66.2 [42.2–69.6] 82.0 [77.3–86.7] 89.3 [85.1–93.1]

KNN 73.1 [64.2–80.8] 72.1 [66.1–77.6] 55.4 [47.3–63.3] 85.0 [79.5–89.5] 63.0 [40.4–70.7] 79.7 [74.9–84.5] 87.0 [83.9–91.0]

ANN 75.6 [66.9–83.0] 74.9 [69.1–80.1] 58.8 [50.6–66.7] 86.6 [81.4–90.9] 66.1 [46.3–74.1] 81.5 [76.8–86.2] 89.1 [84.8–93.6]

Table 4 Post-enrolment duration (≥ 7 days) prediction models with Over-sampling technique used in the resampling procedure: 
Model Performance

*RF Random Forest, GBM Gradient Boosting, NB Naïve Bayes, LR Logistic Regression, SVM Support vector machine, KNN-K nearest neighbors, ANN Artificial Neural 
Networks.

95% CI 95% Confidence Interval, PPV Positive Predictive Value, NPV Negative Predictive Value, AUC  Area under the Curve, PRAUC  Precision Recall Area under the Curve.

Post-enrolment Duration Prediction (≥ 7 days)

Algorithm Sensitivity % 
[95% CI]

Specificity % 
[95% CI]

PPV % [95% CI] NPV % [95% CI] F1‑Score % [95% 
CI]

AUC % [95% CI] PRAUC % [95% CI]

RF 48.1 [34.0–62.4] 72.3 [67.1–77.2] 22.1 [14.9–30.9] 89.5 [85.1–93.0] 30.3 [-19.4–56.0] 63.3 [55.9–70.7] 91.6 [88.1–94.4]

GBM 42.3 [28.7–56.8] 71.1 [65.7–76.0] 19.3 [12.5–27.7] 88.3 [83.7–92.0] 26.5 [-25.7–55.3] 61.1 [54.1–68.1] 91.7 [87.7–94.8]

NB 78.8 [65.3–88.9] 45.3 [39.7–50.9] 19.1 [14.0–25.0] 92.9 [87.7–96.4] 30.7 [0.5–45.2] 62.3 [54.6–70.0] 90.6 [87.6–92.9]

LR 61.5 [47.0–74.7] 59.1 [53.5–64.6] 19.8 [13.9–26.7] 90.4 [85.5–94.0] 29.9 [-11.7–39.7] 64.2 [57.1–71.3] 91.8 [88.5–95.2]

SVM 59.6 [45.1–73.0] 62.6 [57.0–67.9] 20.7 [14.5–28.0] 90.5 [85.8–94.0] 30.7 [-12.6–50.1] 62.7 [55.7–69.7] 91.2 [87.3–95.3]

KNN 59.6 [45.1–73.0] 51.6 [45.9–57.2] 16.8 [11.7–22.9] 88.6 [83.2–92.8] 26.2 [-12.9–43.5] 52.9 [44.5–61.3] 86.9 [83.7–89.9]

ANN 67.3 [52.9–79.7] 53.5 [47.8–59.0] 19.1 [13.7–25.6] 90.9 [85.8–94.6] 29.8 [-7.8–50.2] 64.4 [57.2–71.6] 92.0 [88.8–95.3]
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deviations were not statistically significant (Spiegelhal-
ter p-value = 0.219).

From the explanatory model analysis of the predic-
tion of LDD, the degree of importance varied across 
models with the likelihood of developing LDD increas-
ing with pre-enrolment diarrhea days, severity based on 
the modified Vesikari score, no rotavirus vaccination, 
normal skin turgor and age. Conversely, the likelihood 
of progressing to LDD decreased with no vomiting 
(vomit = 0, number of vomits in last 24 h = 0, and vomit 
days = 0) and number of loose stools in last 24  h (≥ 6) 
(Fig. 5).

Furthermore, we observed similar patterns in the EMA 
results of the prediction of ≥ 7  days of diarrhea post-
enrolment with the only difference being in pre-enrol-
ment diarrhea days, which decreased the likelihood of 
developing the outcome in this prediction (Fig. 6).

Business value evaluation
From the business value evaluation of our champion 
model (RF), the cumulative gains plot shows that the 
model is able to select 46% of the target class (LDD) if 
we select the top-20% cases based on our model. Addi-
tionally, from the cumulative lift plot, our champion 
model is able to identify 2.6 times more LDD cases 
compared to a random selection if we pick the top-20% 
observations based on model probability. Lastly, from 
the cumulative response plot, 72% of observations in 
the top-20% cases based on model probability belong to 
the target class (Fig. 7).

Temporal validation in EFGH data
We observed a decline in model performance on the tem-
poral validation dataset, the RF model achieved 37.7%, 
86.0%, 23.2%, 92.5%, 27.9%, 68.4% and 94.4% for sensitiv-
ity, specificity, PPV, NPV, F1-score, AUC and PRAUC, 
respectively. We observed a marginal increase in model 
performance in the sensitivity analysis when includ-
ing only EFGH enrollees that met the VIDA inclusion 

Table 5 Calibration results of Longer Duration Diarrhea (LDD) 
prediction models

*RF Random Forest, GBM Gradient Boosting, NB Naïve Bayes, LR Logistic 
Regression, SVM Support vector machine, KNN-K nearest neighbors, 
ANN Artificial Neural Networks;

Algorithm Brier Score Spiegelhalter 
Z-score

Spiegelhalter p-value

RF 0.17 -1.23 0.219

GBM 0.18 -0.95 0.341

NB 0.20 4.82  < 0.0001
LR 0.18 -0.58 0.565

SVM 0.17 -0.92 0.357

KNN 0.19 -3.86  < 0.0001
ANN 0.18 -0.18 0.855

Fig. 4 Calibration plot of the random forest champion model
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criteria, the RF model achieved 47.5%, 80.5%, 25.7%, 
91.5%, 33.3%, 71.0% and 93.8% for sensitivity, specific-
ity, PPV, NPV, F1-score, AUC and PRAUC, respectively 
(Fig. 8).

Discussion
As the field of machine learning advances, its potential 
to revolutionize healthcare practices for the benefit of 
both patients and healthcare systems globally is becom-
ing increasingly evident. This study evaluated the feasi-
bility of ML algorithms in the prediction of LDD among 
pediatric patients presenting with diarrhea. From our 
evaluation of 7 ML algorithms, the models achieved good 
performance with the RF model emerging as the cham-
pion model in predicting LDD. However, on the temporal 
validation data the champion model (RF) did not per-
form optimally registering a drop of 12.0% in the model 
AUC, largely driven by a decrease in sensitivity. Moreo-
ver, there was a decline in model performance while 
predicting the probability of having ≥ 7 diarrhea days 

post-enrolment with the ANN model achieving the best 
performance. These declines in model performance are 
likely to be attributable to differences in the study popu-
lations [37, 38], with our temporal validation set having 
fewer LDD episodes and including children with less 
severe diarrhea. However, we cannot exclude the pos-
sibility that some degree of model over-fitting may have 
contributed to the decrease in performance in our valida-
tion dataset. Despite these decreases in performance the 
models retained good negative predictive values, suggest-
ing they may aid clinicians identify which children are 
unlikely to experience LDD.

Based on our feature selection, the variables identified 
as predictors of LDD were diarrhea days, Vesikari score, 
age group, vomit days, breastfeeding, respiratory rate, 
vomiting, number of vomits in last 24  h, rotavirus vac-
cination, rectal straining, skin pinch and number of loose 
stool in last 24 h. These variables have been documented 
as risk factors for LDD in previous studies. Specifically, 
severity of diarrheal disease was an important predictor 

Fig. 5 SHAP attributions for the Top 4 Longer Duration Diarrhea (LDD) models. * SVM- Support vector machine; ANN-Artificial Neural Networks. 
“ Diarr_days = 2”- Pre-enrolment diarrhea days = 2; “Rotavirus_vacc = 0”- No dose of rotavirus vaccine administered; “Vomit = 0”- No vomiting; 
“Vesikari_score = 2”- Moderate severity of diarrheal disease; “freq_vomit = 0”-maximum number of vomiting = 0; “Skin turgor = 0”- Normal skin turgor; 
“Stool_count”- ≥ 6 loose stools per day; “Vomit_days = 0”-0 vomiting days; “Agegroup = 2”- 12–23 months
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of LDD in our results with the overall severity (modified 
Vesikari score) as well as individual elements of the sever-
ity score (diarrhea days, vomiting, vomit days, number 
of vomits in last 24 h, number of loose stool in last 24 h, 
skin pinch) being predictive of LDD. Our findings are 
consistent with those of Lima and Guerrant who found in 
their review that episodes of longer duration were more 
severe at presentation [39, 40]. Severe diarrheal episodes 
may cause intestinal inflammation which could lead 
to prolonged illness and recovery time [41]. Addition-
ally, severe diarrhea through vomiting and high passage 
of loose stools may lead to significant loss of fluids and 
electrolytes, which may exacerbate the illness and lead to 
extended duration of illness as the body needs more time 
to replenish lost fluids and restore its normal balance of 
electrolyte. A stronger host immune response to etiologic 
agents of diarrhea may also lead to more severe symp-
toms and an extended illness duration.

We also observed younger children were at increased 
risk of LDD. This finding is similar to findings from pre-
vious studies [5, 40, 42] and can possibly be explained 
by the fact that previous exposure to enteric pathogens 

which can induce specific immunity that may reduce 
diarrheal duration and frequency is likely to be minimal 
in infants and toddlers compared to older children. Addi-
tionally, as children age their immune system undergoes 
development throughout early childhood thereby reduc-
ing their vulnerability to infection by microbial agents. 
We also observed lack of rotavirus vaccination to be a 
predictor of LDD. Despite the lower vaccine effectiveness 
of rotavirus vaccine reported in developing countries 
compared to the developed countries [43], lack of rota-
virus vaccination exposes children to severe dehydrating 
diarrhea that would possibly lead to prolonged duration 
of illness.

Post-enrolment diarrhea duration (≥ 7 days) was much 
harder to predict than overall LDD, and we observed a 
decline in model performance with a difference of up to 
-26.8% reported in model AUCs. A number of poten-
tial reasons have been advanced in literature for poor 
performance of machine learning algorithms: outli-
ers in the development dataset, class imbalance, over-
fitting or underfitting, use of less than ideal metric in 
assessing performance and the data doesn’t represents a 

Fig. 6 SHAP attributions for the Top 4 Post-enrolment duration (≥ 7 days) models. “Vesikari_score = 2”- Moderate severity of diarrheal disease; 
“Diarr_days = 4”- Pre-enrolment diarrhea days = 4; “Vomit = 0”- No vomiting; “Vomit_days = 0”-0 vomiting days; “Skin turgor = 0”- Normal skin turgor; 
“Agegroup = 1”- 0–11 months; “Rotavirus_vacc = 1”- at least 1 dose of rotavirus vaccine administered; “Dry mouth = 1”- Somewhat dry mouth;
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predictable pattern [44]. Our model development strat-
egy that involved split sampling, K-fold cross validation 
and over-sampling technique addresses most of these 
challenges leaving data that does not represent a pre-
dictable pattern as a possible reason for the sub-optimal 
results observed. The EMA results in the prediction of 
post-enrolment duration were similar to those of LDD 
prediction and they showed that severity based on the 
modified Vesikari score, no rotavirus vaccination, nor-
mal skin turgor and age and had a positive effect on the 
prediction of the outcomes while no vomiting and ≥ 6 
loose stools had a negative effect on the prediction of 
the outcomes. The primary difference between the two 
outcomes was inclusion of pre-enrolment diarrhea days 
which would be known to the models and clinicians at 
presentation.

Approximately, 32 and 10 in every 100 children with 
MSD and MAD, respectively, develop LDD. This burden 
coupled with lack of adequate diagnostic capacity [45] 
and overburdened healthcare workers [46] underscore 
the need of alternative strategies such as clinical predic-
tive models in prioritizing resources at high-risk children 
and ensuring close monitoring and better management 
while allowing low-risk children return home earlier. Our 
results show the potential of ML algorithms in the rapid 
identification of at-risk children. This model could be 

deployed as a web-based application using platforms such 
as R-shiny or plumber [47, 48], or it could be integrated 
into electronic medical records systems [49] ensuring it 
is aligned with clinical workflows. Additionally, imple-
menting a real-time strategy to handle missing predic-
tor values is essential to maximize the model’s utility. 
Furthermore, ensuring logical consistency and identify-
ing outliers through data validation checks on input data 
can significantly enhance data quality and bolster model 
implementation. Such simple and flexible deployment 
methodologies can allow rapid adoption of the model in 
clinical practice helping to complement clinician judge-
ment in the timely identification of at-risk patients. 
Moreover, implementing the model will require clinicians 
to input predictor values, enabling the model to generate 
a risk profile for the child along with SHAP attributions 
to enhance interpretability and support informed deci-
sion-making. Users will need a basic understanding of 
the predictors, their clinical significance, and the ability 
to interpret probability estimates and SHAP attributions. 
However, further work is needed to address the drop in 
sensitivity during temporal validation that was probably 
caused by the baseline differences in severity of disease 
and possible shift in study population over time. This 
also suggests that different criteria for predicting LDD 
could be used across settings with varying severity. Our 

Fig. 7 Business value plots for the Random Forest (RF) Model for Longer diarrhea duration (LDD)
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findings highlight the need for monitoring and periodic 
retraining of the model in order to maintain its predictive 
performance. It may also be possible that strengthening 
laboratory capacity, allowing inclusion of biological data 
into predictive framework, is an alternative pathway to 
improve the accuracy of clinical judgements.

In spite of using a robust strategy in model derivation 
and validation (internal and temporal), our study still has 
some limitations. While certain pathogens have been 
shown to be associated with extended duration of diar-
rhea, we did not use laboratory results although they 
were available in both studies used. The rationale for this 
decision was that culture and molecular diagnostic test-
ing is not routinely done in most health facilities and 
therefore results would be unavailable in the absence of 
study support hence this data would be missing when 
using the tool. Additionally, while this model may help 
to rapidly identify children at increased risk of LDD, no 
evidenced-based treatment for LDD exists leaving only 
empiric treatment such as general supportive care and 
nutritional rehabilitation as possible therapeutic options 
whenever zinc fails to reduce diarrheal duration. Lastly, as 
this study utilized data from previous enteric studies not 

originally designed to evaluate LDD, certain predictors, 
such as a history of prior LDD, may have been missed. 
This omission could potentially limit the predictive power 
of the models. Future research should focus on externally 
validating these models as well as assessing the poten-
tial acceptability and potential impacts of ML models on 
clinical practice and patient outcomes as well as the cost-
effectiveness of such model deployment.

Conclusions
Our study shows the practical utility of machine learning 
algorithms in rapid identification of children at increased 
risk of LDD in our setting. The use of our validated RF 
model in clinical settings to complement clinician judge-
ment could help to prioritize resources at high-risk 
children and ensure close monitoring and better manage-
ment while allowing low-risk children return home ear-
lier. However, successful implementation and widespread 
adoption will require further research, collaboration, and 
ethical diligence. There is need to explore its integration 
into clinical decision-making in order to translate the 
model outputs into actionable insights and real-world 
impact.

Fig. 8 Performance of champion model in development (2015–2018) and temporal validation (2022–2023) datasets. PPV- Positive Predictive Value; 
NPV- Negative Predictive Value; AUC- Area under the Curve; PRAUC- Precision Recall Area under the Curve
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