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Abstract 

Background The Mapper algorithm is a data mining topological tool that can help us to obtain higher level under‑
standing of disease by visualising the structure of patient data as a similarity graph. It has been successfully applied 
for exploratory analysis of cancer data in the past, delivering several significant subgroup discoveries. Using the Map‑
per algorithm in practice requires setting up multiple parameters. The graph then needs to be manually analysed 
according to a research question at hand. It has been highlighted in the literature that Mapper’s parameters have 
significant impact on the output graph shape and there is no established way to select their optimal values. Hence 
while using the Mapper algorithm, different parameter values and consequently different output graphs need to be 
studied. This prevents routine application of the Mapper algorithm in real world settings.

Methods We propose a new algorithm for subgroup discovery within the Mapper graph. We refer to the task 
as hotspot detection as it is designed to identify homogenous and geometrically compact subsets of patients, which 
are distinct with respect to their clinical or molecular profiles (e.g. survival). Furthermore, we propose to include 
the existence of a hotspot as a criterion while searching the parameter space, addressing one of the key limitations 
of the Mapper algorithm (i.e. parameter selection).

Results Two experiments were performed to demonstrate the efficacy of the algorithm, including an artificial 
hotspot in the Two Circles dataset and a real world case study of subgroup discovery in oestrogen receptor‑positive 
breast cancer. Our hotspot detection algorithm successfully identified graphs containing homogenous communities 
of nodes within the Two Circles dataset. When applied to gene expression data of ER+ breast cancer patients, appro‑
priate parameters were identified to generate a Mapper graph revealing a hotspot of ER+ patients with poor progno‑
sis and characteristic patterns of gene expression. This was subsequently confirmed in an independent breast cancer 
dataset.

Conclusions Our proposed method can be effectively applied for subgroup discovery with pathology data. It 
allows us to find optimal parameters of the Mapper algorithm, bridging the gap between its potential and the transla‑
tional research.
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Introduction
Patient subgroup discovery using pathology data is a 
critical area of research aimed at identifying meaningful 
subgroups of patients with similar disease characteristics, 
outcomes, or treatment responses. This problem is par-
ticularly relevant in precision medicine, where the goal 
is to tailor treatments based on individual variability in 
disease biology. Pathology data, including histological 
images, gene expression profiles, proteomics, and clini-
cal information, provide a rich source of information for 
uncovering hidden patterns and heterogeneity within 
patient populations. The challenge lies in the high dimen-
sionality and complexity of these datasets, coupled with 
the need to ensure that identified subgroups are clini-
cally interpretable and biologically meaningful. Com-
mon approaches to patient subgroup discovery include 
unsupervised learning techniques, such as clustering 
algorithms. Methods like k-means, hierarchical cluster-
ing, and Gaussian Mixture Models are widely used for 
partitioning data into subgroups based on similarity. 
Additionally, dimensionality reduction techniques like 
Principal Component Analysis (PCA), t-SNE, and UMAP 
are often employed to preprocess data and visualize the 
subgroup structure in lower-dimensional space.Topo-
logical methods have recently emerged as a reliable and 
interpretable framework for extracting information from 
high-dimensional data, leading to the field of computer 
science and mathematics called Topological Data Analy-
sis (TDA) [1]. TDA provides tools rooted in computa-
tional geometry and topology for summarising the shape 
of multidimensional data. It builds on concepts in alge-
braic topology to robustly summarise key topological fea-
tures such as loops, clusters, or flares that persist within 
a dataset.

The Mapper algorithm is a TDA tool used to uncover 
and visualize the shape and structure of high-dimensional 
data. By incorporating dimensionality reduction and 
local clustering, it creates a visual representation of the 
data’s underlying topology by building a network graph 
[1]. This graph represents key structures of the dataset 
clearly while preserving local relationships between sam-
ples. The dimensionality reduction is performed across a 
guiding lens function. This lens function can be based on 
mathematical properties of the data (e.g. sample means), 
classical dimensionality reduction techniques (e.g. PCA) 
or focused research questions (e.g. patient survival). 
When applied with pathology data, the Mapper algo-
rithm offers a unique approach to subgroup discovery. 
As opposed to commonly applied clustering techniques 
(e.g. agglomerative clustering), which group data points 
into disjoint or overlapping clusters based on similarity 

metrics, Mapper represents data as a graph where nodes 
correspond to clusters of data points in overlapping sub-
sets. This graph emphasizes relationships and connectiv-
ity between subgroups, providing a more nuanced view 
of the data structure. It excels at discovering complex 
topological features in the data, such as loops (e.g., recur-
rent states), branches (e.g., disease progression path-
ways), and voids (e.g., absence of certain phenotypes), 
which may be oversimplified or missed in the standard 
clustering or dimensionality reduction process.

TDA methods have become increasingly popular 
within biological applications [2–4] as they can detect 
interesting topological structures (e.g. loops or flares) 
which traditional methods such as clustering techniques 
may struggle to find.

The Mapper algorithm was used to obtain new insights 
from data in diverse healthcare applications including 
organisational mapping of brain activity from MRI data 
[5], identification of three core Type 2 diabetes subgroups 
from electronic health records [6], and the characteri-
sation of recurrent patterns in genomic data from viral 
evolution events [7]. It has also successfully identified 
subgroups of interest in breast cancer [8–10]. A new sub-
group with poor survival and high ER expression was dis-
covered from gene expression data that was refractory to 
detection using standard clustering analysis [8]. The tra-
ditional 50-gene signature classification method, PAM50, 
which identifies five molecular intrinsic subtypes of 
breast cancer, was refined to deconstruct these into seven 
subtypes [9]. By applying Mapper to transcriptional data 
transformed to reveal the extent that diseased tissue 
deviates from healthy tissue, termed “Disease-Specific 
Genomic Analysis” (DSGA) [11], a cohort of oestrogen 
receptor-positive (ER+) patients was found to contain a 
novel subgroup with extremely good survival rates [10].

While Mapper has proved to be an effective data min-
ing tool for biomedical data, it is currently not appli-
cable in diagnostic settings as manual selection of its 
parameters is required to generate a relevant graph that 
highlights important aspects of biology within the data-
set. Multiple parameters must be defined by the user 
when setting up the Mapper algorithm and these deci-
sions can strongly affect the final output, resulting in 
variable groupings of patients [8, 12]. Additionally, once 
a Mapper graph is constructed, the output graph must 
be manually inspected to assess whether any meaning-
ful and relevant phenomena are in fact revealed. The 
research trying to address Mapper parameter selection 
is very limited. There has been some work carried out 
to improve the selection of parameters and establish 
stability in the output of Mapper analysis. In [13] the 
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authors proposed to use a stability measure to select 
Mapper cover parameters. The stability was measure 
as a pairwise distance between Mapper graphs con-
structed across different partitions of the dataset. It 
was assumed that lower average distances signifies 
greater stability. However, choosing a single parameter 
combination according to this strategy remained chal-
lenging due to multiple potentially "stable" representa-
tions. Furthermore, stability doesn’t ensure useful data 
representation as too few nodes can omit important 
details, and many isolated nodes yield a stable yet use-
less configuration.

In their work in [14], the authors used Fuzzy Silhouette 
Score to identify optimal parameter values. The ten high-
est-scoring graphs were combined using an ensemble 
method adapted from [15]. Using the cluster-similarity 
metric from [15], a correlation matrix was constructed, 
with each element representing sample composition cor-
relation of node pairs. Following this, the correlation 
matrix was converted to a distance matrix, and hierarchi-
cal clustering was applied to the nodes to construct the 
final graph. It is worth noticing that Silhouette scores 
may be inconsistent indicators of graph quality, as the 
metric favours convex clusters over non-convex.

In [16], the authors proposed F-Mapper as an alterna-
tive to the standard Mapper algorithm. F-Mapper uses 
Fuzzy C-Means clustering [17] to define the coverage 
over the lens with irregular intervals. As a soft clustering 
method, Fuzzy C-Means assigns a value between 0 and 1 
to each sample for each of the c clusters. F-Mapper uses 
a threshold parameter where each sample is assigned to 
any cluster with a value greater than the threshold. The 
algorithm then clusters on the pullback of the overlap-
ping sets defined by Fuzzy C-Means clusters. The authors 
fine-tuned the parameters to topologically match the 
output of the standard Mapper on known datasets and 
found that F-Mapper outperformed the standard Map-
per in terms of Silhouette score [18]. However, the lens, 
c parameter, and threshold parameter in F-Mapper are 
user-chosen.

The authors of [19] addressed the Mapper’s param-
eter selection challenged by incorporating the concept 
of ensemble learning in the Mapper graph construc-
tion process. A pool of Mapper graphs was initially con-
structed, which were then ranked based on their stability 
and prevalence. The top graphs were then ensembled in 
the final output graph.

Apart from parameter selection challenge, there also 
isn’t much work proposing automated methods for 
detecting subgroups within Mapper graphs. A study by 
[20] focused on subgroup identification using Mapper 

graphs and proposed a pipeline for ranking clusters in 
the graph. A pool of graphs was constructed using dif-
ferent parameter values and the most representative and 
statistically significant topological features (i.e. clusters) 
were selected. The cluster were then ranked according to 
the separation regarding to the chosen outcome of inter-
est. The top clusters were analysed as potential patients 
subgroups.

In this work we propose a novel solution, which 
addresses the two aforementioned problems simultane-
ously. Firstly, we propose a new algorithm for detection 
of hotspots within Mapper graph, which can be used as a 
tool for patient subgroup discovery. Secondly, to address 
the parameter selection problem within the Mapper 
graph, we propose to use the existence of pre-defined 
phenomena within the graph of patients (i.e. existence of 
a hotspot) as a selection criterion for the Mapper param-
eters. We believe that this type of automation could help 
to bridge the gap between the potential of the Mapper 
algorithm and the translational research. We present two 
experiments demonstrating the effectiveness of our pro-
posed technique. As a simple example study, an artificial 
hotspot present in a toy Two Circles dataset is identified. 
Next, we apply our methodology in a ER+ breast cancer 
case study, decoding heterogeneous groups of patients 
according to differing survival outcomes.

Preliminaries
The Mapper algorithm
Here we introduce the Mapper algorithm originally pro-
posed by Singh et  al. (2007)  [1]. Figure  1 visualises the 
main steps of the algorithm using toy data as an exam-
ple. The Mapper takes as input a set of data points 
X = {x1, . . . , xk}, xi ∈ R

n with a notion of distance 
described between two data points.

In the first step, all data points are projected into low 
dimensional space (usually one or two dimensions) 
via the application of a lens function ( f : X → R

l , 
l ∈ {1, 2} ). The lens function is typically chosen to high-
light data qualities relevant to the research question, such 
as a particular feature or combination of features. In the 
case of l = 1 , as per Fig. 1A, the dataset X is projected to 
a set of real-number values.

In the second step, the range of the projected values 
(f(X)) is divided into (or covered with) t intervals that 
overlap on p percentage of their length (Fig.  1B). For 
instance, if f (X) = [0, 1] , t=4 and p=20%, the coverage 
will consist of the following four intervals of length 5
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In the third step, for every interval I from the coverage 

of f(X) a clustering algorithm is run on the data points 
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from X having their projected values in I. The clustering 
is performed in the original space Rn . Mathematically we 
would say that the clustering is performed on the preim-
age f −1(I) = {x ∈ X |f (x) ∈ I} . As an output, for each 
interval I we obtain a collection of clusters CI

1
, . . . ,CI

m 
(Fig.  1C). Finally, the graph is constructed where each 
cluster corresponds to a single vertex. Two clusters CI

i  
and CJ

k are joined by an edge if they contain any over-
lapping data points. Mathematically, CI

i  and CJ
k are con-

nected if CI
i ∩ C

J
k �= ∅ . As the final output, we obtain a 

graph as per Fig. 1D, which could be then coloured based 
on the value of a selected attribute (e.g. survival). More 
precisely, the value of each vertex of the mapper graph 
will correspond to an average value of the attribute for 
the points in the corresponding cluster.

One may consider the Mapper algorithm as a com-
bination of dimensionality reduction and clustering. 
Unlike clustering, Mapper does not make any assump-
tion regarding the shape of data (i.e. data is dividable into 
clusters). Its aim is to visualise the shape of the data via a 
particular lens and hence it can not only detect clusters 
but also other different topological structures of the data 
like loops or flares. In comparison to existing dimension-
ality reduction/visualisation methods, Mapper also has a 
winning aspect. The clustering within the Mapper algo-
rithm is happening in the original space, which means 
that the graph highlights substructures from the origi-
nal space. This is not the case with other dimensionality 
reduction methods that suffer from precision loss (well 
separated data points in the original space may be pro-
jected close to each other).

As discussed earlier, the key challenge with applying 
the Mapper graph is the selection of its parameter val-
ues. The example in the Fig.  2 highlights that different 

choices of lens functions, for example, may provide dif-
ferent Mapper graphs. It is a natural phenomenon, as lens 
functions determine which details of the image are being 
neglected.

What are hotspots?
In this section we will build an intuition and explain 
what a hotspot is. For a given function f : D → R , a 
hotspot is a small, connected and compact sub-region 
D′ of the domain D on which f has considerably lower, 
or considerably higher values than in the neighbour-
hood of D′ . As an example of this simple case, consider 
the domain D = [−10, 10] and the normal distribution 
with an average 0 and standard deviation 1 as presented 
in Fig.  3. A region of the domain close to the mean 
value of the distribution, for instance D′ = [−1, 1] , is a 
hotspot, as the values therein are considerably higher 
than in a further neighbourhood D′ . Note that it is dif-
ficult to precisely define the range of hotspot. In this 
study we will make it dependant on certain parameters.

This leads us to consider how a hotspot may be in 
a continuous setting; we need to locate a point x ∈ D 
and two neighbourhoods Nx

s  and Nx
l  where Nx

s ⊂ Nx
l  

such that the averaged value of f in Nx
s  is considerably 

larger or smaller than the averaged value of f on Nx
l  . 

This intuition works well provided we can effectively 
locate neighbourhoods of points in the domain D. In 
our case, the space D is modelled by a Mapper graph. It 
is important to note that two data points that are con-
sidered to be close to each other on the Mapper graph, 
may be far away from each other in Euclidean sense 
(i.e. for two data points that are close according to the 
Mapper graph, the Euclidean distance between them 
may be high).

Fig. 1 Simple workflow of the Mapper algorithm. A Data points are projected via a lens function. B The projected values are divided 
into overlapping intervals. C Clustering is carried out within each interval. D A graph is built on the clustering
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As demonstrated by aforementioned literature [6, 
8–10], hotspot detection is a critical task in preci-
sion medicine, focusing on identifying regions or sub-
sets of data that exhibit significantly higher activity 
or frequency of a specific event, such as overall sur-
vival, genetic mutations, or adverse drug reactions. By 
identifying regions or populations with elevated risks 
or specific characteristics, hotspot detection could 
facilitate early diagnosis, tailored treatments, effi-
cient resource allocation, and effective public health 
interventions.

Methods
The purpose of our algorithm is to search for unu-
sual small regions (hotspots) within a given dataset. 
We define a hotspot as a relatively small region of the 

considered space with the values of the function of 
interest being considerably different than in the neigh-
bourhood of the region. The hotspot searching algo-
rithm is applied on a constructed Mapper graph. In this 
context, we define hotspots as structurally connected 
and homogenous community of nodes that present het-
erogeneous behaviour with respect to a characteristic 
of interest (e.g. survival) in the context of the surround-
ing neighbourhood nodes. During Mapper parameter 
selection, different lenses considered by the user can 
produce alternate perspectives on the underlying shape 
of the input data and this results in multiple different 
graph outputs, as shown in Fig.  2. Our algorithm can 
explore the space of possible Mapper graphs that can be 
obtained from the input data at hand to find a combina-
tion of parameters (if exists), which reveals the existence 
of a hotspot of interest. The algorithm allows the user 
to inspect diverse perspectives of the graph space for a 
hotspot by sampling different lenses, and subsequently 
the two parameters covering the lens (the number of 
intervals t and the overlap p). The clustering settings 
(i.e. clustering algorithm and its parameters) are not 
considered in the searching process but could also be 
incorporated. The algorithm runs in three stages, which 
are (1) Construction of the Mapper graph, (2) Commu-
nity detection and (3) Community classification. We 
describe each of the steps in the following subsections. 
The pseudo-code of the hotspot detection stages (2 & 3) 
is presented in Algorithm 1.

Fig. 2 Example of two Mapper graph constructions. Consider the blue set of dense data points. We consider two possibilities of the lens functions: 
f and g. The appropriate pullbacks and clustering provide the Mapper graphs on the left (for the function f) and in the bottom (for the function g)

Fig. 3 A normal distribution. The region of the domain close 
to the centre of the plot represents a hotspot of considerably higher 
values
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Algorithm 1 Hotspot detection algorithm

Construction of the Mapper graph

We propose to construct a Mapper graph by automati-
cally sampling the parameter space and using the hotspot 
detection algorithm to evaluate graphs for the pres-
ence of anomalous nodes. We consider different ranges 
of values for the number of intervals and the overlap 
parameters. Those could be predefined by the user. In 
our implementation we consider the most intuitive and 
commonly used values (“Breast cancer dataset” section). 
For the lens function we propose to consider a random 
linear combination of all possible features with at most 
50% of coefficients being non-zero. Mathematically, for 
a given set of n−dimensional data points X ⊂ R

n where 
x = (x1, . . . , xn) ∈ X a lens function is calculated as per 
Eq. 1.

where values of coefficients αi are either set to zero 
or are randomly uniformly sampled from an interval 
[−2.5, 2.5] . Note that those lens functions are Lipschitz 
continuous and the presented process may be viewed as 
feature selection. To allow for significant feature reduc-
tion, we only consider a subset of the number of features 
for each lens function. The randomly selected subset of 
features is different for every lens function, by defining a 
zero-value weight for the rejected features and a unique 
randomly sampled non-zero weight for the selected ele-
ments. Therefore within a single search, a lens function 
is generated with new weights and hence a new subset of 

(1)f (x) = α1x1 + α2x2 + . . .+ αnxn
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non-zero features. Pre-selection of informative variables 
can also be carried out on the input point cloud prior to 
the construction of the lens function. For a combination 
of a function from the lens space and the values of t and 
p, a Mapper graph G is constructed. Following construc-
tion of the graph, the hotspot detection algorithm is exe-
cuted in two following steps.

Community detection
In the first step, the algorithm searches for non-inter-
secting connected components of G that are homo-
geneous with respect to an attribute of interest Â 
(e.g. survival), considered as communities of vertices. 
Each community will further be classified as hotspot 
or non-hotspot. Note that there are cases when those 
regions are not uniquely defined. Therefore, we chose 
any subset that satisfies the internal homogeneity cri-
teria. The process runs as follows; Given G, vertices 
are assigned an average value of an attribute function 
Â (e.g. survival time) - the average is calculated given 
vertex v as per Eq. 2.

Following this, we define a function on edges, F ′ , cap-
turing gradient of Â over the edges of the graph. The 
value of F ′ for an edge is calculated as the absolute dif-
ference in Â between its two connecting vertices, as 
shown in Eq. 3.

Function F ′ can be consider as a distance function 
between two vertices. We assume that distance from 
a vertex to itself is equals to zero ( ∀v∈V F ′(v) = 0 ). In 
the next step single linkage clustering is performed on 
vertices from G using F ′ as the distance function. Con-
sequently, two vertices connected by an edge with simi-
lar Â values will merge quickly, as the value of the edge 
will be small. Given two vertices joined by an edge with 
very different values of Â , the edge joining them will 
appear late in the merging process. The cut-off point 
in the dendrogram, determining the parameter τ is cal-
culated as the largest difference between the histogram 
edge value rankings (i.e. the largest distance between 
horizontal branches in the dendrogram). This cut-off 
selects clusters of components containing homogenous 
vertices connected over longer timespans in the den-
drograms. The output of community detection is a set 
of communities C̃ = {C1, . . . ,Cn} of interconnected ver-
tices within G which are homogenous in consideration 
to Â.

(2)Â(v) =
1

|v|

∑

x∈v

A(x)

(3)∀<vi ,vj>∈E F
′(< vi, vj >) = |Â(vi)− Â(vj)|

Community classification
In the final step, each community is checked against a set 
of conditions to assess whether it constitutes a hotspot or 
not. Community classification ensures hotspot size and 
neighbourhood heterogeneity meets user-defined thresh-
olds. The size S of the community group corresponds to 
the number of samples contained within its vertices. The 
hotspot size must be larger than a predefined minimum 
sample size σ1 . We assume that if a community Ci is very 
small then it should be considered as an outlier rather 
than a hotspot. At the same time for a community to 
be a hotspot it should be proportionally smaller than its 
neighbourhood. We propose that the difference between 
the size of a hotspot Ci and its neighbourhood NCi is 
larger that the median absolute deviation of all identified 
communities ( S(C1), . . . , S(Cn) ). Simultaneously, the dif-
ference in Â between the hotspot and the neighbourhood 
(all other connected vertices within the graph) must be 
greater than a pre-defined parameter ǫ . This ensures hot-
spots only occur within the extreme ranges of the attrib-
ute function and provide flexibility in the definition of an 
anomalous subgroup. We assume that ǫ and σ1 should be 
set by the user as they strongly depend on the domain 
and F ′ . The community classification step follows for 
each Ci ∈ C̃ : 

1. Consider the neighbourhood NCi as the collection of 
remaining vertices in C̃ which are not found within Ci

2. Calculate size S(Ci) and S(NCi) as the number of 
samples n contained in the vertices of Ci and NCi , 
respectively

3. Calculate Â(Ci) and Â(NCi) as the mean value of Â 
across all vertices within Ci and NCi respectively.

4. Calculate σ2 as median absolute deviation of 
S(C1), . . . , S(Cn)

5. If S(Ci) < σ1 or S(NCi)− S(Ci) < σ2 then classify 
Ci as a non-hotspot. This restricts the search to hot-
spots that lie in the lower range of community sizes 
and ensures the hotspot does not cover a large pro-
portion of the graph.

6. If |Â(Ci)− Â(NCi)| > ǫ then Ci is considered as a 
hotspot. Otherwise Ci is classified as a non-hotspot.

The complete hotspot detection algorithm is sum-
marised in Algorithm 1. There are two parameters that 
need to be specified by the user. The first determines 
the minimum size of a hotspot, and the second deter-
mines the minimum difference in the attribute of inter-
est between the hotspot and its neighborhood. It is 
important to note that these parameters are domain- 
and problem-specific. Their values are typically intui-
tive for the user, who is likely a domain expert (e.g., a 
clinician). In contrast, selecting a lens function and 
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the two cover parameters of the Mapper algorithm is 
a challenging task, even for individuals with techni-
cal knowledge and understanding of the algorithm, 
let alone users from the medical domain. Therefore, 
replacing the selection of Mapper parameters with 
these two domain-specific parameters makes the algo-
rithm significantly more clinically applicable.

Data and implementation details
Two circles dataset
In our first experiment, we applied our hotspot detec-
tion algorithm to a simple toy dataset consisting of 
5000 samples and two features, which forms the shape 
of two concentric circles (Fig. 4). We artificially labelled 
a portion of samples as Class 1, representing 8.1% of 
the samples ( n = 405 ) in the outer ring. The remaining 
91.9% samples are classified as Class 2.

We searched for a hotspot by sampling from the 
parameter space. Lens functions were generated as 
described in “Construction of the Mapper graph”  sec-
tion. Both features were assigned non-zero weights 
during lens generation as we did not perform feature 
selection due to the small size of the dataset. Intervals 
values across the range of [5,10,15,20,25] and an over-
lap percentage of [40%, 60%, 80%] were considered. The 
agglomerative hierarchical clustering algorithm with 6 
clusters and ward’s linkage was used to build the graph 
[21]. The hotspot detection algorithm parameters were 
set to ǫ = 0.5 and σ1 = 30 . We set the attribute func-
tion as Class 1 labels to search for a hotspot containing 
a higher proportion of Class 1 samples.

Breast cancer dataset
For the second experiment we used two breast can-
cer tumour gene expression datasets that had detailed 
clinicopathological annotation, namely the Molecular 
Taxonomy of Breast Cancer International Consortium 
(METABRIC) and The Cancer Genome Atlas (TCGA) 
breast cancer dataset [22, 23]. We divided the datasets 
into a discovery (METABRIC) and a validation (TCGA) 
set. To pre-process both datasets for analysis with Map-
per we performed DSGA-transformation, a method 
which subsets a selection of genes highlighting the devia-
tion of disease from a healthy phenotype and previously 
shown to improve the distinction of subgroups in breast 
cancer when combined with the Mapper algorithm [10, 
11]. A dataset of gene expression from healthy breast 
tissue obtained from the Genotype-Tissue Expression 
(GTEx) data repository was used as the healthy state 
model during DSGA processing [24]. Detailed descrip-
tions of data accession and preprocessing steps are 
provided in S5 File. DSGA-transformation with gene 
thresholding produced a gene expression matrix of 575 
genes.

As per the steps of the proposed algorithm, different 
combinations of Mapper parameters were used to con-
struct Mapper graphs which were interrogated for the 
presence of a hotspot. For each combination of param-
eters, if a hotspot was not present, the graph was rejected 
and new parameters values were generated. Lenses 
were generated from a linear combination of features 
specifying at most 50% of the αi weights as non-zero, as 
described in “Construction of the Mapper graph”  sec-
tion, to allow us to modify the weighted effect of each 
gene across a search while simultaneously acting as a 
feature reduction technique. The interval range was 
set between 10 and 30 by increases of 2 and the overlap 
range between 10% and 45%, over increases of 5%. Pair-
wise combinations of intervals and overlap culminated in 
88 combinations. For a generated lens, graphs were built 
for every parameter pair with the objective of identifying 
a hotspot. Euclidean distance was used to calculate the 
distance between two samples. The HDBSCAN [25] clus-
tering algorithm was implemented with default parame-
ters. The attribute function was defined as the occurrence 
of relapse before 10 years, colouring the nodes of the 
graph. In addition to the proposed lens function, we also 
evaluated a number of dimensionality reduction meth-
ods commonly applied as lens for the Mapper algorithm: 
Principle Component Analysis [26] (extracts the most 
significant axes (principal components) that capture the 
largest variance in the data) and UMAP [27] (reduces 
high-dimensional data into 2D or 3D embeddings that 
preserve local or global similarity), t-SNE [28] (reduces 
dimensions by preserving the local relationships between 

Fig. 4 Toy dataset. Two disconnected circles with an artificially 
predefined hotspot highlighted in yellow
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data points) and Isomap [29] (reduces dimensions by pre-
serving the global geometric structure of data), applying 
one of the reduced dimensions as the lens.

When a graph was generated the hotspot detection 
algorithm searched for a hotspot presenting high occur-
rence of relapse before 10 years in relation to the neigh-
bourhood. To define our attribute function, samples were 
labelled as either ‘1: Relapse occurs before 10 years’ or ‘0: 
No relapse before 10 years’. The minimum sample size for 
a hotspot was set at 30 patients and ǫ was defined as 0.1, 
searching for hotspots with high occurrence of relapse 
before 10 years. An ǫ value of 0.1 corresponds to a 10% 
difference in the proportion of samples in the commu-
nity cluster experiencing a relapse event in relation to 
the neighbourhood. Log-rank test were performed for 
any hotspots, thresholding significance at P < 0.05 , com-
paring the 10-year relapse-free survival (RFS) of hotspot 
patients against the neighbourhood patients. If more 
than one hotspot were present for a generated lens, hot-
spots were ranked by log-rank p-value and the hotspot 
group with the strongest difference in survival outcome 
was selected for further analysis. It should be noted that 
instead of selecting just one hotspot based on the log-
rank p-value, the hotspots can be analysed collectively 
instead. The Kaplan-Meier method was used to compare 
RFS for the successful hotspot against the corresponding 
neighbourhood group. When a hotspot was identified as 
significant for a lens function, the search ended and no 
more lens fuctions were considered.

Following a successful discovery of a hotspot, we 
searched for the presence of a similar hotspot group in 
an independent breast cancer dataset to validate our 
methodology. We performed an automated search for 
hotspots on the validation dataset, using the same lens 
function found in the successful METABRIC hotspot 
search. Note that because the data came from different 
sources we allowed for different values of the other two 
parameters (i.e. intervals number and overlap) to be con-
sidered for the validation dataset. As the values ranges 
may differ between the two datasets it may not be pos-
sible to obtain the same hotspot for the exact same values 
of those parameters. The hotspot detection parameters 
were kept the same. For all interval and overlap combi-
nations containing a hotspot, the RFS of hotspot groups 
and their neighbourhoods were compared by log-rank 
tests and ranked by p-value. The hotspot group with the 
strongest difference in survival outcome was selected as 
the TCGA hotspot group and Kaplan-Meier analysis was 
performed comparing the confirmed TCGA hotspot and 
its neighbourhood group. The similarity of the valida-
tion hotspot group to the discovery hotspot group was 
investigated. The centroid of the METABRIC hotspot 
class was calculated according to the genes identified in 

the lens function. The distance of TCGA patients to this 
centroid was measured using Canberra distance. Can-
berra distance was chosen as it is sensitive to values close 
to zero, hence it is well suited for DSGA-transformed 
z-score values of gene expression. The validation Mapper 
was coloured by the distance of each patient to the cen-
troid, confirming the validation hotspot group represents 
patients with the highest similarity in gene expression to 
the discovery hotspot group.

Results
The hotspot detection algorithm can be used in conjunc-
tion with the Mapper algorithm to identify a hotspot of 
interest in a graph and simultaneously perform automatic 
parameter selection. To demonstrate this we initially 
apply our methodology to an artificial exemplar dataset. 
Following this, we implement the hotspot detection pipe-
line using a real world case study of subgroup discovery 
in cancer research.

Two concentric circles
A successful lens function was identified, weighting the 
x-axis by 0.747 and the y-axis by −0.827. Five covers of 
the lens function were found to contain a hotspot and 
these five combinations of interval and overlap values 
were ranked by the proportion of Class 1 samples pre-
sent. The final parameter combinations were 25 intervals 
with 80% overlap (Fig. 5A). The final hotspot is contained 
in nodes [129, 130, 133, 134, 137, 140, 141, 111, 143, 145, 
115, 116, 148, 121, 123, 124, 126], highlighted in Fig. 5B. 
It can be noted from the dendrogram in Fig. 5C that two 
community clusters were detected (coloured as orange 
and green) in the outer circle of the graph. No hotspots 
were identified in the Mapper graph component built on 
the inner circle of the dataset. The hotspot contains 98% 
of the original Class 1 samples, achieving an f1-score of 
0.979 (Fig. 5D).

Investigating relapse in oestrogen‑positive breast cancer
We applied our algorithm firstly to a discovery cohort of 
ER+ patients, searching the parameter space for a lens 
function that can construct a Mapper graph containing 
a hotspot (representing a cluster of patients with poor 
prognosis). Following this, we show that the identified 
lens function can build a Mapper graph containing a 
similar hotspot subset of patients in an independent vali-
dation cohort. The molecular and clinical profile of the 
hotspot subset present in both datasets is investigated.

Discovery analysis in METABRIC cohort
The algorithm was applied on the METABRIC dataset 
of 1429 ER+ breast cancer patients. Our search identi-
fied a lens function with 222 non-zero weighted genes 
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which led to a Mapper graph containing a hotspot. These 
genes and their corresponding weights are listed in S1 
Table. The Mapper graph is visualised in Fig. 6A. Param-
eters for the final Mapper graph were selected based on 
the top-ranking hotspot according to survival outcome, 
set at 24 intervals with 10% overlap ( P = 0.006 ) (Fig. 6C). 
We were not able to identify a hotspot when any of the 
four dimensionality reduction methods (i.e. PCA, UMAP, 
i-SNE, Isomap) were applied as the lens function. This 
highlights the importance of the lens searching strategy 
proposed in the paper.

The graph split into four clusters according to sur-
vival outcome (Fig. 6B). A hotspot was present in node 
2, shown in Fig. 6A Mapper graph (Table 1). This node 
represented a cluster containing 39 patients (2.73% of 

the cohort) and the survival probability of these indi-
viduals living relapse-free until 10 years is 41% com-
pared to a survival probability of 65% for the rest of the 
cohort. The clinicopathological characteristics of the 
METABRIC hotspot patients are provided in S2 Table.

Fig. 5 Visualisation of the proposed hotspot detection algorithm for a toy dataset. A The Mapper algorithm outputs two graph components 
corresponding to each circle of the graph. Nodes are coloured by the attribute and labelled from 0 to 149. Node size reflects the number of samples 
in a node. B The identified hotspot is highlighted in red in the Mapper graph. Nodes are unlabelled. C Dendrogram representing the output 
of the single linkage algorithm performed on the nodes of the Mapper component corresponding to the outer circle from Fig. 4 in the community 
detection phase. Two community clusters are present and node labels are coloured by average attribute value on the x‑axis. The dendrogram 
is truncated to improve visualisation due to the large number of nodes with zero‑value edge weights in the graph. D The confusion matrix 
comparing the samples contained in the hotspot to the samples originally labelled as Class 1

Table 1 Hotspot detection results

METABRIC TCGA 

Node label 2 1

Hotspot sample size 39 30

Neighbourhood sample size 1390 760

Hotspot survival probability 41% 54%

Neighbourhood survival probability 65% 59%
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Validation in the TCGA cohort
We evaluated whether the hotspot identified in the 
METABRIC dataset could be independently replicated 
by searching for the presence of a similar hotspot in 
the TCGA validation cohort of 790 ER+ breast cancer 
patients. We performed the parameter search across 
the interval and overlap range using the successful lens 
function with 222 non-zero weighted genes identi-
fied for the METABRIC dataset. The hotspot detection 
algorithm parameters were not changed.

Number of interval and percentage of overlap 
parameters were selected according to the top-ranking 

hotspot by survival outcome. The final Mapper graph 
for the TCGA cohort was set at 30 intervals with 30% 
overlap ( P = 0.04 ) (Fig.  7D). After running hotspot 
detection, one node was confirmed as the successful 
hotspot node (Fig. 7B). This node represented 19 indi-
viduals or 2.71% of the total ER+ patients. The graph 
was also coloured by the distance of the TCGA cohort 
to the METABRIC hotspot centroid across the 222 
genes identified by the lens function (Table 1 B). The 
hotspot node is confirmed as the cluster of patients 
with the highest similarity to the METABRIC hotspot 
group (Fig. 7B).

Fig. 6 Representation of the ER+ METABRIC cohort through the Mapper graph. A The Mapper graph built using parameters identified 
from the hotspot detection algorithm run on METABRIC data. Each labelled node represents a group of patients with similar gene expression. The 
node size represents the number of patients covered by it as indicated in the top right legend. The bottom right legend describes the attribute 
function colouring the graph. In this instance, this is the occurrence of relapse before 10‑years. The node identified as a hotspot is highlighted 
in red. B The dendrogram obtained from the cluster identification step of the hotspot detection algorithm. Nodes labels are coloured by attribute 
function. Node 2 is identified as a single cluster within the Mapper graph. C Kaplan‑Meier curve differentiating RFS outcome in months 
between the hotspot group and the neighbourhood group of patients
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Molecular and clinical profile of the hotspot group
Breast cancer tumours can be classified into intrinsic 
subtypes, including luminal A, luminal B, HER2, basal, 
claudin-low, and normal-like based on gene expres-
sion. These subtypes are associated with differences in 
patient survival [30, 31]. In the METABRIC dataset, six-
teen tumours in the hotspot were classified as Luminal 
A and ten tumours as Luminal B. The remaining thirteen 

tumours were Claudin-low (six patients), Her2 (three 
patients), and two patients each to the subtypes Basal 
and Normal-like. There was no evidence on an associa-
tion between tumour intrinsic subtype and the hotspot 
subgroup (chi-square P = 0.29 ). Similarly in the TCGA 
dataset, no association was found between tumour 
intrinsic subtype and the hotspot subgroup (chi-square 
P = 0.07).

Fig. 7 Representation of the ER+ TCGA cohort through the Mapper graph. A The Mapper graph built on the TCGA data using the lens function 
of 222 genes identified from the hotspot detection algorithm results for the METABRIC data. Each labelled node represents a group of patients 
with similar gene expression. The node size represent the number of patients covered, indicated in the top right legend. The bottom right legend 
describes the attribute function colouring the graph, which is the occurrence of relapse before 10‑years. Hotspot detection identified highlighted 
in red as a hotspot. B Mapper graph coloured by the distance of TCGA patients to the METABRIC hotspot centroid according to the 222 lens 
function genes. C Kaplan‑Meier curve differentiating OS survival outcome in months between the hotspot group and the remaining ER+ cohort
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We investigated the underlying biology of the hot-
spot. There were 5,227 unique differentially expressed 
genes in the METABRIC dataset and 1,197 significant 
genes in the TCGA dataset, of which 694 were present 
in both (Fig.  8A). Pathway enrichment was performed 
for the shared enriched gene set of 694 genes. Pathway 
enrichment results for the shared gene list can be found 
in S3 Table. 63 pathways were significant and 483 genes 
(70.1%) from the input list are present in at least one 
pathway and the results are visualised in Fig. 8B.

Discussion
Our hotspot detection algorithm successfully identified 
graphs containing homogenous communities of nodes 
within the Two Circles dataset. When applied to gene 
expression data of ER+ breast cancer patients, a lens 
function was constructed and appropriate parameters 
were identified to generate a Mapper graph containing a 
hotspot. This hotspot highlighted a group of ER+ patients 
with poor prognosis and characteristic patterns of gene 
expression, subsequently confirmed in an independent 
breast cancer dataset. We compared the composition of 
the hotspot group from existing classifications available 
for breast cancer samples. The identified patient group 
was not represented by any of the well-known PAM50 
subtypes, which are important indicators of prognostic 
status according to a 50-gene signature assay [32]. Our 
hotspot detection algorithm identified the presence of a 

subgroup with high occurrence of relapse representing 
2.73%- 3.79% of ER+ tumours, which cannot be assigned 
to existing PAM50 subtypes. This indicates that the hot-
spot detection algorithm carries out refined stratifica-
tion of a complex disease. The discovery hotspot persists 
over several interval and overlap parameter selections for 
the identified lens function. While these parameters can 
introduce deformations to the graph clustering, the reoc-
currence of the hotspot group over several parameter 
perturbations reduces the likelihood of the hotspot being 
a random artefact.

The validity of our approach is further confirmed by 
replicating results in the validation dataset. For this 
analysis, a Mapper graph was built on TCGA data using 
the identical lens function identified from the discov-
ery algorithm search (Fig. 7A). We separated a group of 
patients with the highest similarity in gene expression to 
the METABRIC hotspot group (Fig. 7B) and poor prog-
nostic outcome (Fig. 7C). This confirms the relevance of 
the hotspot group in wider breast cancer datasets and 
the importance of the identified gene signature for dif-
ferentiation of the poor prognostic group from the ER+ 
cohort. The molecular profile of the hotspot groups was 
additionally investigated to identify why this group of 
patients was clustered independently from the other ER+ 
patients. Differential expression analysis identified 694 
shared genes differentiating the METABRIC and TCGA 
hotspot group. This gene list was significantly enriched 

Fig. 8 Pathway analysis results for the hotspot group. A Comparison of differentially expressed genes shared between the METABRIC and TCGA 
hotspot group. B Biological pathways over‑represented in the shared gene set of 694 differentially expressed genes. The y‑axis represents 
the identified pathways and the x‑axis corresponds to the number of genes from the gene set involved in that pathway. Bars are coloured 
by the significance value
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in 63 pathways, described in S3 Table, many of which are 
linked to tumour progression and development in breast 
cancer and novel areas of therapeutic treatment within 
the literature.

Selecting appropriate parameters of the Mapper’s algo-
rithm that will reveal a subgroup is a time-consuming 
process for current users, particularly researchers in 
bioinformatics without extensive knowledge in TDA. 
The introduction of an evaluation method to assess the 
quality of the graph according to how it stratifies a cohort 
into subgroups can improve the application of Map-
per for subgroup discovery in precision medicine. Carr 
et  al., 2021 demonstrate how homogenous subgroups 
of patients can be identified as node clusters compos-
ing interesting topological features, such as flares [20]. 
In this paper and further demonstrated by Iniesta et. al, 
2022 [33], Mapper graphs for different parameter combi-
nations are ranked by the impurity of clusters according 
to a variable of interest to compare homogeneity of clus-
ters. Our hotspot detection algorithm similarly evaluates 
parameter combinations for the Mapper graph and dis-
criminates graphs which contain homogenous clusters 
of patients representing a subgroup of interest. However, 
our method differs substantially as we define the concept 
of a subgroup as a smaller sub-region of the graph that is 
heterogenous relative to its neighbourhood. Our concept 
of a cluster in the graph is not necessarily distinguished 
by the structure of the graph, but by the relationship 
between the cluster and neighbourhood of the cluster 
characterized by the attribute of interest.

Conclusions and future work
We have presented an automated process of hotspot 
detection using topological data analysis which can 
stratify genomic data to highlight biologically impor-
tant groups of patients. Our method augments the TDA 
technique Mapper by automatically detecting clusters of 
anomalous patients in the graph in consideration to an 
attribute of interest. The lens function, number of inter-
vals, and percentage of overlap parameters influence the 
mapping of the original dataset to the graph representa-
tion and can generate numerous graph outputs. The hot-
spot detection algorithm supports automatic selection 
of values for these parameters by evaluating graphs for 
hotspots. The algorithm allows the user to investigate a 
specific research question for subgroup discovery. We 
demonstrated this application by focusing our search 
on groups of individuals experiencing high prevalence 
of survival events to find a group of ER+ breast cancer 
patients with poor prognosis. This approach improved 
the applicability of the Mapper method and made it eas-
ier to be used in clinical settings by reducing the require-
ments for an intensive manual search of parameters. 

Simultaneously, the method filters a high dimensional 
collection of genes to a small gene signature containing 
biologically relevant information. Our new algorithm 
provides a refined approach to discriminate sub-types 
within heterogenous diseases while simultaneously 
simplifying the application of the Mapper algorithm in 
exploratory data analysis for bioinformatics.

As an extension of this study, we recognise the impor-
tance of evaluating the generalisability of our proposed 
algorithm across a broader range of cancer types and 
datasets. While this paper focuses on demonstrating the 
novelty of our method and its utility through the discov-
ery and comprehensive validation of a novel hotspot in 
breast cancer, future work will involve applying the algo-
rithm to additional cancers, leveraging datasets such as 
TCGA, which provides multi-omics and clinical data 
across a wide variety of cancer types. This will allow us 
to assess whether the identified subgroups exhibit sig-
nificant prognostic differences across different cancers 
and explore their alignment with established clinical and 
molecular subtypes. By undertaking such analyses, we 
aim to validate the broader applicability of the algorithm 
and further demonstrate its potential as a robust tool for 
cancer subtyping and precision medicine.

We would further like to expand the hotspot detection 
method to support the integration of multiple datatypes, 
as the collection of multi-omics datasets is ever increas-
ing in bioinformatics. Collating data from several sources 
can achieve more accurate cancer prognosis prediction 
by providing a systems-level overview of the different 
levels of biological relationships driving disease [34]. The 
impact of the described pathways needs to be investi-
gated further to confirm a causal relationship between 
the survival outcome and disrupted pathway events.
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