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Abstract 

Background Understanding the causal relationships between clinical outcomes and environmental exposures is crit-
ical for advancing public health interventions and personalized medicine. These causal relationships can be applied 
to augment medical decision-making or suggest hypotheses for healthcare research. In this study, we applied a causal 
inference algorithm to an EHR dataset on patients with asthma or related common respiratory conditions (N = 14,937).

Methods The EHR data were accessed via an open service named the Integrated Clinical and Environmental Service 
(ICEES). A multivariate feature table was extracted that included integrated data on features representing demo-
graphic factors, clinical measures, and environmental exposures; namely, sex, race, obesity, prednisone use, airborne 
particulate matter exposure, major roadway/highway exposure, residential density, and annual number of emergency 
department (ED) or inpatient hospital visits for respiratory issues, which we used as a proxy for asthma attacks. We 
estimated underlying causal relationships from the data by applying a Principal Component algorithm to identify 
significant causal relationships between the extracted features and asthma attacks. We also performed simulated 
interventions on the inferred causal network to detect the causal effects, in terms of shifts in the probability distribu-
tion for annual ED or inpatient hospital visits for respiratory issues.

Results We found that obesity and prednisone were causally related to annual ED or inpatient visits in our causal 
inference model, and sex and race were indirectly related to annual ED or inpatient visits via a causal relationship 
to obesity. We further found that interventions in which all patients are simulated as obese or using prednisone (but 
not female) caused a shift to the right in the probability distribution of annual ED or inpatient visits for respiratory 
issues, thus supporting the results of our causal analysis, which demonstrated direct effects of obesity and prednisone 
(but not sex) on asthma attacks.

Conclusions We successfully applied a causal model to the open ICEES service and identified direct causal relation-
ships between prednisone and obesity on the frequency of asthma attacks, with indirect effects of sex and race 
by way of obesity. Our simulated interventions provided further support for our causal analysis by demonstrating 
a shift to the right in the probability of asthma attacks with interventions that assume all patients are using pred-
nisone or obese.
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Background
Causal inference [1–3] is an important tool in the domain 
of health sciences for informatics work such as finding 
causal effects of an adverse outcome or risk factors for 
a disease. Causality has traditionally been a core con-
cept across all branches of medical science and consid-
ered when diagnosing patients based on their symptoms, 
effects of treatment, and years of historical evidence [4]. 
Indeed, the study of causal inference in health science 
research dates back to the 1970s and 1980s [5, 6]. Yet, 
non-causal models such as regression tend to be more 
commonly applied in health science research than causal 
models [7]. The goals and philosophy of causal inference 
differ from those of association-based predictions in sev-
eral ways. For instance, with predictive models such as 
regression, one wants to measure the likelihood of occur-
rence of an event as a result of another event; for exam-
ple, the occurrence of lung cancer based on exposure to 
smoke in the environment. However, such predictions 
may be subject to confounding; for instance, a researcher 
may find that a regional increase in the sale of matches is 
associated with lung cancer, but not necessarily causally 
associated if, for example, the association actually reflects 
a regional increase in match sales due to frequent black-
outs, with a secondary unrelated association related to 
lung cancer and perhaps attributable to exposures such 
as workplace chemical exposures or lack of healthcare 
access. Most predictive models, unlike causal inference 
models, do not readily account for confounding vari-
ables and hence cannot differentiate causal versus spuri-
ous associations. Another aspect of causal inference that 
differentiates it from non-causal models is the ability to 
provide an explanation for the relationship between two 
events. For instance, causal inference can help to discern 
why a patient is sick and diagnose them or identify medi-
cations to treat them based on the underlying cause of 
their symptoms.

Electronic health records (EHRs) provide a poten-
tial source of structured clinical data such as diagno-
ses, medications, and laboratory results. Access to EHR 
data is thus critical for the advancement of health sci-
ence research and clinical research. However, the many 
federal and institutional regulations that surround clini-
cal data, while necessary to ensure patient privacy and 
protection of sensitive data, limit access to the data for 
research. In this study, we analyzed a patient-level data-
set extracted from a regulatory-compliant open service 
called the Integrated Clinical and Environmental Expo-
sures Service (ICEES) [8]. ICEES supports several use 
cases, including asthma, drug-induced liver injury, and 
coronavirus infection. The ICEES data are constructed 
by integrating clinical data elements derived from patient 
EHRs and environmental exposures data derived from a 

variety of public sources of environmental exposures data 
[9]. The data are then binned and de-identified by strip-
ping all protected health information per the Safe Harbor 
method of the Health Insurance Portability and Account-
ability Act. The ICEES data are then exposed via an open 
application programming interface (OpenAPI). For our 
principal application use case, we focus on an existing 
ICEES cohort of patients with asthma or a related com-
mon pulmonary disorder (see [8] for details). We asked if 
there is a causal relationship between asthma attacks and 
the following features: sex, race, prednisone use, diagno-
sis of obesity, residential proximity to a major roadway 
or highway, residential density, and exposure to airborne 
pollutants. We focus on these features because published 
studies, including our prior work [8–10], have recog-
nized one or more of them to be associated with asthma 
attacks. We consider the number of annual emergency 
department (ED) or inpatient hospital visits for respira-
tory issues as the primary outcome measure and indica-
tor of asthma attacks, as we have done previously. We 
first generate a causal inference network. We then dem-
onstrate simulated external interventions as an approach 
to validate the inferred causal network. We use subject 
matter expert knowledge and publication support as our 
ground truth to measure the correctness of our causal 
inference model. Finally, we discuss our findings, includ-
ing the benefits and limitations of our causal inference 
model and approach.

Methods
Generation of multivariate ICEES table
We focused on an existing ICEES cohort of patients with 
asthma or another common pulmonary disorder and 
examined outcomes over a one-year study period (see 
[8] for details on the inclusion and exclusion criteria). In 
brief, the patients were included if they had at least one 
diagnosis of asthma and/or another common respira-
tory disorder, had a prescription or administration of a 
drug typically used to treat asthma and/or other com-
mon respiratory disorders, or had frequent ED visits dur-
ing which an albuterol nebulizer was administered. The 
majority of patients included in the final dataset were 45 
years of age or older, female, non-Hispanic white, and 
residing in a rural region.

We asked if there is a causal relationship between 
asthma attacks and the following features: sex, race, 
prescriptions for prednisone use, diagnosis of obesity, 
residential proximity to a major roadway or highway, 
residential density, and exposure to high levels of air-
borne pollutants. We selected these features because 
published studies, including our prior work [8–10], have 
recognized one or more of them to be associated with 
asthma attacks. The racial categories were self-reported, 
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as defined according to our hospital’s EHR system, and 
included to capture potential racial disparities for further 
investigation into whether those are related to socioeco-
nomic conditions, healthcare access, or other factors. We 
defined “asthma attacks” based on the annual number 
of ED or inpatient visits for respiratory issues. This is an 
acceptable clinical proxy for asthma exacerbations, one 
that we have applied successfully in prior work [8–10].

We queried the ICEES OpenAPI to generate a mul-
tivariate table. We focused on eight ICEES feature 
variables, namely, TotalEDInpatientVisits, Sex, Race, 
Prednisone, Obesity, PM2.5 Exposure, RoadwayExpo-
sure, and EstResidentialDensity, and TotalEDInpatient-
Visits, as defined in Table  1. The majority of patients 
did not have any ED or inpatient hospital visits over the 
one-year study period and were not active in the year of 
interest (data not shown), meaning that their EHR did 
not indicate any healthcare utilization. This finding was 
expected, but it introduced a skew in the distribution of 
TotalEDInpatientVisits, with the vast majority of patients 
grouped as TotalEDInpatientVisits = 0. To minimize 
the skew, we applied the filter “Active_In Year” before 
extracting the multivariate table, with Active_In_Year 
= 1 to select only patients who were active in 2010. In 
Fig. 1, we show the distribution of TotalEDInpatientVis-
its among the discrete categories of each feature variable 
after applying the Active_In_Year filter. With the Active_
In_year filter in place, the distribution of TotalEDInpa-
tientVisits indicated that most patients who were active 
in year 2010 visited the ED or had an inpatient hospital 
visit at least one time over the year of interest. There was 
an imbalance in TotalEDInpatientVisits across levels 
for some feature variables such as Prednisone, Obesity, 
Race, RoadwayExposure, and PM2.5Exposure. The final 
multivariate table in this work comprised data on 14,937 
patients (i.e., rows represented individual patients in the 

asthma cohort, and columns represented feature vari-
ables). Figure 1 shows the number of TotalEDInpatient-
Visits across each level of the feature variables.

Evaluation of feature importance
We evaluated the importance of each feature using a 
tree-based machine learning model: random forest. The 
random forest analysis was conducted to provide a com-
parison with the causal network analysis. We leveraged 
the caret R package [11] to evaluate the feature impor-
tance. We controlled the parameters for training by using 
the repeatedcv method to divide our dataset into ten-
folds cross-validation and repeated three times.

Causal network analysis
Most of the naturally occurring trends that we come 
across are simply passive observations of events occur-
ring in the world that are either coincidental or unex-
plained associations. For example, statements like 
“drinking beer everyday increases the chance of prostate 
cancer” are common in the news and scientific report-
ing and in our day-to-day personal beliefs. These asso-
ciations can be easily mistaken as causation, making us 
susceptible to logical fallacies without knowing the real 
underlying cause. Causal inference is the science of dis-
tinguishing cause from effect [1–3]. It is an important 
field of research because it helps us eradicate spurious 
correlation [12–14]. The primary aim of inferring causal 
relations from data is to discover interactions between 
different entities in the form of Vi → Vj , where Vi and Vj 
are observable features in a domain and the arrow indi-
cates that the state of Vi influences the state of Vj. Causal 
inference can be either discovered through observational 
measurements (seeing) or from measurements after 
performing some external manipulation/intervention 
(doing). A causal network [1–3, 15] can be represented 

Table 1 Feature variables used to generate the multivariate table

Feature variable Variable definition and enumeration

Sex Male (0), Female (1)

Race White, Black African American, Asian, Native Hawaiian/Pacific Islander, American/Alaskan Native, Other, Unknown

Prednisone Common medication for asthma-like conditions (1 = Yes, 0 = No)

Obesity Diagnostic code for obesity anytime over ‘study’ period (1 = Yes, 0 = No)

Airborne particulate exposure Abbreviated herein as “PM2.5Exposure”. US Environmental Protection Agency estimated maximum daily exposure 
to particulate matter ≤ 2.5-microns in diameter over ‘study’ period, binned using pandas.cut

Roadway exposure Abbreviated herein as “RoadwayExposure”. US Department of Transportation estimated distance in meters from resi-
dential household to nearest major roadway or highway (1 = 0–49, 2 = 50–99, 3 = 100–149, 4 = 150–199, 5 = 200–249, 
6 =  ≥ 250 m)

Residential density Abbreviated herein as “EstResidentialDensity”. US Census Bureau American Community Survey 2007–2011 estimated 
total population [block group], binned according to US Census Bureau definitions

Emergency Department 
or inpatient visits

Abbreviated herein as “TotalEDInpatientVisits”. Total number of emergency department or inpatient visits for respiratory 
issue(s) over the ‘study’ period (0, 1, 2, 3, …)



Page 4 of 9Sinha et al. BMC Medical Informatics and Decision Making  (2025) 25:27

with a directed acyclic graph (DAG) G = (V, E), where  
V = Vi, . . . .., Vn denotes the set of features and E ∈ (V × V ) 
denotes the set of edges that are causal in nature. For a 
causal edge (Vi, Vj ), we say that Vi is a cause (parent) of 
Vj , and Vj is the resulting effect (child) of Vi. Let pa(Vi) 
denote the set of parents of Vi. The conditional probabil-
ity distribution Pi defines the probability of Vi given the 
state of its parents pa(Vi). A causal network represents a 
joint distribution P over variables V as long as it satisfies 
two main assumptions:

(a) Causal Markov assumption: Any given variable Vi 
is independent of its non-descendants, conditioned 
on all of its direct causes (parents). This implies that 
the joint distribution P(V) can be factored as:
p(V) = ∏n

i=1 pi (Vi | Pa(Vi)).
(b) Faithfulness assumption: The joint distribution 
p(V1,..., Vn) is faithful to G if every conditional inde-
pendence relation in the probability distribution P is 
entailed by the Markov assumption applied to G [16].

To reconstruct a causal graph from data, we generally 
start by finding an approximation of the graph, given V, 
and then optimize based on conditions on data. The two 
main approaches used for causal network inference are:

1. Score-based: This is based on a Bayesian scoring 
function S(G | D), which estimates the goodness-of-
fit of graph G to the data D [17], as objective func-
tions to maximize, while favoring simpler struc-
tures. The score function is usually combined with a 
search heuristic that explores the space of all possible 
graphs. Score-based methods are robust and can be 
extended to include interventional studies (if availa-
ble), but they are not scalable as network or data size 
increases.

2. Constraint-based: This method is based on estimat-
ing some of the conditional (in)dependencies in the 
distribution P from the data D by performing hypoth-
esis tests of conditional independence. Constraint 
based methods usually start with a fully connected, 
undirected graph and progressively remove edges 
whenever a new conditional independence relation 
is discovered, while satisfying the corresponding d 
separation statements.

In this work, we used a constraint-based approach 
called the Principal Component (PC) algorithm, given 
that the dataset was observational. To infer the causal 
graph from data, we learned the equivalence class of 
a directed acyclic graph (DAG) from data with the 

Fig. 1 Stacked bar chart representing the number of TotalEDInpatientVisits across each level of the feature variables. See Table 1 for feature variable 
definitions
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traditional constraint-based PC algorithm proposed by 
[15]. Given a dataset D having n features Vi,....., Vn, we 
conducted the following steps. We started with a com-
plete undirected graph given n features. We then elimi-
nated edges between variables that are unconditionally 
independent. For each pair of variables (Vi, Vj) with an 
edge between them, and for each variable Vk with an 
edge connected to either of them, we eliminated the edge 
between Vi and Vj if Vi ⊥⊥ Vj | Vk. For each pair of vari-
ables Vi, Vj having an edge between them, and for each 
pair of variables Vk, Vl with edges both connected to Vi 
or both connected to Vj, we eliminated the edge between 
Vi and Vj if Vi ⊥⊥ Vj | Vk, Vl. We continued to check inde-
pendencies conditional on subsets of variables of increas-
ing size n until there were no more adjacent pairs (Vi, 
Vj) such that there was a subset of variables of size n in 
which all of the variables in the subset were adjacent to 
Vi or adjacent to Vj. For each triple of variables (Vi, Vj, Vk) 
such that Vi and Vj were adjacent, Vj and Vk were adja-
cent, and Vi and Vk were not adjacent, we oriented the 
edges Vi––Vj––Vk as Vi → Vj ← Vk, if Vj was not in the 
set conditioning on which Vi and Vk became independ-
ent and the edge between them was accordingly elimi-
nated. We called such a triple of variables a v-structure. 
For each triple of variables such that Vi → Vj––Vk, and Vj 
and Vk were not adjacent, we oriented the edge Vj––Vk as 
Vj → Vk (i.e., orientation propagation).

We applied a causal model based on the eight feature 
variables included in our random forest analysis (section 
“Evaluation of feature importance”). We compared our 
model output with a model of expected edges based on 
subject matter expertise (e.g., a distinguished professor, 
practicing physician, and expert on pulmonary disorders) 

and the published literature [18–26]. Thus, both sources 
were used to generate a model of expected edges.

2.4 Simulated interventions.
We used the eight-feature causal model generated as 

described in section “Causal network analysis” to answer 
relevant questions through inference. To evaluate this, 
we computed the effects of interventions on features by 
modifying the network to simulate interventions. First, 
we removed undirected edges. We then learned the 
parameters of our learned causal DAG, given the network 
structure and the data. Next, we constructed a mutilated 
network to simulate a perfect intervention by setting a 
target node to a particular value. Finally, we tested the 
effects of three interventions on TotalEDInmpatientVis-
its: Obesity = 1 (all patients forced to be obese); Pred-
nisone = 1 (all patients forced to be using prednisone); 
and Sex = Male (all patients forced to be male). The 
expectations, based on the causal inference network 
developed under section “Causal network analysis”, were 
that interventions on obesity and prednisone would have 
direct effects on the number of TotalEDInpatientVisits, 
whereas an intervention on sex would not have direct 
effects. We note that while the interventions on obesity 
and prednisone are feasible, we recognize that an inter-
vention on sex is not; however, we included sex as a test 
of the causal model and our assumptions, not its realistic 
implementation.

Results
Feature importance
In our feature importance analysis using a random for-
est model, we found that Prednisone, Race, Obesity, 

Fig. 2 Relative feature importance for all features with respect to TotalEDInpatientVisits. See Table 1 for feature variable definitions
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RoadwayExposure, and PM2.5Exposure were the main 
contributing factors to asthma attacks (Fig. 2).

Causal analysis
Having completed the random forest analysis, we then 
conducted an independent causal analysis. First, we 
applied a PC algorithm to the ICEES multivariate feature 
table using the same eight feature variables used for the 
random forest analysis. In Fig.  3, we show the inferred 
casual graph. Expected relationships between features 
based on subject matter expertise and published lit-
erature are represented in black lines (solid and dashed, 
respectively). There were eight such expected edges, 
which we used to measure the structure learning accu-
racy of the causal algorithm. Solid black lines represent 
expected edges (true positives) that were reported via 
the PC algorithm, while dashed lines represent edges 
that were expected but missed (false negatives). Newly 
found relationships inferred by the PC algorithm, that 
were not expected, are represented in red (false posi-
tive). We note that there were a few undirected edges 
detected, for which the algorithm was not able to deter-
mine directionality.

Three of eight expected edges as determined by subject 
matter expertise were inferred; two out of three addi-
tional edges expected edges as reported in the literature 
were inferred (see section “Causal network analysis” for 
details). The expected directed edge from Race → Total-
EDInpatientVisits was missed.

Effects of Intervention
Having learned a causal network from the data, we then 
used it to answer relevant questions by making infer-
ences. To evaluate the network, we tested the effects of 
three simulated interventions on TotalEDInpatientVisits. 
Specifically, to substantiate the causal relationships iden-
tified section “Causal analysis”, we tested the effects of 
interventions based on the following expected claims:

– Claim (a). Obesity should have a direct effect on 
TotalEDInpatientVisits. Hence, conducting an 
intervention on the node “Obesity” (i.e., forcing all 
patients to be obese) should produce a direct change 
(increase or decrease, accordingly) in the probability 
distribution of TotalEDInpatientVisits.

– Claim (b). Prednisone should have a direct effect on 
TotalEDInpatientVisits. Hence, conducting an inter-
vention on the node “Prednisone” (i.e., focusing all 
patients to be using prednisone) should produce a 
direct change (increase or decrease, accordingly) in 
the probability distribution of TotalEDInpatientVis-
its.

– Claim (c). Sex should not have a direct effect on 
TotalEDInpatientVisits, as our causal network identi-
fied only an indirect effect of sex by way of a direct 
effect on obesity. Hence, conducting an interven-
tion on the node “Sex” (i.e., forcing all patients to be 
male) should not produce a direct change (increase 
or decrease, accordingly) in the probability distribu-
tion of TotalEDInpatientVisits.

Fig. 3 Inferred causal graph. Solid black lines represent inferred expected edges based on subject matter expertise combined with published 
literature (true positives), dashed lines represent missed expected edges (false negatives), and red lines represent unexpected edges, meaning 
not expected based on subject matter expertise or the published literature (false positives)
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We conducted these three simulated interventions 
on our learned causal network. To test Claim (a), we 
created a mutilated network by fixing the state of Obe-
sity to 1, which means we forced Obesity to be present. 
For Claim (b), we fixed the state of Prednisone to be 1, 
meaning that we forced prednisone use to be present. 
For Claim (c), we fixed the state of Sex to be Male. Next, 
we compared the changes in the probability distribution 
of TotalEDInpatientVisits before and after these three 
ad hoc simulated interventions to confirm the expected 
causal influences (Fig.  4). The change in the probability 
distribution for TotalEDInpatientVisits for interventions 
(a) and (b) shifted to the right with each intervention due 
to their causal relationships to the outcome: 0.5681 to 
0.6642 mean number of visits (9.62% increase) for obe-
sity (Fig.  4a); 0.5681 to 0.7271 mean number of visits 
(15.90% increase) for prednisone (Fig. 4b). For interven-
tion (c), the change in the probability distribution before 
and after the intervention was negligible (Fig. 4c): 0.5681 
to 0.5722 mean number of visits (0.42% increase) for sex.
Thus, intervening on obesity and prednisone caused a 
shift to the right in the number of annual ED or inpatient 
visits for respiratory diseases, as expected, given that our 
causal model showed direct effects of each variable on 
the outcome. In contrast, intervening on Sex had a neg-
ligible effect on the probability distribution of TotalED-
InpatientVisits, also as expected, given that our causal 
model showed only an indirect effect of sex on the out-
come by way of obesity.

Discussion
In this paper, we demonstrated the ability to use the 
ICEES OpenAPI to answer important questions about 
causal relationships between factors affecting asthma 
attacks. We focused on a large cohort of patients with 
asthma or related conditions and a dataset that included 
data derived from EHRs and a variety of public sources of 
environmental exposures data. We selected eight feature  

variables for our analyses; namely, sex, race, obesity, 
prednisone use, airborne particulate matter exposure, 
major roadway/highway exposure, residential density, 
and annual number of ED or inpatient hospital visits 
for respiratory issues. The racial categories were self-
reported, as defined according to our hospital’s EHR 
system, and included to capture potential racial dispari-
ties for further investigation. We applied a random forest 
algorithm and identified prednisone, race, and obesity as 
significant predictors of annual ED or inpatient visits for 
respiratory issues, followed by residential distance from 
a major roadway/highway, airborne particulate exposure, 
and sex. We then applied an independent causal infer-
ence model to the data, using the same feature variables, 
and found that prednisone and obesity were causally 
related to annual ED or inpatient visits, and sex and race 
were found to be indirectly related to annual ED or inpa-
tient visits via a causal relationship to obesity. To validate 
our causal model, we then performed simulated interven-
tions based on our causal network. Specifically, we tested 
the effects of “forcing” all patients to be obese, using pred-
nisone, and of the male sex. As expected, we found that 
forcing all patients to be obese or using prednisone had 
a direct effect on annual ED or inpatient visits, whereas 
forcing all patients to be male did not have a direct effect. 
The results of our interventions, while carrying an unde-
fined degree of statistical uncertainty, generally support 
our causal network analysis. Indeed, one of the strengths 
of causal analysis modeling, unlike predictive modeling, is 
that it minimizes the influence of confounding. Nonethe-
less, confounding remains a consideration due to factors 
that were unaccounted for such as physician prescribing 
practices regarding the use of prednisone.

Our results are largely consistent with previously pub-
lished literature. For instance, prednisone, which is com-
monly prescribed for patients who are non-responsive 
to first-line treatments such as inhaled albuterol [18], 
has been identified as a factor associated with asthma 

Fig. 4 The change in the mean number (% increase) of TotalEDInpatientVisits after each intervention: a 0.5681 to 0.6642 mean number of visits 
(9.62% increase) for Obesity; b 0.5681 to 0.7271 mean number of visits (15.90% increase) for Prednisone; and c 0.5681 to 0.5722 mean number 
of visits (0.42% increase) for Sex. Interv = intervention
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exacerbations and ED or inpatient visits for respiratory 
issues [19]. Female sex, obesity, and Black African Ameri-
can race have previously been identified as factors that 
contribute to asthma attacks [20]. In another work by our 
group [10] and others [21], obesity and sex were found to 
be highly related to asthma attacks. Several other works 
[9, 22] have additionally found a significant association 
between Black African American race and increased risk 
of asthma attacks. Exposure to major roadways or high-
ways has also been found to be a risk factor for asthma. 
Several studies [23, 24] have demonstrated an increase in 
asthma attacks among patients residing in close proxim-
ity to a major roadway or highway. Our findings on the 
relationship between roadway exposures and asthma 
exacerbations have been inconsistent, with evidence to 
support [20] and negate [25] a relationship.

One factor that we expected to find in our model as 
causally related to asthma attacks, but did not, is expo-
sure to airborne particulate matter. Exposure to airborne 
particulate matter is a well-established trigger for asthma 
attacks [8, 9, 19, 20, 25, 26]. The failure to detect a causal 
relationship between exposure to airborne particulate 
matter and asthma attacks likely reflects the imbalance 
in the distribution of patients across bins. Indeed, we 
are actively refining both our exposure models and our 
binning strategy. For instance, instead of using a Python 
algorithm to bin the airborne pollutant exposures, we are 
considering a binning strategy based on subject matter 
expertise alone.

Conclusions
EHR data, while being a rich data source for important 
clinical information, are mostly observational and gener-
ally challenging to access due to regulatory constraints. 
Performing real-world interventions are not only costly, 
but even impractical, given the need to integrate large data 
sources across various domains. Causal inference provides 
an excellent tool to simulate clinical interventions and 
answer questions about the effects of medical and health-
care interventions. In this study, we used the regulatory-
compliant open ICEES service to generate a multivariate 
feature table and apply a causal inference model, as well as 
conduct simulated interventions, to explore the influence 
of key demographic factors and environmental exposures 
on asthma attacks. Our results were largely consistent 
with expectations based on subject matter expert opinion 
and the published literature. As part of our future studies, 
we are expanding our causal inference model to include 
additional features and additional years of data in order to 
reflect the underlying causal relationships at a larger scale, 
while supporting additional use cases, including a cohort 
of patients with primarily ciliary dyskinesia or another 
rare respiratory disorder.
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