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Abstract  Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic 
and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated 
detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search 
regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review examines deep learn-
ing architectures and image processing algorithms for segmentation, feature extraction, and classification tasks 
employed for disease detection. It also focuses on practical applications, emphasizing quantitative disease assess-
ment, and the performance of various computer vision approaches for each condition while highlighting their 
strengths and limitations. Finally, the review denotes the need for disease-specific datasets with curated annota-
tions and suggests future directions toward unsupervised or self-supervised approaches. Additionally, the find-
ings underscore the importance of developing accurate, automated tools for disease severity score calculation 
to improve ML-based monitoring and diagnosis in dermatology.
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Introduction
In dermatological clinical trials, numerous digital images 
are captured to evaluate treatment effects. Automated 
image analysis, lesion detection, and feature extraction 
can help experts assess results [1]. Furthermore, machine 
learning (ML) can be used to identify statistical trends 
and biases across trials. Integrating state-of-the-art 

(SOTA) computer vision (CV) techniques into electronic 
clinical outcome assessments (eCOAs) can transform 
clinical treatment development [2]. Beyond controlled 
trials, applying CV to less standardized images from 
physicians or patients offers benefits for reliable and 
faster skin condition detection, despite challenges such 
as variability in image quality and capture standards [3]. 
Advances in CV are increasingly addressing these limita-
tions, providing promising tools for stakeholders.

Currently, ML applications in dermoscopy focus 
predominantly on malignant skin lesion tasks like 
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classification, detection, and segmentation [4]. Benign 
skin diseases, while impactful on quality of life, are less 
explored. These include Atopic Dermatitis (AD), Stasis 
Dermatitis (SD), Vitiligo (VI), and Alopecia Areata (AA), 
which affect millions worldwide:

•	 AD is a chronic inflammatory condition affecting 
20% of children [5]. The symptoms include recur-
rent lesions, itching, and dryness, as well as acute or 
chronic manifestations like erythema, oozing, and 
lichenification [5, 6].

•	 SD, linked to chronic venous insufficiency, affects the 
lower extremities and presents with discoloration, 
itching, redness, swelling, and pain due to elevated 
venous pressure [7].

•	 VI, the most common depigmenting disorder, affects 
0.1–2% of the global population. Characterized by 
lighter patches from melanocyte loss, it has psycho-
logical but not life expectancy impacts, with origins 
tied to genetics and stress [8].

•	 AA, an autoimmune condition affecting 2% of peo-
ple globally, causes hair loss in patches or universally, 
affecting all demographic groups [9].

Applying ML and CV techniques to these diseases 
could enhance the efficiency and reliability of diagnosis 
and monitoring through automated systems, thereby pro-
viding repeatable and trustworthy outcomes. A system-
atic screening of the literature concerning the application 
of ML and CV approaches for skin medical image anal-
ysis focusing on VI, AA, SD, and AD aims to reveal the 
relevant potentials, limitations, challenges, and opportu-
nities. In this systematic review, a detailed description of 
this search is provided, focusing on methods that quan-
tify skin visual patterns to guide useful knowledge extrac-
tion for downstream tasks.

Methods
To provide consistent feedback on the research work 
conducted in recent years in the field of ML and CV tech-
niques concerning the four diseases, a systematic search 
is completed to provide a list of eligible papers and their 
key findings. The entire procedure is reported in accord-
ance with the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines, and 
the respective checklist is provided in Appendix B. The 
inclusion criteria required for a study to:

•	 Focus on one or more of the four skin diseases of 
interest or include one or more of the four skin dis-
eases among other diseases in the multiclass setting. 
In the case of dermatitis-related work, the paper 
must explicitly discuss SD or AD.

•	 Propose an automatic solution to classify, detect, 
and/or segment the query class that is AI-based or 
hand-engineered.

•	 Report evaluation results on open-source datasets or 
reasonably described in-house datasets.

The search was conducted on the Scopus database and 
included all combinations of words that refer to skin dis-
eases and the names of ‘vitiligo’, ‘alopecia areata’, ‘atopic 
dermatitis’, and ‘stasis dermatitis’, in conjunction with 
AI- and CV-related terms. The alternative terms ‘venous’, 
‘gravitational’, ‘congestion’, and ‘varicose’ for stasis and 
‘eczema’ for dermatitis, among others, commonly found 
in the literature, were also taken into consideration. 
The term ‘leukoderma’ differs from VI, but it has been 
included in the search because this practice may uncover 
interesting CV works transferable to the VI domain due 
to the similarity of the two diseases. The search time 
frame spans from January 2004 to December 2024 (the 
specific end date is regulated by the Scopus database 
update and consultation time points). It captures emerg-
ing methodologies since AI and CV were radically evolv-
ing. The specific search queries used, including keywords, 
language and publication limitations applied, and dates of 
the last Scopus consultation, can be found in Appendix 
A. The manual review of all retrieved works, 441 in total, 
has led to the extraction of useful information about the 
methods used, and in some cases promising results. Spe-
cifically, the screening process comprised two screening 
rounds, prior to which an automated deduplication step 
identified 7 duplicate entries, reshaping the total paper 
count to 434. The first round screened the titles, abstracts 
and, if necessary, introductions of the 434 papers, pro-
viding a high-level view of each paper’s contents and 
leading to the rejection of 351 ineligible entries. The sec-
ond round consisted of the meticulous study of the 83 
retrieved papers, 46 of which were finally judged as eligi-
ble for inclusion (Fig. 1). The selected worksare scanned 
to identify methods related to image classification,

Lesion segmentation, lesion detection, and image pro-
cessing techniques for image preprocessing and aug-
mentation. A special focus has also been placed on 
discovering efforts for automated skin disease severity 
quantification, using measures such as the Vitiligo Area 
Scoring Index (VASI) and Severity of Alopecia Tool 
(SALT) scores, as well as other relevant metrics used by 
researchers. Both the screening and data collection parts 
of this review were conducted by 3 researchers working 
independently, without the assistance of automation soft-
ware. Even though in some studies, information about 
the method was incomplete and the evaluation pipeline 
returned no strong proof of the robustness and perfor-
mance of the proposed methodology (criticized by N. van 
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Geel et al. [10]), a critical decision was made to include 
such studies in the review to extract additional useful 
information.

Results
The reviewed studies on skin disease lesions are catego-
rized into four main skin conditions AA, AD, SD, VI 
and classified by downstream tasks: classification, object 
detection, segmentation, and severity score calculation. 
Additionally, some studies include data augmentation 
techniques to address data scarcity and overfitting. Most 
studies focus on VI, whereas eczema-related research 
helps compensate for the limited research on SD and 
AD because these conditions share visual characteris-
tics. Among the downstream tasks, classification is the 
most common, followed by segmentation. The severity 

score calculation ranks lower, often integrating segmen-
tation as part of the process. Object detection is the least 
emphasized because segmentation provides a more gran-
ular pixel-level analysis, making it preferable for detailed 
skin lesion assessment. The publication timeline is from 
August 2012 to April 2024. As shown in Figs. 2 and 3, the 
most productive year refers to 2023 with 21 works, fol-
lowed by 2022 with 12 works. Works related to AA wit-
nessed a sudden peak in the year 2023, possibly due to 
the release of high-quality datasets, whereas vitiligo pub-
lications are spread over all years in contrast to articles 
on other diseases that appear sporadically.

Machine learning applications for Alopecia Areata
Most existing studies in the field of computer vision for 
AA refer to the task of image classification [11–19]. The 

Fig. 1  PRISMA workflow diagram for discovering literature about alopecia areata, vitiligo, atopic and stasis dermatitis
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existing approaches are based on the typical machine-
learning pipeline shown in Fig.  4. In each machine 
learning subtask, namely preprocessing, feature extrac-
tion, feature selection, and classification, the ML/CV 
algorithms for the existing works are depicted. In the 
case of neural networks [11, 12, 14–16], the subtask 
choices are fewer since the network architecture han-
dles the feature extraction and classification subtasks 
entirely. However, there exists an approach by Mittal 
et al. that breaks down the total process into subtasks, 
even when using neural networks [12]. The feature 
extraction process is managed by a pretrained VGG16 
network, and the classification is performed by a Sup-
port Vector Machine (SVM) classifier. As shown in 
Fig. 4, the use of histogram equalization techniques for 

contrast enhancement is a popular choice globally or 
locally (Contrast Limited Adaptive Histogram.

Equalization - CLAHE). The team of Saraswathi and 
Pushpa presents significant contributions in the field 
[16–21], accounting for 54% of the relevant literature. 
Their most promising results are reported in [18] show-
casing 96.94% accuracy in a four-class AA classification 
task. The above results are obtained when enhancing the 
Attention-based Balanced Multi-Tasking Ensembling 
Deep (AB-MTEDeep) model, which combines feature 
extraction from various scales and residual connections 
with the Generative Adversarial (GAN) -generated train-
ing data. A common throughout all classificationstudies 
is the utilization of the Figaro1k [22] and DermNet data-
sets [23].

Fig. 2  Graphical representation for the number of publications per skin disease and computer vision task

Fig. 3  Timeline for the number of publications related to Alopecia Areata, Stasis and Atopic Dermatitis (Eczema Related), and Vitiligo
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Concerning the image segmentation task, the literature 
review reveals three existing works, two supervised and 
one unsupervised technique. Lee et al. [24] tackle a dual 
segmentation task to segment both scalp and hair loss 
areas employing a U-Net [25], whereas in [26], Bernardis 
and Castello-Soccio assign a cluster to each pixel of the 
image as per its hair density using the K-means cluster-
ing algorithm to differentiate between bald, low-density, 
and normal hair scalp regions in scalp images. Due to its 
simplicity, the system’s inference time and ability to dif-
ferentiate between AA and other causes of low hair den-
sity areas are low, as the authors acknowledge. The works 
described by Lee et  al. [24] and Gudobba et  al. [27], 
although referring to segmentation, are described in the 
following subsection due to their main objective being 
closely related to the score (Severity of Alopecia Tool) 
calculation task.

Severity of alopecia tool quantitative analysis for Alopecia 
Areata
The segmentation techniques discussed earlier are 
foundational for the quantitative analysis of AA images. 
A widely adopted metric for assessing AA severity 
is the SALT score [28, 29], which evaluates scalp hair 
loss across four regions—vertex, right profile, left pro-
file, and posterior—each assigned a weight factor and 
a score from 0 to 1. The SALT score, ranging from 0 
(no hair loss) to 100 (complete hair loss), is calculated 
by summing the weighted scores for each region. It is 
used to monitor treatment efficacy by comparing base-
line (BL) and follow-up (F/U) scores, with percentage 

changes computed using a specific formula (Eq. 1) [30]. 
Despite its usefulness, SALT has limitations, such as 
ignoring factors like the duration and recurrence of hair 
loss, psychological impact, and involvement of other 
areas (e.g., eyebrows, eyelashes) [31]. Additionally, the 
manual nature of the calculation introduces potential 
subjectivity and errors, thereby making the calculation 
time-intensive [31].

Automated machine learning techniques for calculat-
ing SALT have been extensively studied to address time 
and subjectivity challenges. These methods primarily 
rely on segmentation approaches to differentiate hair 
from scalp areas, which are categorized into one unsu-
pervised and two supervised techniques.

In the supervised domain, Lee et  al.‘s segmentation 
method [24] employs the AloNet model, a CNN based 
on U-Net [25], to classify each pixel as “hair loss” or 
“scalp area.” This functionality is embedded in a web 
application to measure hair loss in AA patients. Simi-
larly, Gudobba et  al. [27] developed the HairComb 
algorithm, which uses two encoder-decoder branches 
based on UNet and ResNet50 to automatically calcu-
late hair loss percentage across alopecia subtypes. Hair-
Comb is integrated into Trichy, a web-based tool, which 
provides user guidance for image capturing. HairComb 
reported 7% absolute error in calculating affected area 
percentages, which is comparable to the state-of-the-
art SALT algorithm in [24].

(1)SALT BL− SALT F/U

SALT BL
x 100% = % change from baseline

Fig. 4  Overview of CV and ML approaches for AA in the relevant literature. GLCM stands for Gray-Level Co-occurrence matrix, LBP for Local Binary 
Patterns, AAA for Artificial Algae Algorithm, WNN for Wavelet Neural Network, and MELM for Modified Extreme Learning Machine. The dotted frame, 
labeled Neural Network is an optional choice in the pipeline that can replace the handcrafted feature extraction and classification process
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The unsupervised approach proposed by Bernardis 
et al. [26] leverages pixel intensity of neighboring pixels 
to create a visual vocabulary for encoding images into 
vectors, which are clustered into labels—scalp, low den-
sity, and normal hair—for distinguishing hair and scalp in 
AA images. Diverging from these works, Seol et al. [32] 
explored a two-dimensional planimetric method for cal-
culating the actual surface area of AA as a means of vali-
dating SALT scoring.

Machine learning applications for atopic and stasis 
dermatitis
Studies specifically focusing on AD and SD are rela-
tively scarce. To address this, the search is broadened to 
include studies from the overarching domain of eczema, 
with many categorizing eczema diseases generically 
[33–40]. However, some works focus on specific eczema 
diseases, particularly the erythematous-squamous (ES) 
class, which excludes AD and SD [41–43]. Others include 
seborrheic dermatitis and psoriasis within multiclass set-
tings or classify diverse dermatitis cases [44–47], offer-
ing valuable insights into the automatic processing of AD 
and SD images due to their potential visual similarities 
in CV models. For example, Zhou et al. [45] found that 
using a green background improved classification perfor-
mance for lesions with black and red colors.

In terms of feature extraction mechanisms in classi-
fication tasks, Nourin et  al. [48] used handcrafted fea-
tures, such as Histogram of Gradients (HOG) and Gray 
Level Co-occurrence Matrix (GLCM) to classify images 
of eczema, hemangioma, melanoma, and SD, achieving 
95.3% accuracy with GLCM and 78% with HOG. In con-
trast, learned features extracted from deep CNN archi-
tectures [49–51] report higher accuracy (96.04–97.5%) 
on datasets that include SD images. Hybrid features com-
bining handcrafted and learned approaches are examined 
in [52], where the ReliefF technique refines the fea-
ture set, which is then fed into classifiers, such as SVM, 
K-Nearest Neighbor (KNN), and DT, to achieve 97% 
accuracy. Gradient -based Class Activation Maps (Grad-
CAM) [53] visual explanations accompany these results.

Srivastava et  al. [54] developed an image-processing 
method for detecting eczema-affected regions. Their 
approach begins with image preprocessing, includ-
ing noise reduction, contrast enhancement, and quality 
improvement, followed by segmentation using K-means 
in the Lab color space, Otsu thresholding, and morpho-
logical operations. Features such as color, border, and 
texture are subsequently extracted. Similarly, two studies 
[55, 56] address segmentation tasks for psoriasis lesions 
using simple CNNs combined with optimization tech-
niques, specifically the Adaptive Chimp Optimization 
Algorithm (AChOA) and the Adaptive Golden Eagle 

Optimization (IGEO). These methods achieve high seg-
mentation accuracy (97%) and may inform segmenta-
tion approaches for AD and SD given the common CV 
challenges between psoriasis and eczema. One of these 
studies utilized a private clinical dataset of 7,000 images, 
including 4,200 images of psoriasis and 2,800 images 
of healthy skin [55]. In contrast, Srivastava et  al. [54] 
employed an unsupervised approach based on K-means 
clustering and Otsu thresholding [57] to segment 
eczema-affected regions in digital images.

In addition to these methods, Rajathi et al. [50] applied 
machine learning techniques to classify digital images 
into varicose ulcer stages (five stages) and tissue types 
(four classes), while also performing lesion segmentation 
and wound area calculation. Furthermore, the segmenta-
tion methods discussed in [58–60] are described in the 
following section as part of severity score calculation 
techniques.

Eczema area and severity index calculation
The Eczema Area and Severity Index (EASI) [61] was 
developed in 1998 and later validated to meet the 
demands of investigators in need of a standardized eval-
uation tool for the severity of AD signs in clinical stud-
ies [62]. The formula for the EASI score includes visual 
estimation in four body regions (head and neck, upper 
extremities, trunk, and lower extremities), where each 
region is assigned an area score. Next, each region is 
assessed separately for the following four signs: ery-
thema, edema/papulation, excoriation, and lichenifica-
tion. Each sign is assigned an intensity score ranging 
from 0 to 3: 0, absent; 1, mild; 2, moderate; and 3 being 
severe [63]. The SCORAD (Severity Scoring of Atopic 
Dermatitis) index is also validated but combines subjec-
tive assessment of patients’ symptoms with observation 
of signs [62]. Regarding the EASI calculation, a modified 
formula was used (Eq. 2):

Area Score is the percentage of eczema/total skin 
region, while the Intensity Score can range from 4 for 
mild eczema (setting 1 point for each of redness, thick-
ness, scratching, and lichenification) to 12 (3 points for 
each) for severe eczema. The Region Score is the percent-
age of skin affected by eczema in each of the following 
four body regions: head (including neck), trunk, upper 
limbs, and lower limbs.

Machine learning researchers have developed auto-
mated systems for calculating the EASI score to help 
dermatologists achieve more consistent and reliable 
results. Alam et al. [58] proposed an automated eczema 
detection and severity measurement model by using 85 

(2)Severity Index = Area Score × Intensity Score × Region Score
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web-acquired images. Their pipeline includes: (a) a skin-
region detection module leveraging the YCbCr color 
space, (b) an eczema-region detection module using 
k-means clustering in the LAB color space and morpho-
logical operations, (c) a feature extraction mechanism 
for color, texture (using GLCM), and border attributes, 
and (d) a classification system comprising two binary 
SVMs. One SVM distinguished between healthy and 
eczema skin, while the other classified eczema severity 
as mild or severe.

Bang et al. [64] trained four CNN architectures (ResNet 
V1-2, GoogleNet, and VGG-Net) to determine the opti-
mal encoder for calculating individual EASI components. 
The accuracy rates were 90.63% for erythema, 89.06% 
for induration/papulation, 87.50% for excoriation, and 
85.94% for lichenification.

Attar et al. [59] developed “EczemaNet2,” an enhanced 
version of their earlier “EczemaNet” model [60], which 
integrates U-Net to detect and segment AD regions. 
EczemaNet initially used an R-CNN-based approach, 
where cropped regions of interest (ROIs) were fed into 
seven classifiers, each producing a severity score (0–3) 
for specific disease signs. These scores were averaged 
across ROIs to calculate the EASI score, with additional 
support for the TISS [48] and SASSAD [49] scores. Ecze-
maNet achieved a Root Mean Square Error (RMSE) of 
1.929 ± 0.019 for EASI. EczemaNet2 replaced the R-CNN 
segmentation stage with two U-Nets, one for skin seg-
mentation and another for AD segmentation. The post-
processing steps merge segmented regionsto generate 
square image crops for classifier input. Data augmenta-
tion techniques, including the pix2pix network, resulted 
in 25% and 40% improvements in segmentation and 
eczema detection performance, respectively, compared 
to the original EczemaNet pipeline.

Machine learning applications for vitiligo
Starting with the classification task for VI images, the lit-
erature review presents a significant number of works. 
The tasks vary in different taxonomies relative to the 
number of classes, the feature extraction mechanism 
type, the base versus ensemble classification techniques, 
and the application of data augmentation and transfer 
learning (TL) approaches. The simpler approaches are 
based on the plain feature extraction-classifier pipeline, 
excluding the use of elaborated preprocessing steps or 
techniques.

Concerning hand-crafted features, the authors of [65] 
propose the use of Mel Frequency Cepstral Coefficients 
(MFCC)—features often used for audio-related tasks—
and i-Vectors as feature vectors paired with SVM and 
MLP classifiers, resulting in the best-performing out of 
four feature extraction-classifier combinations. Nosseir 

et  al. [66] classify warts, hemangiomas, and VI using 
first- and second-order statistical features (GLCM) from 
pixel values. Related to learned features, Sharma et  al. 
[67] perform feature extraction using Inception-V3, and 
various ML and DL algorithms are tested as classifiers, 
including a simple Naive Bayes and a CNN, all of which 
perform well. Bashar et al. [68] test four CNNs as feature 
extractors and four classifiers using similar methodol-
ogy to obtain comparable results. A custom autoencoder 
CNN, which is an architecture commonly used for gener-
ative tasks, is defined and trained as a classifier [69], with 
the authors reporting 90% accuracy on the validation set. 
In a multiclass context, Algudah et al. [70] classify VI and 
five skin diseases using a short custom CNN. The model 
is simple, and the results are satisfactory and comparable 
to the work in [71]. Agrawal et al. [72] classify melanoma, 
VI, and vascular tumor images using fine-tuned Incep-
tionV3. However, a noticeable 17% difference between 
training and test accuracy is observed.

Although more complex and prone to overfitting, 
ensemble models are often used by researchers to 
improve classification performance [73–75]. Liu et  al. 
[73] employ three identical ResNet50 CNNs trained 
on different color spaces (RGB, HSV, and YCrCb) in an 
ensemble to identify skin images affected by VI. Saini 
et  al. [74] define a two-model voting classifier trained 
on GLCM features. Dodia et al. [75] manually construct 
a small five-class dataset using a VGG-16-based feature 
extractor and a tree ensemble classifier trained with 
XGBoost [76]. These ensemble methods confirm that 
ensemble models outperform base classifiers. However, 
the use of private datasets in these studies hinders the 
comparison of state-of-the-art methods.

TL approaches are prevalent for utilizing pre-existing 
knowledge in a more specific domain [68, 77–79]. Mishra 
et al. [77] propose deep supervision for skin classification 
using activation mapping to create an image mask and 
targeting the network layer whose effective receptive field 
aligns best with the activation mask. An auxiliary loss 
function is fused with the standard loss function dur-
ing training, thereby improving the performance of the 
VI datasets. Zhang et al. [78] utilize an in-house dataset 
al.ong with public datasets, offering an alternative open 
VI dataset. Their three TL-based models demonstrate 
superior performance to that of human experts. Bashar 
et al. [68] employ TL with four different DL architectures 
on the dataset used in earlier work [78].

In a different direction, generative models enhance 
datasets with synthetic samples. Luo et  al. [79] propose 
a Cycle-Consistent Generative GAN-based augmen-
tation procedure followed by super-resolution of the 
generated images. This method improves classification 
accuracy by 9.3% for a ResNet50 model compared to the 
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non-augmented TL. Similarly, Mondal et al. [80] train a 
Wasserstein GAN with Gradient Penalty (WGAN-GP) 
to augment their datasetand then used CNNs to clas-
sify normal skin, leprosy, tinea versicolor, and VI. These 
models achieve accuracy in the 0.81–0.94 range. How-
ever, the datasetsize raises validity concerns. Liang et al. 
[81] introduce a novel method, Multi-hierarchy Contras-
tive Learning with Pareto Optimality (MHC-PO), which 
jointly trains models to learn data representations and 
perform classification tasks.

For VI lesion segmentation, preprocessing often 
involves classifying pixels into skin and background [82, 
83]. Nugroho et  al. [84] use independent component 
analysis (ICA) to represent skin disorders, followed by 
a region-growing algorithm for segmentation. Weakly 
supervised methods constitute a small but significant 
share of the literature [85, 86]. Bian et al. [85] use activa-
tion maps [87] of binary classifiers and the SLIC super-
pixel algorithm to delineate VI-affected areas, improving 
Intersection over Union (IoU). Low et al. [88] apply face 
recognition technology to correct image angles. Semi-
supervised approaches like the mean-teacher learning 
framework proposed by Wang et al. [89] address labeled 
data scarcity by training a student model using pseudo-
labels assigned by a teacher model.

U-Nets are widely used in medical segmentation tasks. 
For VI, U-Nets and their variations have been imple-
mented [88, 90–92]. Low et  al. [88] optimize U-Net’s 
encoding path with different CNN architectures, achiev-
ing the best results with InceptionResNetV2. Gou et  al. 
[90] train three segmentation models—PSPNet [93], 
U-Net, and Unet++—on a large, annotated dataset, 
with Unet + + [94] performing best on in-house data but 
underperformed on open-source data. Li et al. [91] devel-
oped a U-Net-inspired model for facial VI cases, incor-
porating augmentation methods based on lesion color 
similarity between databases and target images.

Unsupervised methods show promise, particularly in 
scenarios with limited or subjective data labeling. Khatibi 
et al. [83] propose a stacked ensemble approach combin-
ing color-space-specific fully connected networks and 
clustering algorithms. Mehmood et al. [95] employ a sim-
pler unsupervised technique to classify pixels based on 

color values, whereas Anthal et al. [96] use learning vec-
tor quantization networks for pixel classification. Nurhu-
datiana et  al. [82] utilize Fuzzy C-means clustering for 
skin-background and VI segmentation based on YCbCr 
and RGB color spaces. In addition, Geel et al. [97] analyze 
ImageJ thresholding functions for VI lesion delineation.

Finally, bounding-box detection methods have been 
explored. Sorour et al. [98] employ a sequential configu-
ration of YOLO-v5 models to predict VI-affected areas, 
including melanoma.

Vitiligo area scoring index calculation
The VASI is a widely used standard for assessing the 
extent of vitiligo (VI) lesions, providing repeatable but 
subjective insights into disease progression. The VASI 
score is calculated (Eq. 3) as the product of the affected 
area, measured in “hand units” (each equal to 1% of 
total body surface area), and the degree of depigmen-
tation, expressed as a percentage from 0 to 100 [99] 
(Fig.  5). Accurate assessment involves registering the 
total affected body surface area and the extent of depig-
mentation for each lesion. While VASI relies on manual 
evaluation, techniques like superpixels [100] and level-set 
segmentation with SIFT and RANSAC [101] have been 
explored to aid in quantifying VI-affected areas, though 
their methods and outcomes vary. For instance, the 
superpixel approach lacks detail on calculating body sur-
face area, whereas the level-set method yields percentage 
scores representing changes over time but

Not direct VASI scores. Alternative metrics, such as 
Facial VASI (F-VASI), Total VASI (T-VASI) [102], Vitiligo 
European Task Force (VETF) [103], and Vitiligo Extent 
Score (VES) [104], address limitations of the standard 
VASI by including facial surfaces or focusing on other 
aspects of disease assessment. These variations provide 
alternative approaches for quantifying and monitoring VI 
progression.

(3)VASI =
All body sites

Hand Units × Residual Depigmentation

Fig. 5  Visual representation of various degrees of depigmentation [99], licensed under CC BY 3.0
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Data augmentation in the scope of medical skin 
images
Data augmentation requires an initial seed of images on 
which the technique can be based to generate new sam-
ples by applying a well-established transformation of 
the initial image (rotation, jittering, blurring, contrast 
enhancement). Alternatives refer to mixing two original 
images or copying and pasting parts of the initial image to 
a target sample [89, 91]. In the field of dermoscopy, image 
data augmentation has been applied in several cases, with 
the main objective of enhancing the training results of 
machine learning algorithms. As shown in Fig. 6, the data 
augmentation works related to the diseases in question 
are divided into four categories: (a) Geometric Trans-
formations, (b) Kernel Filters [12, 52, 59, 88], (c) GAN-
based [18, 52, 59, 79, 81, 91, 98], and (d) Mixing images 
[89, 91]. Starting from the case of basic image manipu-
lations and their application to dermoscopy images, data 
augmentation techniques provide a copy of the origi-
nal image by applying a simple transformation. In deep 
learning approaches, neural style transfer and GANs are 
frequently employed to solve the task of dermoscopy 
image augmentation. Such approaches require a wealth 
of training samples to produce reliable new samples ; 
therefore, they can not be deemed useful in cases where 
a sparsity of data samples is encountered. Luo et al. [79], 
use a Cycle-Consistent Generative Adversarial Network 
[105], which is followed by a super-resolution module to 
make amends for the absence of wood lamp images. The 
discrimination of vitiligo patterns in such images is more 

effective resulting in rather promising results. Mondal 
et  al. [80]employed a Wasserstein GAN with a Gradi-
ent Penalty to generate synthetic VI images and increase 
the robustness of the overall classification scheme. An 
interesting example of the augmentation of macroscopy 
skin images captured by mobile devices is described by 
Andrade et  al. [106]. A cycle-consistent adversarial net-
work is used for the described objective, yielding effective 
quantitative metrics in the form of the Fréchet Inception 
Distance, while qualitative evaluation returns promis-
ing results in some cases. The technique could be used 
for different skin diseases in cases of comparing differ-
ent endpoints (dermoscopy vs. macroscopy images from 
mobile phones) of the lesion between timestamps. In [52] 
the authors employ a GAN to generate the generation 
of synthetic skin lesion images. However, no samples or 
evaluation of the generative network is provided. Abdel-
halim et al. [107] propose a progressively growing GAN 
for generating skin cancer images. The adversarial net-
work exploits the gradually increasing image generation 
to address common training inconsistencies and improve 
image quality at higher resolution. Although these tech-
niques have been rarely applied to images depicting 
areas of AA, AD/SD, and VI, success in the generic set-
ting of skin lesions reveals the potential for their utiliza-
tion for the increase of image samples for the diseases in 
question.

Mixing approaches have also been proposed in the 
relevant literature for increasing the number of image 
samples. A promising notion with different developed 

Fig. 6  Taxonomy overview of image data augmentation techniques used for the Vitiligo, Atopic and Stasis Dermatitis, and Alopecia Areata skin 
diseases
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variations is the copy-and-paste procedure of the 
instance in question [108]. The copy-paste approach has 
been proven to significantly improve the results of seg-
mentation algorithms compared to plain image trans-
formations. It can be briefly described as the detection 
of objects in question in images and the overlay of these 
objects on a target in a systematic or random manner, 
meaning that the positions in the cuts are overlayed on 
the target images, are selected by a strategy concern-
ing the context, or are placed at random locations of the 
image. Along with the image, the corresponding segmen-
tation mask is modified to adhere to the given variations. 
More effective techniques for exploiting copy-paste have 
been proposed in [109–111] where contextual informa-
tion is utilized for the detection of more effective loca-
tions and the alleviation of presented artifacts and noise 
mainly due to the direct operation of copying and pasting 
parts of the image.

Wang et  al. [89], use the copy and paste augmenta-
tion to address data shortage in VI images for the cor-
responding skin lesion segmentation. The editing of the 
VI images in the proposed methodology is conducted 
using a poison-blending technique [112] to paste the 
object into the target image and applying an improve-
ment of the original method based on a mixed gradient 
mode modification. The proposed technique is applied as 
a preprocessing step to generate additional samples and 
their corresponding masks to train a semi-supervised 
Mean Teacher segmentation scheme. The results demon-
strate that the proposed augmentation technique signifi-
cantly increases the segmentation metrics and represents 
a promising path when annotated VI samples are scarce.

Another interesting approach that attempts to address 
this issue of data scarcity is proposed in [91]. Dedi-
cated to enhancing the performance of deep segmenta-
tion architectures, this approach generates patches of VI 
lesions on target images by exploiting the potential of 
Progressive Histogram Colour Transfer (PHCT), as origi-
nally proposed by Pouli and Reinhard [113]. The authors 
detect the most suitable VI color transfer using a similar-
ity metric and introduce patches of VI-shaped regions in 
the target image. Thus, a significant increase in the seg-
mentation performance mechanism is achieved.

Datasets for the surveyed diseases
A list of the available public datasets containing dermos-
copy and on-the-wild skin lesion images for the four dis-
eases is provided in Table 1. In terms of image quantity, 
the presented numbers are significantly less because most 
of the images in the dataset are transformed duplicates of 
the original images. An example is provided for the Vtigo 
Dataset2, which is reported to contain 1,187 images in 

total; however, the actual number of images is reduced to 
the duplicates that derive from horizontal flips.

Discussion
Through this review, a wider perspective on the dis-
eases under examination is gained. More specifically, 
the review reports the effects on the skin that can be 
captured in the form of digital images, the proposed 
diagnostic methods and treatment plans, and the cor-
responding improvements that attempt to automatically 
quantify therapies and the depicted visual patterns. The 
reader can be led to the formation of significant insights 
regarding best practices that have resulted in efficient ML 
and CV schemes along with the limitations that have hin-
dered previous attempts and open issues that require to 
be addressed through new approaches. Although most 
of the works in digital dermoscopy refer to skin cancer 
[139–142], this review is an attempt to turn the interest 
of dedicated researchers to other skin diseases that affect 
quality of life.

In general, data scarcity creates a considerable chal-
lenge, and the four skin diseases bear no exception. 
Although several publicly available datasets have been 
found with corresponding annotations to some extent, 
the purpose of capturing such images was not intended 
for ML applications [143]. Images of different resolutions, 
shapes, and capturing conditions constitute an arduous 
operational field for CV and AI algorithms to perform 
and extract useful outcomes. In addition to the above-
mentioned shortcomings, many samples include artifacts 
or regions of interest that are enlarged on top of existing 
morphological findings. Training skin-condition pre-
dictive models requires a large number of images taken 
under specific conditions (e.g., distance, point of view, 
areas of body parts). These datasets are usually collected 
through clinical examinations and are not provided along 
with the publication of the related results, either due to 
ethical reasons or due to purposes of commercializ-
ing the produced models. An additional obstacle, even 
for extensive clinical image datasets, is variations in the 
annotations and respective scores among the qualified 
dermatologists [144], even from the same expert at differ-
ent times of re-evaluation. Therefore, it should be noted 
that the creation of publicly available curated datasets 
for each disease would greatly assist the development of 
more effective relevant ML algorithms and their fairer 
quantitative evaluation [145]. In skin disease research, 
GANs can model the distribution of skin disease images 
and generate synthetic samples resembling real manifes-
tations. This review highlights GAN-based approaches 
as promising for generative AI in addressing dataset 
scarcity. However, effectively training GANs is challeng-
ing, and requires large datasets, typically thousands of 
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images, to achieve satisfactory results. Even then, this 
approach might not improve the robustness of the detec-
tion model, asreported in a recent study of AD [42]. Nev-
ertheless, synthetic image generation is a domain rapidly 

evolving and might be able to overcome the limitations of 
previous models, such as the one used in that study. Dif-
fusion models [146] can generate high-fidelity, high-res-
olution synthetic skin disease images. They can capture 

Table 1  List of existing image datasets related to the skin diseases in question

Name Size in MB Description Ref Task Last Accessed

Skin dataset 664 8,212 on-the-wild images, including 1,566 VI 
images in JPEG format Categories are divided 
into seven classes

 [114] Classification 1/4/2024

DermNet 2,000 Images of 23 types of skin diseases, in JPEG 
format.

 [115] Classification 1/4/2024

VitMon 2 36 grayscale images in JPEG format 
along with the corresponding lesion masks.

 [116] Segmentation 1/4/2024

Vitiligo 130 3,628 images in PNG format divided into two 
classes: healthy and VI affected.

 [117] Classification 1/4/2024

vitiligo-detection 01 56.6 189 VI dermoscopy images in JPEG format, 
where the VI-affected area is annotated 
in a bounding box.

 [118] Object detection 1/4/2024

vitiligo computer vision 76.3 2,118 VI-on-the-wild images in JPEG format, 
including the relevant annotations as bounding 
boxes.

 [119] Object detection 1/4/2024

hair image 26.2 535 images with the corresponding segmenta-
tion masks.

 [120] Segmentation 20/4/2024

VtigoDataset2 20.6 1,187 VI on-the-wild images in JPEG format, 
annotated with corresponding bounding box. 
Augmentation is already applied.

 [121] Object detection 1/4/2024

vitiligo-seg-01 115 384 VI dermoscopy images in JPEG format 
with the corresponding segmentation masks. 
Augmentation is already applied.

 [122] Segmentation 1/4/2024

Extent of Hair Loss in Patients with AA 78 2,716 pixel-wise annotations used to train 
the hair loss identifier (mask), and the hair loss 
identifier (target).

 [123] Segmentation 23/4/2024

Image Dataset 17 290 images of top head images, and annotation 
of the head perimeter.

 [124] Segmentation 25/4/2024

Hair image dataset 26.8 534 images of top head images and annotation 
of the alopecia patches.

 [125] Segmentation 25/4/2024

Eczema Disease Classification 9.2 510 images. 5 classes, various body sites.  [126] Classification 25/4/2024

eczema Computer Vision Project 78.1 1,512 images. Annotations using small boxes 
of eczema in various body sites.

 [127] Object detection 25/4/2024

disease area detection Image Dataset 274 1,440 Images. Classes: Acne, Eczema, Psoriasis, VI.  [128] Instance Segmentation 1/4/2024

New_UAE Computer Vision Project 230 5,122 Images. Classes: Acne, Moll, Psoriasis. 
Annotation with a box of the affected area.

 [129] Object detection 1/4/2024

AtopicDermatitis 113 2,630 images from a close distance and various 
body sites labelled as AD or no AD.

 [130] Classification 19/4/2024

Skin disease dataset 52.2 1,147 images, 10 classes including AD, Eczema, 
and Psoriasis.

 [131] Object detection 19/4/2024

3. Atopic Dermatitis 2.62 52 AD images annotated at pixel-level.  [132] Instance Segmentation 19/4/2024

Nummular preprocessing dataset 7.53 622 AD and Nummular Dermatitis images.  [133] Classification 19/4/2024

Skin_Disease_AK 127 13,159 images over 20 classes, including 228 AD. 
Extensive duplication is observed.

 [134] Classification 19/4/2024

FYP Eczema 0.767 52 images with pixel-level annotations.  [135] Instance Segmentation 19/4/2024

Skin Disease Classification 169 81 AD images, part of a 9-class dataset.  [136] Classification 19/4/2024

20 Skin Diseases Dataset 321 3,056 images representing 20 classes, includ-
ing AD and eczema.

 [137] Classification 19/4/2024

Skin diseases image dataset 6,000 10 classes including 1,257 AD images, 1,677 
Eczema images, 2,055 Psoriasis images.

 [138] Classification 19/4/2024
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intricate details and nuances in images, making them 
useful for generating diverse synthetic images that rep-
resent various skin diseases, textures, colors, and mani-
festations. This approach provides an innovative way to 
augment datasets, understand disease progression, and 
enhance the robustness of ML models in dermatology 
research and medical imaging. However, it is important 
to ensure that the generated synthetic images accurately 
reflect real-life skin conditions and are used responsibly 
alongside authentic clinical data. In addition, advanced 
techniques like elaborate copy-paste methods can further 
increase sample diversity and improve the representa-
tion of each lesion. Li et al. [91], apart from proposing a 
novel technique for increasing the number of VI image 
samples, point out the necessity of considering that dif-
ferent types of VI representations depict different visual 
patterns, and, therefore, may be treated diversely. Apart 
from the obvious disadvantages due to data scarcity, it 
should be taken into consideration that most of the pre-
sented works use privately owned datasets, and even 
when publicly available datasets are employed, the exper-
imental setup greatly differs in each case. This diversity 
hinders the extraction of useful conclusions about the 
effectiveness of the proposed approaches, the SOTA 
results, and future directions.

The calculation of severity scores (SALT, EASI, and 
VASI), is important for providing objective and accu-
rate quantification of each disease and is therefore a key 
objective of ML approaches. However, most approaches 
fail to develop pipelines that can effectively calculate 
existing scores, which results in approximations. With 
reference to AA and SALT, the technological advance-
ments extend to the exploitation of ML techniques 
through web [24] and mobile [27] applications, thuspro-
viding solutions to practical issues in real life and facili-
tating their use far from the supervised environment 
of a healthcare clinic or a research lab. Research on SD 
and EASI falls within the broader field of dermatitis and 
eczema lesions. Challenges such as the complexity of the 
visual characteristics of diseases, which can be confused 
with other skin conditions, as well as research prioritiza-
tion and data scarcity, hinder the development of ML and 
CV algorithms. Regarding the quantification of visual 
patterns for VASI scores, the literature presents efforts 
using ML to extract information from vitiligo-affected 
skin areas, focusing on segmentation or calculating dif-
ferentiation between endpoints rather than providing an 
actual VASI score. In a relevant literature review [10], 
few studies dealt with the automated calculation of VASI 
scores. Moreover, in most studies, the evaluation process 
fails to provide robust evidence of effectiveness, resulting 
in unreliable quantifiable results, if any exist. The sever-
ity scores (SALT, EASI, and VASI) for each disease can 

create a bridge between health and machine experts to 
research new approaches for the unbiased and reliable 
monitoring of skin disease progression. Although the sys-
tematic review of existing works highlights the potential 
of automated methods to accurately segment VI lesions, 
the lack of an automated tool that is specifically targeted 
at the calculation of VASI score, as proposed by the rel-
evant experts, is compelling.

Following the latest regulations in the US and Europe 
for the development of responsible, trustworthy, trans-
parent, and reliable AI, the enhancement of ML mod-
els with interpretability properties should be pursued in 
alignment with the requirement of delivering models that 
can support their results with reasoning for the integra-
tion of research projects, into routine clinical workflows. 
Indications of explainability approaches for the devel-
oped AI models for the four diseases were reported in 
[52, 85, 86]. Instead of utilizing visual explanations to 
deliver reasoning concerning the classification results, 
the visualizations in [85] and [86] are employed as a form 
of weakly-supervised segmentation mask that guides 
the process to focus on important regions for each skin 
disease.

Conclusions
This report presents a systematic review of the research 
literature concerning benign skin diseases. The report 
dives into the applications of CV and ML techniques 
for the extraction of knowledge from images to focus 
on the specifics of Atopic Dermatitis, Stasis Dermatitis, 
Alopecia Areata, and Vitiligo diseases. Apart from dem-
onstrating works that refer to the SOTA on downstream 
tasks such as classification, detection, and segmentation, 
the report contains references to the severity indices 
applied by relevant experts to assess the depicted lesions, 
the data augmentation issue, and existing datasets. The 
shortcomings of previous implementations and the latest 
advancements from other fields of medical imaging that 
can contribute to the tasks in question have been identi-
fied to a large extent.

Although a significant number of publicly available 
datasets are presented herein, the qualitative issues and 
the actual quantity of unique samples reveal the need 
for disease-specific datasets with curated annotations. 
The poor exploitation of these datasets is demonstrated 
by the extensive usage of privately owned datasets and 
data augmentation techniques reported in the literature. 
On the other hand, the interrater variability [147, 148] in 
the annotations of skin lesions suggests future directions 
toward unsupervised or self-supervised approaches.

The review discusses the integration of sever-
ity scores, such as SALT, EASI, and VASI into ML 
approaches for monitoring skin diseases. These scores 
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help connect healthcare and ML experts to develop 
unbiased, reliable methods for tracking disease pro-
gression. For AA, SALT has been effectively used 
in ML-based web and mobile applications, enabling 
monitoring outside clinical settings. However, ML and 
CV advancements in dermatitis and eczema are chal-
lenged by the complexity of symptoms and data scar-
city. Regarding vitiligo, attempts to use ML for VASI 
score calculation are limited and lack a robust, reli-
able method. The need for automated tools specifi-
cally designed for accurate VASI score calculation is 
underscored, highlighting the gap in current research. 
Emphasis should be placed on developing accurate 
automated VASI tools, improving data collection, refin-
ing ML algorithms for complex conditions, integrating 
multi-modal data, standardizing ML approaches, and 
creating user-friendly applications for non-clinical use.

Incorporating skin image analysis in clinical work-
flows and web/mobile applications can facilitate rapid 
and precise diagnosis, which is crucial for early inter-
vention and improved treatment outcomes. By reduc-
ing the time required for accurate diagnosis, clinicians 
can initiate appropriate treatments promptly, thereby 
improving patient management and validating heal-
ing progression. The assessment procedure will greatly 
benefit from descriptive and comparable visualizations 
to support and justify their reports.
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