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Abstract 

Background  Large language models (LLMs) are increasingly utilized in healthcare settings. Postoperative pathol-
ogy reports, which are essential for diagnosing and determining treatment strategies for surgical patients, frequently 
include complex data that can be challenging for patients to comprehend. This complexity can adversely affect 
the quality of communication between doctors and patients about their diagnosis and treatment options, potentially 
impacting patient outcomes such as understanding of their condition, treatment adherence, and overall satisfaction.

Materials and methods  This study analyzed text pathology reports from four hospitals between October 
and December 2023, focusing on malignant tumors. Using GPT-4, we developed templates for interpretive pathol-
ogy reports (IPRs) to simplify medical terminology for non-professionals. We randomly selected 70 reports to gener-
ate these templates and evaluated the remaining 628 reports for consistency and readability. Patient understanding 
was measured using a custom-designed pathology report understanding level assessment scale, scored by volun-
teers with no medical background. The study also recorded doctor-patient communication time and patient compre-
hension levels before and after using IPRs.

Results  Among 698 pathology reports analyzed, the interpretation through LLMs significantly improved readability 
and patient understanding. The average communication time between doctors and patients decreased by over 70%, 
from 35 to 10 min (P < 0.001), with the use of IPRs. The study also found that patients scored higher on understand-
ing levels when provided with AI-generated reports, from 5.23 points to 7.98 points (P < 0.001), with the use of IPRs. 
indicating an effective translation of complex medical information. Consistency between original pathology reports 
(OPRs) and IPRs was also evaluated, with results showing high levels of consistency across all assessed dimensions, 
achieving an average score of 4.95 out of 5.

Conclusion  This research demonstrates the efficacy of LLMs like GPT-4 in enhancing doctor-patient communication 
by translating pathology reports into more accessible language. While this study did not directly measure patient 
outcomes or satisfaction, it provides evidence that improved understanding and reduced communication time may 
positively influence patient engagement. These findings highlight the potential of AI to bridge gaps between medical 
professionals and the public in healthcare environments.
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Introduction
As medical information technology rapidly advances, 
the application of artificial intelligence (AI) in health-
care is becoming increasingly widespread [1–3]. Notably, 
Large Language Models (LLMs) have shown potential in 
the analysis and processing of medical texts [2]. Pathol-
ogy reports, being critical for diagnosis and treatment 
decisions, directly impact the quality and efficiency 
of doctor-patient communication [4]. However, these 
reports often contain a large amount of professional ter-
minology and complex data, making them difficult for 
patients to understand. Doctors also face time pressure 
when explaining these reports. Therefore, enhancing the 
readability of pathology reports and improving effec-
tive communication between doctors and patients has 
become crucial for improving the quality of medical ser-
vices. Additionally, insufficient communication between 
doctors and patients has been identified as a significant 
factor affecting patient satisfaction and treatment com-
pliance [5]. Studies have shown that good doctor-patient 
communication can significantly improve patients’ 
understanding and acceptance of treatment plans, 
thereby affecting treatment outcomes [5, 6].

In recent years, LLMs have made significant progress in 
understanding and generating natural language, demon-
strating their ability to analyze and rewrite medical texts 
in a manner more understandable to non-professionals 
[7, 8]. For instance, Steimetz et  al. (2024) demonstrated 
that LLM chatbots can significantly improve the read-
ability of pathology reports while also highlighting some 
of the limitations such as inaccuracies and hallucinations 
in the generated reports [9]. This study aims to explore 
the possibility of using LLMs to enhance the efficiency 
of doctor-patient communication, particularly by auto-
mating the translation of pathology report content into 
patient-friendly language. This approach aims to reduce 
cognitive barriers to medical information and promote 
better patient understanding of their health conditions.

Using routine post-operative pathology reports in 
oncology, this study designed a universal pathology 
report interpretation framework through LLMs and 
developed a corresponding pathology report understand-
ing level assessment scale. This was done to explore the 
potential and actual effects of LLMs in enhancing doctor-
patient communication efficiency.

Therefore, in response to these challenges, this 
study aims to explore the potential of using LLMs to 
enhance doctor-patient communication, particularly 

by simplifying pathology report content into patient-
friendly language, and to provide insights on how LLMs 
can be integrated into clinical practice to improve com-
munication efficiency [10, 11].

By improving the readability of pathology reports, we 
hope to promote better patient understanding of their 
health conditions, strengthen trust and communication 
between doctors and patients, and ultimately enhance 
the overall quality of medical services and patient satis-
faction. Trust in physicians, fostered by effective com-
munication, plays a pivotal role in treatment adherence. 
Research indicates that patients who trust their health-
care providers are more likely to follow prescribed treat-
ments, which is essential for better health outcomes [12, 
13].

Materials and methods
The work has been reported in line with the Standards for 
Quality Improvement Reporting Excellence (SQUIRE) 
criteria [14].

Study design
From October to December 2023, text pathology reports 
of malignant tumors were retrieved from the database of 
four hospitals. Pathology reports included information 
on cytology, tissue biopsy examination, and resections. 
Additionally, all common tumor types were included, 
except for rare malignant tumors, which were excluded 
due to limited sample sizes and follow-up data (Fig. 1).

Among the 698 eligible text pathology reports on 
malignant tumors, 70 reports (5 reports per organ for 14 
organs) were randomly selected to develop templates for 
interpretive reports and corresponding scoring scales. 
These were used to enable LLMs to reliably generate 
similar interpretive reports, as well as to produce iden-
tical outputs from the remaining 628 reports. Doctors 
evaluated each report for consistency by comparing the 
original pathology report (OPR) with the AI-generated 
simplified report (Interpretive pathology report, IPR). 
The evaluation focused on whether key diagnostic infor-
mation, such as tumor type (e.g., carcinoma, lymphoma), 
tumor stage (e.g., TNM classification), histological fea-
tures (e.g., cell differentiation), presence of metastasis, 
and other clinically significant findings (e.g., molecular 
markers, margins, and lymph node involvement), were 
accurately represented in the simplified version. Doctors 
from multiple specialisms, including pathology, oncology, 
and surgery, participated in this evaluation process. Each 
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specialist ensured that the critical diagnostic elements 
within their field were accurately reflected. No signifi-
cant differences were observed between specialisms in 
the consistency of the outcomes, as all specialists prior-
itized accuracy and clarity in their respective domains. If 
discrepancies were found, the reports were reviewed and 
corrected to ensure alignment between the two versions. 
This process is further illustrated in Fig. 2C.

The baseline health literacy levels of the volunteers 
were assessed using the Health Literacy Questionnaire 
(HLQ), ensuring that their understanding of medical 
terminology was evaluated prior to the study [15]. This 
assessment helped us control for variations in health 
literacy among the volunteers. The results of the HLQ 
assessments are summarized in Table  1. In the study, 
three volunteers (VA, VB, and VC) with only a high school 
education and no medical background scored the 698 
OPRs using the scoring scales (Fig.  2) and recorded 
reading time. Then, three other volunteers (VD, VE, and 
VF) with similar backgrounds scored the IPRs using the 

scoring scales (Fig. 2) and recorded reading time. Lastly, 
doctors (with 10–15 years of experience) communicated 
with volunteers (VA, VB, and VC) based on the OPRs and 
recorded doctor-patient communication time, and then 
communicated with volunteers (VD, VE, and VF) based on 
the IPRs and recorded the time. Figure 1 summarizes the 
study design.

Scale and template generation
Seventy pathology reports were assigned to an author 
(X.W.Y) to construct scales and templates (Fig. 2), aimed 
at evaluating the accuracy and repeatability of IPRs gen-
erated by GPT-4 through quantitative metrics.

A pathology report understanding level assessment 
scale is presented in Fig. 2A. This scale aims to compre-
hensively assess the understanding level of non-medical 
background individuals regarding pathology reports. 
Patient understanding was measured using a custom-
designed pathology report understanding level assess-
ment scale, developed based on established health 

Fig. 1  Study design flow chart. The pathology reports from pathologists (Label (A#……N#)) were fed into the natural language processing 
(NLP) pipeline to generate new pathology interpretation reports (Label (A……N)). Label (A#……N#) and Label (A……N) were both read 
and scored by three volunteers, and the results were statistically compared with each other. In addition, the understanding of Label (A#……N#) 
and Label (A……N) were scored by the volunteers through the pathological score scale. Meanwhile, the doctor-patient communication 
time after the volunteers read Label (A#……N#) and Label (A……N) was also recorded and statistically analyzed. The pathological score 
scale was generated by the large language model (LLM), which was modified and organized by pathologist. The dotted lines indicate 
that both pathologists and/or volunteers participated in the corresponding task of the study and interacted with each other during the process
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Fig. 2  A Pathology report understanding level assessment scale. B Pathology report interpretation template. C Pathology Artificial Intelligence 
Quality Index. The scales and template were designed by large language model (LLM), and the pathologist modified and organized the scale
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literacy principles. The scale drew from the Health Lit-
eracy Questionnaire (HLQ) and other key research on 
health literacy [15–18]. It was designed to assess the clar-
ity, relevance, and ease of understanding of key informa-
tion in pathology reports, specifically for individuals with 
no medical background. The scale was refined through 
pilot testing to ensure its applicability for the study 
population.

A pathology report interpretation template is depicted 
in Fig. 2B. This template is intended as a general frame-
work; specific content needs to be filled in and adjusted 
according to the actual details of each pathology report. 
This aims to assist individuals without a medical back-
ground in understanding the content and importance 
of pathology reports. The iterative prompt engineering 
involved multiple steps: First Prompt: “Summarize the 
pathology report for a layperson.” Refinement: “Summa-
rize the pathology report in simple language, explaining 
the diagnosis, significance, and next steps.” Final Prompt: 
“Translate the pathology report into easy-to-understand 
language, include diagnosis, clinical significance, treat-
ment options, and follow-up recommendations.” The 
OPRs were generated using the refined templates. Each 
section of the template was filled with specific details 
from the pathology reports, ensuring consistency and 
comprehensibility. Examples of these templates and filled 
reports are illustrated in Figs. 2B and 3.

A pathology AI quality index is shown in Fig. 2C. This 
index was developed using GPT-4 and further refined 
through discussions with pathologists, who finalized the 
content and scoring criteria. Using this scale, doctors 
can comprehensively evaluate the quality of pathology 
interpretation reports generated by GPT-4. By sum-
marizing the scores, it is possible to roughly determine 
GPT-4’s level of understanding and interpreting pathol-
ogy reports, as well as its potential value in clinical appli-
cations. This method was designed to rigorously compare 
the IPRs generated by GPT-4 against the standards set 

by the OPRs. The evaluation was conducted across five 
key dimensions by three pathologists, each with over a 
decade of professional experience: Accuracy (Dimen-
sion A), Interpretative Depth (Dimension B), Readabil-
ity (Dimension C), Clinical Relevance (Dimension D), 
and Overall Evaluation (Dimension E). Pathologist X 
is a general pathologist working in a university hospital 
with expertise in oncologic pathology; Pathologist Y is 
a thoracic pathologist with specialization in lung cancer 
diagnostics, working at a non-university cancer center; 
and Pathologist Z is a gastrointestinal pathology expert 
affiliated with a leading academic medical center. All 
pathologists have extensive experience in analyzing com-
plex pathology reports and contributing to AI-assisted 
diagnostic models. Their diverse backgrounds ensured a 
comprehensive evaluation of the pathology reports from 
different perspectives. This comprehensive review aimed 
to determine how well the GPT-4-generated reports cap-
tured the essence of the OPRs. The results, as adjudicated 
by the pathologists—referred to as Pathologist X, Pathol-
ogist Y, and Pathologist Z.

To evaluate the text complexity of both OPRs and IPRs, 
we calculated the word count using the word count fea-
ture in Microsoft Office 365 (Microsoft Corporation, 
Redmond, WA, USA). This method provided a quanti-
tative measure of report length, allowing us to compare 
word counts across different types of malignancies and 
between OPRs and IPRs.

Patient data anonymization and security
To secure patient data, all identifying information was 
anonymized before being processed by the LLM/GPT 
model. The anonymization process ensured that no 
personal information, such as names, dates of birth, or 
medical record numbers, was included in the dataset. 
Additionally, the LLM was used in a secure, isolated envi-
ronment that complied with data protection regulations, 
including [specific regulations if applicable, e.g., GDPR 

Table 1  Baseline health literacy levels

Scores on the HLQ dimensions range from 1 to 4, with higher scores indicating higher levels of health literacy

Health Literacy Dimension Average Score

Feeling Understood and Supported by Healthcare Providers 3.92

Having Sufficient Information to Manage My Health 3.83

Actively Managing My Health 3.58

Social Support for Health 3.58

Appraisal of Health Information 3.83

Ability to Actively Engage with Healthcare Providers 3.83

Navigating the Healthcare System 3.42

Ability to Find Good Health Information 3.75

Understanding Health Information Well Enough to Know What to Do 3.92
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Fig. 3  Application of interpretive pathology report (IPR). A Original pathology report (OPR). B Corresponding IPR
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or HIPAA]. These measures ensured that no sensitive 
patient data was exposed or accessible outside the study, 
safeguarding patient confidentiality while allowing for 
accurate AI-generated pathology report analysis.

Statistical analyses
The data are presented as either mean ± standard devia-
tion, minimum and maximum values. We evaluated the 
data from groups through Shapiro–Wilk test for normal-
ity test. If the data followed normal distribution, t test 
was used for statistical analysis; otherwise, Mann–Whit-
ney U test was used for statistical analysis. The relation-
ships between continuous variables were determined 
using Spearman’s correlation analysis. A P < 0.05 was 
deemed to indicate statistical significance. All statistical 
calculations were carried out using R software, version 
4.3.2 (Lucent Technologies, Murray Hill, NJ, USA).

Results
Characteristics of sample
Between October and December 2023, a total of 3,082 
patients were screened at four institutions, as illustrated 
in Fig.  1. Of these, 2,353 patients were excluded due to 
pathologically confirmed benign tumors. Additionally, 31 
patients with rare malignant tumors were excluded due 
to challenges associated with follow-up data collection, 
which primarily included the geographical dispersion of 
patients, variability in hospital record-keeping practices, 
and inconsistent communication channels across insti-
tutions. Consequently, the study included 698 patients 
for further analysis. The majority of the study cohort 
were female, as detailed in Table 2. The participants’ ages 
ranged widely from 24 to 82  years, with an average age 
of 55.27  years. A significant proportion, approximately 
85.67%, were below the age of 65.

Text data extractions
As shown in Table 3, the average word count of OPRs was 
549.98. Notably, brain malignancies had the lowest aver-
age word count for their OPRs, at 406.78, whereas ovar-
ian malignancies had the highest, at 961.21. The analysis 
also revealed an average of 19.73 medical terms per OPR 
across all studied categories of malignant tumors. Pros-
tate malignancies had the fewest average medical terms, 
at 14.46, while ovarian malignancies had the most, aver-
aging 30.43 medical terms.

We observed that the average word count for OPRs 
across all types of malignant tumors was 549.98, while 
the average word count for IPRs was significantly higher 
at 787.44. Liver malignancies had the lowest average 
word count for OPRs (441.41) and IPRs (775.25). In con-
trast, ovarian malignancies had the highest average word 
count for OPRs (961.21), while esophagus malignancies 

had the highest average word count for IPRs (833.80). 
This suggests that although there is significant variation 
in the word count of OPRs among different malignancies 
(P < 0.001), the variation in IPR word counts is less pro-
nounced (P = 0.088, Figs. 4 and 5).

Moreover, the word count for the OPRs of ovar-
ian malignant tumors was higher than that for the IPRs 
(P < 0.001), whereas the word counts for the OPRs of 
other cancer types were lower than those for the IPRs 
(P < 0.001).

Consistency evaluation of expression content
To assess the fidelity and quality of IPRs relative to 
OPRs, we utilized a consistency evaluation scale devel-
oped with GPT-4, as shown in Fig.  2C. The results, as 
adjudicated by the pathologists—referred to as Patholo-
gist X, Pathologist Y, and Pathologist Z—showed no sig-
nificant statistical differences in their assessments across 
the dimensions. Remarkably, all dimensions consist-
ently scored 4 or higher, with Readability (Dimension C) 
notably achieving a unanimous score of 5, as detailed in 
Table 4.

Pathology report reading time
Two groups of volunteers separately read OPRs (VA, 
VB, and VC) and IPRs (VA, VB, and VC), with their read-
ing times recorded (Table  5, Fig.  4  and  6). The aver-
age reading time for OPRs across all types of malignant 
tumors was 401.76 s. Notably, brain malignancies had the 
shortest average reading time at 305.47 s, whereas ovar-
ian malignancies had the longest at 700.64  s, indicating 

Table 2  Basic characteristics of patients

a  Data are means ± SDs, with ranges in parentheses

Cancer Sites Patients Age (years)a Sex (M, F)

All sites 698 55.27 ± 12.66 (24, 82) 290 (41.55%), 408 
(58.45%)

Brain 32 58.16 ± 11.25 (34, 79) 13 (40.62%), 19 (59.38%)

Thyroid 76 44.53 ± 11.75 (24, 74) 32 (42.11%), 44 (57.89%)

Breast 86 50.98 ± 11.32 (25, 80) 0 (0.00%), 86 (100.00%)

Lung 98 58.04 ± 11.64 (32, 82) 49 (50.00%), 49 (50.00%)

Esophagus 10 63.10 ± 7.28 (50, 71) 7 (70.00%), 3 (30.00%)

Gastric 30 55.30 ± 12.42 (25, 80) 18 (60.00%), 12 (40.00%)

Liver 32 61.53 ± 12.47 (35, 82) 24 (75.00%), 8 (25.00%)

Pancreatic 18 56.39 ± 11.63 (37, 76) 15 (83.33%), 3 (16.67%)

Colorectal 74 61.03 ± 12.77 (27, 82) 31 (41.89%), 43 (58.11%)

Kidney 61 62.08 ± 10.02 (34, 82) 31 (50.82%), 30 (49.18%)

Prostate 37 72.89 ± 3.70 (67, 82) 37 (100.00%), 0 (0.00%)

Bladder 50 70.06 ± 5.75 (58, 81) 33 (66.00%), 17 (34.00%)

Ovary 61 52.11 ± 6.27 (39, 68) 0 (0.00%), 61(100.00%)

Uterus 33 53.45 ± 3.24 (47, 59) 0 (0.00%), 33 (100.00%)
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statistically significant differences in reading times for 
OPRs across tumor types (P < 0.001). In contrast, the 
average reading time for IPRs was 430.67  s, with the 
shortest for liver malignancies at 418.88 s, and the long-
est for esophagus tumors at 452.10 s. No significant dif-
ferences were observed in the reading times for IPRs 
across the tumor types (P = 0.413).

A comparison of the reading times between OPRs and 
IPRs for all types of malignant tumors revealed that OPRs 
were generally read faster than IPRs, with a statistically 
significant difference (P < 0.001). However, for bladder, 
ovarian, and uterus malignancies, the reading times were 

longer for OPRs compared to IPRs, with these differences 
also being statistically significant (P < 0.001 for each).

Understanding level assessment
The evaluation further involved a multidimensional scor-
ing of OPRs and IPRs using the Pathology Report Under-
standing Level Assessment Scale, as shown in Table  5, 
Figs.  2A and  6. Across all types of malignant tumors, 
the average score for OPRs was 5.23. In comparison, the 
average score for IPRs was significantly higher, at 7.98. 
This disparity in scoring between OPRs and IPRs across 
all tumor types was statistically significant (P < 0.001).

Table 3  Characteristics of pathology reports

Intentionally minimized to ensure the reports are accessible to a non-medical audience. The goal of the IPRs is to enhance understanding for patients and laypersons, 
which is why medical terms were avoided in the report generation process

OPRs Original pathology reports, IPRs Interpretive pathology reports
*  Data are means ± SDs, with ranges in parentheses
**  The OPRs and IPRs of different cancer sites were analyzed statistically

Cancer Sites Pathology 
reports

OPRs (Word count)* OPRs (medical terms)* IPRs (Word count)* P value**

All sites 698 549.98 ± 154.72 19.73 ± 5.22 787.44 ± 53.51  < 0.001

(304, 1154) (10, 34) (657, 875)

Brain 32 406.78 ± 28.00 16.81 ± 2.89 786.47 ± 51.31  < 0.001

(306, 454) (10, 22) (701, 874)

Thyroid 76 434.45 ± 52.39 16.84 ± 3.00 789.34 ± 56.78  < 0.001

(304, 564) (10, 24) (695, 875)

Breast 86 485.23 ± 56.85 19.43 ± 3.22 785.42 ± 56.48  < 0.001

(398, 686) (11, 25) (697, 874)

Lung 98 552.62 ± 29.48 20.96 ± 3.61 785.42 ± 56.48  < 0.001

(500, 598) (12, 32) (697, 874)

Esophagus 10 448.90 ± 33.09 14.70 ± 2.63 833.80 ± 41.58  < 0.001

(400, 498) (12, 20) (764, 875)

Gastric 30 497.67 ± 34.91 15.30 ± 2.77 780.03 ± 47.01  < 0.001

(443, 597) (12, 21) (701, 860)

Liver 32 441.41 ± 70.15 14.75 ± 2.69 775.25 ± 51.74  < 0.001

(306, 570) (10, 20) (698, 853)

Pancreatic 18 461.89 ± 39.06 16.00 ± 4.64 788.61 ± 54.91  < 0.001

(403, 517) (10, 24) (700, 875)

Colorectal 74 513.89 ± 56.49 16.47 ± 2.88 784.73 ± 51.07  < 0.001

(366, 654) (12, 24) (696, 874)

Kidney 61 500.87 ± 30.93 21.95 ± 2.96 790.98 ± 50.48  < 0.001

(428, 553) (16, 28) (702, 874)

Prostate 37 453.11 ± 60.71 14.46 ± 2.26 808.08 ± 49.10  < 0.001

(343, 568) (10, 19) (702, 873)

Bladder 50 679.28 ± 47.49 23.48 ± 1.97 776.00 ± 55.78  < 0.001

(602, 785) (20, 28) (697, 873)

Ovary 61 961.21 ± 67.47 30.43 ± 1.88 781.70 ± 54.90  < 0.001

(802, 1154) (28, 34) (657, 874)

Uterus 33 671.48 ± 56.57 22.52 ± 3.02 797.94 ± 46.99  < 0.001

(519, 777) (18, 29) (711, 871)
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Doctor‑patient communication
After volunteers (A, B and C) finished reading the OPRs, 
the doctor engaged in simulated doctor-patient commu-
nication with the volunteers to explain the patient’s con-
dition and recorded the communication time (Table  5, 
Figs. 4 and 6D). Across all types of malignant tumors, the 
average communication time was 2091.25 s. Specifically, 
brain malignancies exhibited the longest average commu-
nication time at 2154.41  s, while prostate malignancies 

had the shortest at 2062.03 s. Statistical analysis revealed 
no significant differences in communication times across 
the different tumor types (P = 0.734). Additionally, 
after volunteers (D, E and F) finished reading the IPRs, 
the doctor conducted simulated doctor-patient com-
munication based on the report content, explained the 
patient’s condition, and recorded the communication 
time. Across all types of malignant tumors, the average 
communication time was 599.15  s. The longest average 

Fig. 4  Comparative analysis of original pathology reports (OPRs) and interpretive pathology reports (IPRs) metrics across cancer sites. RT: Reading 
time. DPCT: Doctor-patient communication time
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communication time occurred with esophagus malig-
nancies, at 638.30  s, while the shortest was for gastric 
malignancies, at 581.80 s. Statistical analysis indicated no 
significant differences in communication times among 
the various types of malignant tumors (P = 0.467). Fur-
ther analysis showed that, regardless of the tumor type, 
the communication time after reading the OPRs was sig-
nificantly longer than that after reading the IPRs, a differ-
ence that was statistically significant (P < 0.001).

Correlation of OPRs and IPRs metrics
We analyzed the correlation between various metrics 
of OPRs and IPRs, as illustrated in Fig. 6. This heatmap 
provides a clear and intuitive display of the correlations 

among nine key metrics within OPRs and IPRs. It reveals 
a strong correlation between word count, medical terms, 
score, and reading time for OPRs. The figure serves as a 
visually intuitive tool to identify both the strength and 
the direction of relationships between these metrics.

Discussion
Our research on the application of GPT-4-generated 
IPRs in enhancing doctor-patient communication sup-
ports the expanding role of AI within healthcare, offering 
valuable insights that are particularly relevant to surgical 
settings. The principal outcomes of our study substanti-
ate the integration of AI to augment patient compre-
hension and communication efficacy. Comparatively 

Fig. 5  Original pathology reports (OPRs) vs. interpretive pathology reports (IPRs) comparison (word count, score, reading time and doctor-patient 
communication time) by cancer site. RT: Reading time. DPCT: Doctor-patient communication time
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reviewing recent scholarly work situates our study within 
the modern scientific discourse, emphasizing the novel 
contributions and prospective advancements our find-
ings introduce to the field [2, 8].

Across all types of malignant tumors, the use of IPRs 
resulted in significantly higher patient understanding 
scores compared to traditional OPRs, with an average 
improvement from 5.23 to 7.98 on the Pathology Report 
Understanding Level Assessment Scale. Furthermore, 
the study found a substantial reduction in doctor-patient 
communication time when using IPRs, decreasing from 
an average of 2091.25  s to 599.15  s, underscoring the 
potential time-saving benefits of AI-assisted reports. 
These findings suggest that AI-generated reports can 
enhance doctor-patient communication while also 
improving overall healthcare efficiency.

In addition to improving communication time and 
comprehension, the consistency evaluation conducted 
by pathologists highlighted that the IPRs generated 
by GPT-4 were highly accurate, scoring consistently 
across dimensions such as Accuracy, Interpretative 
Depth, and Readability. This consistency in evaluation 
across different tumor types supports the robustness of 
the AI-generated reports, indicating their potential for 
widespread clinical application. The strong correlation 
observed between OPR and IPR metrics further empha-
sizes the effectiveness of the AI model in maintaining 
clinical relevance while simplifying report content for 
patient understanding. This enhanced understanding 
is critical as it directly influences patient engagement 
and empowerment. Patients who grasp their medical 

conditions and the logic behind their treatment options 
are more inclined to adhere to recommended treatments 
and engage in proactive health management. This link 
between comprehension and compliance is well-docu-
mented in healthcare literature, with our data provid-
ing robust evidence of AI’s pivotal role in fostering this 
understanding [19–22].

Moreover, recent studies have increasingly acknowl-
edged AI’s capability to enhance the accessibility and 
comprehensibility of medical documentation. For 
instance, Amin et  al. employed three prominent large 
language models—ChatGPT, Google Bard, and Microsoft 
Bing—to simplify radiology reports [23]. Subsequently, 
they solicited assessments from pertinent clinical practi-
tioners concerning the accuracy of each model’s output. 
Nevertheless, the research did not address the compre-
hensibility of these simplified radiology reports for indi-
viduals lacking a medical background. Consequently, 
the applicability of large language models in making 
radiological information accessible to a broader, non-
specialist audience remains unverified [23]. Truhn et  al. 
utilized GPT-4 to generate structured pathology reports, 
demonstrating that structured reports generated by large 
language models are consistent with those produced by 
pathologists [24]. This indicates that LLMs could poten-
tially be employed routinely to extract ground truth 
data for machine learning from unstructured pathology 
reports in the future. However, this study focused only 
on evaluations by professionals and lacks an assessment 
of the usability of AI-generated reports in broader sce-
narios. Similarly, Steimetz et  al. examined methods for 

Table 4  Evaluation of consistency between original radiology reports and interpretive radiology reports

Cancer Site Dimension A 
(Accuracy)

Dimension B 
(Interpretation Depth)

Dimension C 
(Readability)

Dimension D (Clinical 
Relevance)

Dimension 
E (Overall 
Evaluation)

All sites 4.95 4.95 5 4.92 4.84

Brain 5 4.97 5 4.91 4.91

Thyroid 4.93 4.96 5 4.83 4.83

Breast 4.94 4.94 5 4.91 4.8

Lung 4.95 4.94 5 4.93 4.83

Esophagus 5 5 5 4.9 4.9

Gastric 4.97 4.97 5 4.9 4.83

Liver 5 4.94 5 4.97 4.91

Pancreatic 4.89 4.89 5 4.89 4.67

Colorectal 4.96 4.97 5 4.95 4.88

Kidney 4.93 4.95 5 4.97 4.85

Prostate 4.95 4.95 5 4.95 4.84

Bladder 4.96 4.92 5 4.96 4.86

Ovary 4.93 4.95 5 4.93 4.82

Uterus 4.94 4.97 5 4.88 4.79
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simplifying medical documents to improve patient com-
prehension, finding that enhancing readability directly 
impacts patient engagement and satisfaction [9]. In addi-
tion, Singhal et al. showed that LLMs effectively encode 
clinical knowledge, reinforcing their potential in improv-
ing healthcare communication [8]. Harrer further dis-
cusses the ethical considerations and complexities of 
integrating large language models into medical systems, 
emphasizing the importance of thoroughly evaluating 
their real-world applications to ensure both patient safety 
and accuracy [11].

Building on previous research, our study simulated 
interactions between doctors and patients regarding 
the interpretation of postoperative pathology reports in 
surgical settings [9, 23, 24]. It demonstrated the univer-
sal applicability of explanations generated by large lan-
guage models across different demographic groups. This 
research goes beyond simply translating and simplifying 
professional reports; it highlights the importance of such 
models as bridges between professional and non-profes-
sional domains, thereby expanding the use of large lan-
guage models in real-world healthcare settings.

Table 5  Volunteers’ evaluation of the original pathology reports and the interpretive pathology reports generated based on GPT-4

OPRs Original pathology reports, IPRs Interpretive pathology reports, RT Reading time, DPCT doctor-patient communication time
a  Volunteers A, B, and C were high school educated people with non-medical backgrounds, aged 50, 50, and 52 years old, and their genders were male, female, and 
female, respectively. In addition, the matched volunteers D, E and F are also high school educated people with non-medical background, their ages are 50, 51 and 
51 years old respectively, and their genders are male, female and female respectively
b  Data are means ± SDs, with ranges in parentheses

Cancer Sites V (A, B, C)a V (D, E, F)a P V (A, B, C) V (D, E, F) P V (A, B, C) V (D, E, F) P
OPRs (RT)b IPRs (RT) OPRs (Score) IPRs (Score) OPRs (DPCT) IPRs (DPCT)

All sites 401.76 ± 112.06 430.67 ± 37.81  < 0.001 5.23 ± 0.88 7.98 ± 0.82  < 0.001 2091.25 ± 170.90 599.15 ± 69.31  < 0.001

(223, 841) (348, 524) (4, 6) (7, 9) (1801, 2400) (480, 720)

Brain 305.47 ± 21.55 428.06 ± 37.64  < 0.001 5.03 ± 0.74 8.00 ± 0.76  < 0.001 2154.41 ± 148.01 612.66 ± 69.27  < 0.001

(230, 340) (363, 524) (4, 6) (7, 9) (1818, 2392) (497, 720)

Thyroid 321.33 ± 38.80 432.11 ± 39.31  < 0.001 6.00 ± 0.00 7.87 ± 0.82  < 0.001 2104.17 ± 165.55 601.67 ± 69.50  < 0.001

(225, 417) (359, 523) (6, 6) (7, 9) (1802, 2391) (483, 716)

Breast 354.56 ± 41.56 435.30 ± 40.24  < 0.001 4.90 ± 0.72 7.95 ± 0.85  < 0.001 2083.97 ± 183.14 590.48 ± 70.42  < 0.001

(291, 501) (362, 517) (4, 6) (7, 9) (1805, 2394) (480, 715)

Lung 402.52 ± 21.47 428.65 ± 40.78  < 0.001 5.41 ± 0.69 7.98 ± 0.81  < 0.001 2074.30 ± 169.04 597.28 ± 71.82  < 0.001

(364, 436) (354, 517) (4, 6) (7, 9) (1803, 2400) (484, 717)

Esophagus 326.90 ± 24.18 452.10 ± 32.22  < 0.001 4.00 ± 0.00 8.40 ± 0.84  < 0.001 2030.00 ± 163.08 638.30 ± 65.62  < 0.001

(291, 363) (395, 491) (4, 4) (7, 9) (1805, 2306) (536, 720)

Gastric 362.53 ± 25.41 428.00 ± 37.60  < 0.001 5.70 ± 0.47 8.03 ± 0.85  < 0.001 2079.67 ± 198.41 581.80 ± 67.32  < 0.001

(323, 435) (361, 510) (5, 6) (7, 9) (1801, 2396) (481, 706)

Liver 321.41 ± 51.14 418.88 ± 37.06  < 0.001 6.00 ± 0.00 8.03 ± 0.86  < 0.001 2088.75 ± 181.83 612.81 ± 59.89  < 0.001

(223, 415) (351, 496) (6, 6) (7, 9) (1821, 2388) (484, 707)

Pancreatic 336.56 ± 28.48 433.72 ± 37.05  < 0.001 4.17 ± 0.38 7.89 ± 0.90  < 0.001 2103.56 ± 148.86 593.33 ± 73.37  < 0.001

(293, 377) (354, 511) (4, 5) (7, 9) (1874, 2379) (502, 720)

Colorectal 374.41 ± 41.24 429.35 ± 38.25  < 0.001 5.89 ± 0.31 8.00 ± 0.81  < 0.001 2095.24 ± 161.22 607.85 ± 73.10  < 0.001

(266, 477) (352, 514) (5, 6) (7, 9) (1805, 2392) (483, 718)

Kidney 364.85 ± 22.54 431.59 ± 30.75  < 0.001 6.00 ± 0.00 8.08 ± 0.80  < 0.001 2088.69 ± 181.35 585.89 ± 67.33  < 0.001

(312, 403) (378, 518) (6, 6) (7, 9) (1823, 2393) (480, 715)

Prostate 330.03 ± 44.33 440.27 ± 32.33  < 0.001 6.00 ± 0.00 7.89 ± 0.88  < 0.001 2062.03 ± 147.32 598.19 ± 69.89  < 0.001

(250, 414) (391, 512) (6, 6) (7, 9) (1806, 2329) (492, 714)

Bladder 494.98 ± 34.63 424.60 ± 37.97  < 0.001 4.16 ± 0.37 8.02 ± 0.77  < 0.001 2085.76 ± 175.08 602.08 ± 68.73  < 0.001

(439, 572) (353, 507) (4, 5) (7, 9) (1805, 2398) (484, 710)

Ovary 700.64 ± 49.20 426.98 ± 38.05  < 0.001 4.00 ± 0.00 7.95 ± 0.85  < 0.001 2112.07 ± 177.29 602.00 ± 65.65  < 0.001

(584, 841) (348, 517) (4, 4) (7, 9) (1801, 2394) (492, 720)

Uterus 489.27 ± 41.26 436.06 ± 36.86  < 0.001 4.00 ± 0.00 7.94 ± 0.75  < 0.001 2092.79 ± 167.61 598.55 ± 69.28  < 0.001

(378, 566) (360, 503) (4, 4) (7, 9) (1844, 2388) (480, 712)
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Another significant observation from our study was 
the reduction in communication time between doc-
tors and patients. The average duration for doctors to 
explain pathological reports decreased dramatically from 
approximately 35  min with OPRs to about 10  min with 
IPRs, marking a reduction of over 70% in communication 
time. This efficiency gain is especially critical in surgical 
settings where time is scarce, and the cognitive load on 
patients is substantial due to the stress and complexity of 
their medical situations. By minimizing the time needed 
to convey essential information, doctors can dedicate 
more time to addressing patient concerns, answering 
questions, and providing personalized care. Additionally, 
this efficiency may lead to increased patient throughput, 

essential in high-demand environments like surgical 
units. The scarcity of medical resources globally further 
underscores the importance of these findings, suggesting 
that large language models can significantly alleviate the 
strain on healthcare resources.

Additionally, our study demonstrates that the IPRs 
generated by GPT-4 show a high degree of consistency 
with the OPRs, as evaluated across key dimensions such 
as accuracy, interpretative depth, and readability. These 
findings underscore the robustness of the evaluative 
framework in verifying that the IPRs accurately represent 
the key insights of the OPRs. This framework not only 
ensures that the generated reports are consistent with 
the original medical data, but also plays a crucial role in 

Fig. 6  Correlation heatmap of original pathology reports (OPRs) and interpretive pathology reports (IPRs). RT: Reading time. DPCT: Doctor-patient 
communication time
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maintaining the integrity and reliability of the pathol-
ogy interpretation process. By systematically comparing 
multiple dimensions, the framework provides a com-
prehensive assessment that helps to identify potential 
discrepancies and ensures the clinical relevance of the 
reports. This rigorous approach allows for the use of AI-
generated reports with greater confidence in real-world 
medical settings, ultimately contributing to more efficient 
doctor-patient communication and improved healthcare 
outcomes. With proper training and model adjustments, 
LLMs like GPT-4 can achieve high levels of accuracy and 
reliability in interpreting and simplifying complex surgi-
cal pathology reports, vital for patient recovery and com-
prehension post-surgery.

The implications of these findings for clinical practice 
are profound. Integrating AI-generated IPRs into health-
care systems can be achieved through several practi-
cal steps. First, hospitals and clinics can implement AI 
models like GPT-4 to automatically generate simplified, 
patient-friendly pathology reports alongside traditional 
reports. These AI-generated reports can be shared with 
patients via patient portals or during face-to-face consul-
tations. Additionally, training healthcare providers to uti-
lize AI-generated reports as communication tools during 
consultations can further enhance patient understand-
ing. By offering easy-to-understand summaries, patients 
are more likely to engage with their care plans, leading 
to greater satisfaction and better adherence to treatment, 
ultimately contributing to improved health outcomes. 
Additionally, reducing the time spent on routine expla-
nations can alleviate workload pressures on healthcare 
professionals, potentially enhancing job satisfaction and 
reducing burnout.

However, it is important to note that this study was 
conducted in a Chinese-speaking region, and all pathol-
ogy reports, whether original or interpretive, were writ-
ten in Chinese. The language and cultural background 
may influence the generalizability of our findings. During 
the template generation and evaluation process, we care-
fully considered the use of Traditional Chinese Medicine 
(TCM) terminology and the specific structure of Chinese 
pathology reports. Therefore, in real-world applications, 
it is crucial to take cultural and linguistic contexts into 
account when applying the conclusions of this study.

While our study utilized volunteers to simulate patient 
interactions, we acknowledge the potential differences 
between volunteers and real patients. Real patients in 
clinical settings often experience a range of emotions, 
such as anxiety, fear, and distress, which can influence 
their behavior, decision-making, and communication 
efficiency. Studies have shown that patients under emo-
tional distress may struggle with comprehension and 
retention of medical information, potentially impacting 

their ability to engage in effective communication with 
healthcare providers [25]. In contrast, volunteers in our 
study, who were aware of the non-threatening nature of 
the environment, did not experience these emotional 
stressors. As such, future research should aim to include 
real patients to better capture the complexity of clinical 
interactions and the impact of emotional states on com-
munication outcomes.

Despite the promising results, our study acknowledges 
several key limitations that warrant careful considera-
tion. These limitations highlight areas for cautious inter-
pretation of the results and suggest potential avenues for 
future research to address these gaps. First, our study’s 
heavy reliance on the capabilities of GPT-4, a specific 
version of Large Language Models developed by OpenAI, 
raises questions about the generalizability of our find-
ings. While GPT-4 is renowned for its sophisticated nat-
ural language processing capabilities, it represents only 
one example of such technologies. Different LLMs may 
exhibit varying effectiveness based on their training data 
and underlying algorithms. Future research could explore 
the performance of other LLMs in similar tasks to verify 
if the observed benefits are replicable across different 
AI platforms. Second, the demographic and geographic 
diversity of our patient sample was confined to specific 
hospitals within a limited region, which may restrict the 
applicability of our results to other settings where patient 
populations differ significantly in terms of language, 
culture, and healthcare practices. Additionally, the sam-
ple size, while sufficient for statistical analysis, may not 
fully capture the variability and complexity of patient 
experiences across broader populations. Expanding the 
sample size and including a more diverse patient group 
in future studies could provide insights into how differ-
ent populations interact with and benefit from AI-gen-
erated reports. Third, the primarily quantitative nature 
of our study provides a robust statistical foundation for 
evaluating the effectiveness of AI in improving patient 
understanding and communication efficiency. However, 
this approach may overlook the nuanced human aspects 
of doctor-patient interactions that are better captured 
through qualitative methods. Future studies might incor-
porate qualitative research techniques, such as in-depth 
interviews or focus groups, to gather more comprehen-
sive insights into how patients and healthcare providers 
perceive and value the AI-generated interpretive reports. 
Fourth, one limitation of this study is the exclusion of 
hallucinations, a commonly reported error in LLM/
GPT models, from the evaluation. Hallucinations refer 
to instances where the model generates information that 
is factually incorrect or fabricated, which could poten-
tially affect the interpretation of AI-generated pathology 
reports. However, in this study, our primary focus was 
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on evaluating the accuracy, consistency, and readability 
of the pathology reports, specifically in relation to diag-
nostic content. As such, hallucinations were not included 
in the scope of this assessment. Future research should 
aim to investigate the occurrence of hallucinations in 
medical text generation and their potential implications 
for clinical practice, especially when using AI models in 
high-stakes decision-making environments. Fifth, we 
acknowledge the small number of volunteers and the 
potential impact on baseline characteristics. Different 
groups were chosen to avoid bias introduced by famili-
arity with the report format. However, controlling for 
baseline characteristics is crucial. The health literacy lev-
els of the volunteers were assessed and considered in the 
analysis. Therefore, these limitations underscore the need 
for cautious interpretation of our study results and high-
light the importance of addressing these areas in future 
research. By expanding the scope, diversity, and depth 
of research into the use of AI in healthcare, we can bet-
ter understand the capabilities and limitations of these 
technologies and work towards maximizing their benefits 
while minimizing potential drawbacks.

Conclusion
In conclusion, our study demonstrates the potential ben-
efits of using large language models (LLMs) like GPT-4 
in the healthcare setting, particularly in processing and 
interpreting pathology reports. While the findings high-
light the efficiency and accuracy of GPT-4 in generat-
ing interpretive pathology reports, we do not claim that 
patient outcomes or patient satisfaction were directly 
improved based on this study alone. Instead, this research 
illustrates the promise of AI tools in enhancing health-
care communication and streamlining clinical workflows, 
offering insights into the evolving role of AI in healthcare 
delivery. Future studies will be required to further inves-
tigate the impact of LLMs on patient satisfaction and 
clinical outcomes in diverse and real-world settings.
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