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Abstract
Background Machine learning (ML) is increasingly used to predict clinical deterioration in intensive care unit (ICU) 
patients through scoring systems. Although promising, such algorithms often overfit their training cohort and 
perform worse at new hospitals. Thus, external validation is a critical – but frequently overlooked – step to establish 
the reliability of predicted risk scores to translate them into clinical practice. We systematically reviewed how regularly 
external validation of ML-based risk scores is performed and how their performance changed in external data.

Methods We searched MEDLINE, Web of Science, and arXiv for studies using ML to predict deterioration of 
ICU patients from routine data. We included primary research published in English before December 2023. We 
summarised how many studies were externally validated, assessing differences over time, by outcome, and by data 
source. For validated studies, we evaluated the change in area under the receiver operating characteristic (AUROC) 
attributable to external validation using linear mixed-effects models.

Results We included 572 studies, of which 84 (14.7%) were externally validated, increasing to 23.9% by 2023. 
Validated studies made disproportionate use of open-source data, with two well-known US datasets (MIMIC and 
eICU) accounting for 83.3% of studies. On average, AUROC was reduced by -0.037 (95% CI -0.052 to -0.027) in external 
data, with more than 0.05 reduction in 49.5% of studies.

Discussion External validation, although increasing, remains uncommon. Performance was generally lower in 
external data, questioning the reliability of some recently proposed ML-based scores. Interpretation of the results was 
challenged by an overreliance on the same few datasets, implicit differences in case mix, and exclusive use of AUROC.
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Introduction
In the intensive care unit (ICU), prognostic scores are 
used to monitor patients’ severity of illness, predict out-
comes, and guide clinical decisions about interventions 
and resource allocation [1, 2]. These scores have quickly 
become a fixture in modern critical care and have been 
adopted in hospitals worldwide [3]. Established scor-
ing systems — such as the Sequential Organ Failure 
Assessment (SOFA) [4] — rely on a small set of carefully 
selected parameters to identify patients or patient groups 
at risk of deterioration [5]. This simplicity comes at the 
cost of crude prognostication and limited accuracy.

The increasing availability of detailed electronic health 
records (EHR) has opened the door for developing more 
sophisticated and personalised scores. Machine learning 
(ML)-based artificial intelligence (AI) has emerged as a 
promising tool to leverage the wealth of data [6] and ML-
based scores have attracted significant interest within the 
critical care community [7]. A growing body of literature 
demonstrates improved accuracy in predicting a diverse 
range of outcomes including all-cause mortality [8, 9], 
sepsis [10, 11], kidney injury [12, 13], respiratory failure 
[14], and more [15, 16].

Despite their promise, ML-based scoring systems are 
not without risk. Hospitals often differ in the type of 
patients that they see, the care that they provide, and the 
systems that they use to document those interactions. 
One notable challenge in this context is the potential for 
“overfitting”, where a system’s performance may become 
overly reliant on unique characteristics of the original 
patient cohort used for score development. Such overfit-
ting can lead to inaccurate predictions when the system 
is used in a new clinical environment, where the original 
unique characteristics are no longer present [6]. Thus, 
external validation on data from previously unseen hos-
pitals is a critical step in establishing the robustness of 
these systems and ensuring their reliability across differ-
ent clinical environments [17, 18]. Unfortunately, exter-
nal validation is often disregarded in practice [7, 19], 
raising concerns about the true potential of ML-based 
scores in the ICU. When a ML-based proprietary score 
for the detection of sepsis was implemented in clinical 
practice, an independent evaluation showed that it per-
formed much worse than anticipated [20]. This highlights 
an emerging translational gap, where theoretical benefits 
and advertised gains are not realised in clinical practice 
[18].

This systematic review aimed to address this issue by 
first determining how frequently external validation 
is performed in the literature and whether its use has 
increased in recent years. We then investigated how the 
performances of ML-based ICU scoring systems typically 
changed when applied to data from new hospitals. Our 

results contribute to the ongoing effort of translating reli-
able ML-based scores to the ICU bedside.

Methods
Eligibility criteria
Studies were included in the review if they (1) described 
the development of an ML-based AI model that (2) pro-
vided early warning of acute patient deterioration in (3) 
ICU settings based on (4) structured, routinely collected 
EHR data. To be included in the meta-analysis of model 
performance, models further needed to (5) be externally 
validated on data from a geographically distinct hospi-
tal that was not part of the derivation cohort. Following 
Shillan et al. (2020) [7], ML was defined as “any form of 
automated statistical analysis or data science method-
ology”. Clinical events were considered “acute” if they 
occurred up to 7 days after the time of prediction. A 
model gave early warning of such an event if the event 
was not yet known to the treating clinician at the time of 
prediction. The ICU was defined as “an area with a sole 
function to provide advanced monitoring or support to 
single or multiple body systems” [7]. Models could be 
externally validated as part of the same publication that 
developed the model or in a later publication.

Studies were excluded if they: predicted auxiliary 
outcomes such as length of stay, risk of readmission, 
laboratory parameters, or values for imputation; used 
unsupervised learning methods to identify patient sub-
groups (unless those subgroups were used as input for 
supervised prediction); included non-ICU patients with-
out providing separate performance metrics (e.g., by 
including patients from a general ward); required manual 
note review or prospective data collection of model fea-
tures; used medical images or natural language process-
ing of free-text notes; only validated the model on data 
from hospitals that contributed to the development data 
(including temporal validation on future data); did not 
report performance in the development dataset.

We included only primary research, excluding reviews 
and conference abstracts (except for abstracts that were 
peer-reviewed and paper-length, e.g., from the Interna-
tional Conference on Machine Learning).

Search strategy
We originally searched the bibliographic databases Ovid 
MEDLINE and Web of Science for all full-text, peer-
reviewed articles matching our search terms published 
in the English language before April 29th, 2022. Due to 
delays in the preparation of the manuscript and the fast-
moving nature of AI in healthcare, this search was later 
repeated based on feedback from peers to include articles 
published before December 13th, 2023. In both cases, 
we additionally searched the preprint server arXiv for 
relevant preprints using a custom computer script (see 
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extended supplementary material at  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 
7 6 0 5 / O S F . I O / F 7 J 4 6     ) .  

We divided our search into three sub-themes: 
“Machine Learning and Artificial Intelligence”, “Inten-
sive care setting”, and “Patient deterioration”. Articles 
were considered for screening if they matched all three 
themes. Notably, no theme was defined for external vali-
dation, which was ascertained manually during screen-
ing. Further details of the search strategy including all 
search terms can be found in the preregistered study Pro-
tocol (www.crd.york.ac.uk/prospero, RecordID: 311514). 
In an attempt to identify models that were validated in 
a separate, subsequent publication, we further performed 
a reserve citation search using Dimensions AI  (   h t t p s : / / w 
w w . d i m e n s i o n s . a i /     ) , looking for validation papers that  r e 
f e r e n c e d a screened record (see extended supplementary 
material [21]).

Study selection
Identified articles were exported from the database as 
RIS files and imported into the reference management 
software Zotero (Cooperation for Digital Scholarship; 
version 6.0.26), where they were deduplicated using 
Zotero’s semi-automated deduplication tool. Titles and 
abstracts were independently screened for inclusion by 
five of the authors (AH, BGC, EMA, JW, PR), with each 
article being seen by at least two reviewers. For all arti-
cles that remained after title and abstract screening, full 
texts were obtained and independently checked for eli-
gibility by three of the authors (EMA, JW, PR). Before 
each screening stage, screening was piloted on 25 ran-
domly selected articles. Agreement between authors was 
assessed using Fleiss’ Kappa [22]. If agreement was found 
to be unsatisfactory (defined as Kappa < 0.6), decisions 
were calibrated on another set of 25 articles. If there was 
uncertainty about the eligibility of an article at any stage 
of the screening, the article was forwarded to the next 
stage. Any disagreements were resolved in a consensus 
meeting. If multiple identified articles describe the same 
model — e.g., when development and external validation 
were published in separate articles  —  the article relat-
ing to model validation was included and any missing 
information on performance in the development dataset 
was supplemented from the article describing the model 
development.

Data collection
Data collection was performed for all included studies, 
covering information on target outcome(s), data sources, 
and whether or not the study was externally validated. 
For the subset of externally validated studies, a more 
detailed data collection was performed in Numbat Sys-
tematic Review Manager [23] using a predefined extrac-
tion template (see extended supplementary material 

[21]). The template was slightly extended prior to data 
collection to cover all elements defined in the MINimum 
Information for Medical AI Reporting (MINIMAR) stan-
dard [24]. Data collection was performed independently 
by three authors (original review up to 2022: EMA, PR; 
update for 2023: JW, PR). We extracted the following 
information for each validated study: target population; 
information on the data sources including country of ori-
gin, cohort size, outcome prevalence; strategy for deal-
ing with missing data; and performance in internal and 
external validation. For studies that reported results for 
more than one algorithm, the performance of the best 
algorithm during internal validation was recorded. For 
studies that reported results for more than one outcome, 
the performance for each outcome was recorded if they 
were sufficiently different (e.g., mortality and sepsis), oth-
erwise the most acute outcome was chosen (e.g., mortal-
ity at 24  h if authors reported both mortality at 24 and 
48  h). If a data item could not be ascertained from the 
main text or supplementary material of the article, it was 
recorded as missing and no attempt was made to contact 
study authors for additional data. Additional data items 
outlined in the protocol (e.g., number of included vari-
ables) were extracted but ultimately not used in the anal-
ysis; this deviation from the protocol did not affect the 
overall findings of the review.

Statistical analysis
Study characteristics and extracted performance metrics 
were summarised using descriptive statistics and graphi-
cal analysis. Changes over time in the proportion of stud-
ies performing external validation were assessed using a 
Chi-square test for linear trend.

Differences in the area under the receiver-operator 
characteristic curve (AUROC) were analysed using a 
random-effects model [25]. Parameters were estimated 
via a Bayesian linear regression model with a single inter-
cept and a normally distributed random effect per study. 
We used weakly informative normal priors for the mean 
and half-Cauchy priors for the scale of the random effects 
[26]. Due to an observed skewed distribution that might 
unduly influence the results, the difference was modelled 
with a Cauchy likelihood, which is less sensitive to outli-
ers [27] and is often used for robust regression [28]. Each 
study’s sample variance was derived using Hanley’s for-
mula [29]. For models estimating mortality — which is a 
well-defined and well-captured ground truth compared 
to inferred complications such as sepsis [30] or kidney 
injury [31] — a sensitivity analysis with an additional 
fixed effect for mortality was performed. After estima-
tion, we further calculated the proportion of studies in 
which the absolute difference in AUROC was > ± 0.05. A 
0.05 threshold was chosen in line with previous studies 
[32]. Only studies that reported AUROC performance 

https://doi.org/10.17605/OSF.IO/F7J46
https://doi.org/10.17605/OSF.IO/F7J46
http://www.crd.york.ac.uk/prospero
https://www.dimensions.ai/
https://www.dimensions.ai/
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were included (complete case analysis) and no analy-
sis of heterogeneity between studies or risk of bias was 
performed.

All analyses were performed in R version 4.2.2 [33]. 
Bayesian linear models were fitted with Hamiltonian 
Monte Carlo using the rstan package version 2.21.8 [34]. 
All results from the database search, screening, full-text 
review, and data collection as well as the analysis code are 
available at the Open Science Framework [21]. A study 
protocol was pre-registered on PROSPERO (www.crd.
york.ac.uk/prospero, RecordID: 311514).

Results
We identified 6,517 records in total from MEDLINE 
(3,236 records), Web of Science (2,996 records), and 
arXiv (285 records). A detailed flow diagram is shown 
in Fig. 1. After deduplication, the titles and abstracts of 
5,016 records were screened. Full texts were assessed 
for 782 manuscripts, of which 572 (73.1%) described the 
prediction of acute deterioration in adult ICU patients 
from routine data (included studies). The main reasons 
for exclusion were prospective or other non-routine data 
capture, non-acute outcomes, or the inclusion of image, 
text, or waveform data (Fig.  1). Of the included stud-
ies, 84 (14.7%) were also externally validated (validated 

Fig. 1 PRISMA flow diagram
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studies; Supplementary Table 1). No additional valida-
tion studies were identified through the reverse citation 
search (only performed for the original review up to 
2022).

Trend over time
The number of both included and validated studies 
increased significantly over time (p < 0.001) and espe-
cially after 2018, with 519 / 572 (90.7%) respectively 83 / 
84 (98.8%) studies published in or after that year (Fig. 2). 
The earliest study performing external validation was 
published in 2015. Between 2018 and 2022, the propor-
tion of validated studies increased from 2 / 28 (7.1%) to 
32 / 134 (23.9%).

Outcomes
A total of 329 / 572 (57.5%) included studies predicted 
short-term mortality. The next most commonly predicted 
outcome was sepsis with 81 / 572 (14.2%), followed by 
67 / 572 (11.7%) studies predicting renal complications 
including acute kidney injury, 36 / 572 (6.3%) stud-
ies predicting respiratory complications, and 25 / 572 
(4.4%) studies predicting circulatory failure. At 41 / 329 
(12.5%), the rate of external validation was slightly lower 
among studies predicting mortality compared to all stud-
ies. If studies predicting mortality were excluded, the 
proportion of studies that were externally validated — 
and therefore included in the meta-analysis — notably 
increased from 14.8% (84 / 572) to 18.5% (50 / 270).

Sources of data
Externally validated studies overwhelmingly used US 
data, with 77 / 84 (91.7%) including studies using at least 
one US dataset for model development or external vali-
dation. Chinese data was used in 15 studies, another 15 
studies used European data (Netherlands, Switzerland, 
Denmark, France, Belgium, Italy, Germany), 4 used 

South Korean data, 2 used Taiwanese data, and 1 each 
used Israeli, Japanese, and Iranian data.

The publicly available datasets MIMIC [35] and eICU 
[36] were overrepresented among validated studies 
(Fig.  3 and Supplementary Table 1). MIMIC was used 
in 67 / 84 (79.8%) of validated studies compared to 344 / 
572 (60.1%) of all included studies, with 38 studies using 
it for model development, 20 for external validation, and 
9 for both. eICU was used in 49 / 84 (58.3%) of exter-
nally validated studies compared to 119 / 572 (20.8%) of 
all included studies, 14 times for model development, 28 
times for external validation, and 7 times in both capaci-
ties. Together, MIMIC and eICU were used in 70 / 84 
(83.3%) validated studies, of which they were the only 
source of data in 36 / 84 (42.9%) studies. AUMCdb [37] 
and HiRID [15] — two further, more recent public ICU 
databases — were only used in 7 / 85 (8.2%) and 3 / 85 
(3.5%) included studies respectively.

Performance at new hospitals
All but two of the 84 validated studies reported AUROC. 
After accounting for sampling variability, model perfor-
mance in the external validation data was on average 
− 0.037 (95% credible interval [CI] -0.052 to -0.027) lower 
than estimated in the internal validation data (Fig.  4). 
This constitutes a relative decrease of 7–23% in perfor-
mance, with decreases of up to and more than 50% in 
some cases. Changes in performance ranged from a max-
imum increase of 0.140 to a decrease of -0.391 and were 
much more variable than explained by chance (Supple-
mentary Fig.  1), reflecting the likely substantial hetero-
geneity introduced by averaging over highly disparate 
clinical outcomes and underlying patient populations. 
However, there was no obvious publication bias. In 49.5% 
of cases, performance loss was < -0.05. On the other end 
of the spectrum, performance increased by > 0.05 in 5.5% 
of cases — indicating differences in patient populations 
between train and evaluation cohorts.

There was no evidence for differences between stud-
ies predicting death and those that predicted other out-
comes (mean difference − 0.003, 95% CI -0.025 to 0.019). 
We were unable to reliably calculate differences in gener-
alisability by data source, as only 14 / 84 (83.3%) did not 
use MIMIC or ICU, or due to handling of missing data, as 
only 17 / 84 studies (14.3%) used multiple imputation. All 
other studies used model-based single imputation (7 / 84; 
8.3%) or unconditional imputation such as last-observa-
tion-carried-forward or zero-imputation (40 / 84; 47.6%). 
Notably, 22 / 84 (26.2%) of studies did not specify how 
they dealt with missing data.

Commonly reported performance metrics besides 
AUROC included sensitivity (55 / 84; 65.4%), specific-
ity (52 / 84; 61.9%), accuracy (47 / 84; 60.0%), positive 
predictive value (45 / 84; 53.6%), and F1 score (39 / 84; 

Fig. 2 Number of eligible (black) and included externally validated stud-
ies (orange) by year of publication
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46.4%), although they were reported at a lower rate than 
AUROC.

Discussion
This systematic review examined the generalisation of 
complex, ML-based ICU scoring systems to new hos-
pitals. We considered any score that supports ICU staff 
through the prediction of imminent patient deterioration 
from routinely collected EHR data. Leveraging EHR data 
in this way to improve critical care continues to attract 

significant research interest, as evidenced by a steady 
increase in research output. Yet, translating this research 
into widespread clinical practice — and eventually con-
verting it into patient benefit — requires comprehensive 
validation of findings, including an evaluation of the 
scores’ performance at new hospitals. We found that such 
external validation is still relatively uncommon. Where 
validation was performed, performance at the new hos-
pital tended to be lower than in the training cohort, often 
notably so.

Fig. 3 A Number of studies that used MIMIC, eICU, and/or one or more other datasets; B Number of studies in which MIMIC, eICU, and other datasets 
were used for model development, external validation, or both

 



Page 7 of 10Rockenschaub et al. BMC Medical Informatics and Decision Making            (2025) 25:5 

Implications for the translation of AI into clinical practice
Fueled by recent advances in natural language processing 
and their successful translation to consumer products, 
there is a reinvigorated hype around the implementa-
tion of AI in healthcare [38]. Yet, while many preliminary 
results keep making the headlines, the proof is in the pud-
ding: a large majority of published results are exploratory 
in nature, providing only proof-of-concepts [39]. There 
is a continued lack of verification and clinical validation, 
blocking the translation of these proof-of-concepts to 
actual products [18]. In our review, we demonstrate that 
the issue of inadequate verification extends to ML-based 
scoring systems: the rate of retrospective external vali-
dation — a crucial step to establish validity and robust-
ness — remains low. Less than 20% of identified studies 
that proposed new scoring systems for the ICU under-
went external validation. External validation in this con-
text is an essential step for widespread clinical adoption. 
Unless a model is solely built for use in the hospital(s) it 
was developed at — a rare desideratum — it should be 
judged by its accuracy across a range of hospitals, all of 
which may potentially use the model in the future. When 
evaluated this way, we found that average model accuracy 
as measured by the AUROC decreased by 7–23%. Many 
ostensibly well-performing scores may thus no longer be 
suitable for use at the new hospital, a fact that would (and 
does) go unnoticed in the absence of external validation. 
To actually facilitate translation to the clinical setting, 
rigorous external validation must become the standard 
in most cases when developing ML-based scoring sys-
tems and clinical AI more generally. Retrospective exter-
nal validations in particular aid the early identification 

of model deficiencies, highlighting the need for training 
on a broader variety of training data [40] or performing 
local model updates prior to deployment. While there 
is still a long way to go to make such external validation 
the default, our review at least suggests that there is a 
growing recognition of its importance among research-
ers: over 80% of all identified studies performing external 
validation were published in 2018 or later.

Interpretation of external validation results
The infrequent external validation of ML models for the 
prediction of acute events in the ICU was already noted 
in a 2019 systematic review, with only 7% of studies at the 
time using geographically independent data for model 
validation [7]. This has been echoed in more recent, 
disease-specific reviews looking at models for sepsis 
[19] and acute kidney injury [41]. While we showed that 
this percentage has somewhat improved since, we also 
find that challenges remain even if external validation is 
performed.

While we observed a tendency for reduced model 
performance in external data, the magnitude of reduc-
tion was milder than anticipated from previous stud-
ies [40, 42–44]. This may partially be explained by the 
performance metric. We focused on the AUROC as the 
primary effect measure since it allowed performing a 
meta-analysis due to its popularity and its comparability 
across different levels of prevalence. However, AUROC 
may be less sensitive to changes in the data. For example, 
while the drop in AUROC in the PhysioNet CinC chal-
lenge 2019 [42] was generally mild and in line with our 
findings, the “utility of prediction” — a custom metric 
defined as a timely prediction within 12 h before to 3 h 
after the onset of sepsis — in the new hospital was worse 
than not predicting at all. The average reduction in per-
formance might have been more pronounced if another 
metric such as utility or normalised AUPRC were used 
instead of AUROC. Unfortunately, it was not possible to 
include such metrics in a meta-analysis due to their infre-
quent reporting. We recommend that future validation 
studies systematically report multiple performance met-
rics that represent the performance holistically.

The observed moderate reduction in average perfor-
mance may have also been driven by the non-negligible 
number of models whose performance increased dur-
ing external validation. Whereas minor fluctuations may 
occur due to sampling variability, a model’s performance 
shouldn’t notably increase in the external validation 
cohort. If it does, this suggests that there may be sys-
tematic differences in case mix between the training and 
validation cohorts — rendering the performances incom-
parable. If cohorts cannot be defined well enough to 
ensure their comparability, we recommend also report-
ing the performance of a model trained solely on the 

Fig. 4 Reported AUROCs for internal and external validation among 
(N = 84 − 2) included studies. Two studies were omitted because they did 
not report AUROC
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validation data. This provides a (potentially overfit) upper 
limit on what might have been achieved in the external 
data [40] and thus allows readers to take any distorting 
effects of case mix into consideration.

Barriers to meaningful external validation
Although the rate of external validation is slowly rising, it 
appears almost exclusively confined to a few open-source 
validation sets, most prominently MIMIC [35] and eICU 
[36]. A version of MIMIC was used in almost 80% of all 
identified studies that performed external validation. This 
is potentially problematic, as studies worldwide are thus 
largely judged by their ability to retain performance in 
patients from the single US hospital included in MIMIC, 
which very likely does not represent the wider ICU pop-
ulation. This means that users and reviewers need to 
closely scrutinise claims of external validation in the area 
of ICU scoring systems if they judge tools that are to be 
used outside of the specific clinical settings captured by 
MIMIC. This also highlights that while large open-source 
datasets are able to fuel a large number of publications 
in certain areas, they do not necessarily by themselves 
improve the ability to build models that generalize, limit-
ing their impact on successful translation to the clinical 
setting.

Greater diversity in external validation is hampered 
by continued difficulties in accessing data from mul-
tiple healthcare providers. Concerns about data security 
and privacy discourage institutions from sharing their 
data. Even when there is a will to share, differences in 
EHR systems, issues of data quality, and lack of semantic 
interoperability often frustrate pooling of data without 
considerable standardisation and harmonisation efforts. 
In light of this, it is perhaps not surprising that external 
validation makes disproportionate use of those few data-
sets that are readily accessible. To overcome these bar-
riers, more work will be needed to support researchers 
in accessing diverse, multicentre data, including tech-
nologies for secure data access (e.g., federated learning 
[45, 46]) and tooling that supports data interoperability 
[47–49].

We further support recent efforts to bring nuance into 
the discussion around “clinical validation” [50–52]. While 
external validation on retrospective data is a crucial step 
in most translation efforts, it is not sufficient to perform 
any, and especially not a single external (retrospective) 
validation to support the claim of generalisability [53, 54]. 
Nor is it likely that a model will be universally generalis-
able. Instead, the data used for external validation should 
be carefully chosen to reflect the model’s anticipated use 
and specific claims of generalisability. For example, a 
model developed for use in Germany should be validated 
in Germany, and may be considered generalisable only 
if it proves reasonably robust across a range of relevant 

German institutions. The same model may later be found 
to perform worse in lower-resource settings, suggesting 
that — although it did generalise within Germany — it 
may not generalise to those contexts.

Strengths and limitations
We used a thorough, pre-defined search strategy to iden-
tify all relevant studies, covering two major bibliographic 
databases as well as the most relevant preprint server for 
ML research. Inclusion criteria were carefully assessed 
for all identified records by at least two reviewers, and 
we additionally performed a reverse reference search to 
ensure we did not miss validation results that were pub-
lished as stand-alone manuscripts.

To allow for direct comparability of AUROC in the 
development and validation data, we limited our analy-
sis to external validation on retrospective, routine data. 
We did not capture validation that was performed by 
prospectively collecting additional data or within clinical 
trials, which may be considered the true test of a clinical 
prediction model. This has two important implications. 
First, the proportion of validated studies may be higher 
than reported here, especially in the years preceding the 
availability of large open-source datasets. Second, the 
reported performances do not necessarily imply clinical 
usability but rather reflect the stability of study results 
across different sets of data. Nevertheless, external vali-
dation in retrospective data is an invaluable step to assess 
the usability of a prediction model in clinical practice and 
should be considered for any study developing predic-
tion models from routine data. Existing findings are fun-
damental to the conception of future studies and basing 
future research on ‘false’ or non-robust results can sig-
nificantly hinder genuine innovation in the field, creating 
a substantial drain on both time and financial resources.

Due to the anticipated heterogeneity of studies, we lim-
ited ourselves to a descriptive summary of study results 
and trends. We did not perform a risk of bias assessment. 
Previous studies that assessed study quality reported a 
neglect of model calibration, inappropriate internal vali-
dation, and overall lack of reproducibility [19, 41], all 
of which may also have been presented in the studies 
included here. Our results also assume that there were 
no systematic differences between studies that did and 
did not get externally validated. This is a strong assump-
tion. For example, studies that were externally validated 
may be more generalisable to begin with because good 
performance in new dataset(s) was an explicit part of the 
study objectives. In this case, the true performance drop 
among non-validated studies may be even greater than 
estimated here.
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Conclusion
The increasing availability of routine data capture and 
open-source ICU data sources are gradually removing the 
barriers to routine external validation of ML-based scor-
ing systems. External validation can provide invaluable 
information on the robustness of newly proposed scores 
and their potential for widespread adoption. However, 
while some external validation is certainly better than 
none, our results caution against choosing datasets for 
external validation solely based on their ease of access. 
Results derived from external validation efforts will only 
be truly useful if the data used for validation is carefully 
selected to reflect the model’s intended use, taking into 
account shifts in data quality, patient case mix, and any 
other factors that may impact model performance. This 
will require concerted efforts to facilitate access to more 
diverse, multicentre data as well as a systematic report-
ing of a range of performance metrics to allow for a more 
meaningful assessment of model performance.
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