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Abstract
Background  In causal analyses, some third factor may distort the relationship between the exposure and the 
outcome variables under study, which gives spurious results. In this case, treatment groups and control groups that 
receive and do not receive the exposure are different from one another in some other essential variables, called 
confounders.

Method  Place of birth was used as exposure variable and age-specific childhood vaccination status was used 
as outcome variables. Three approaches of confounder selection techniques such as all pre-treatment covariates, 
outcome cause covariates, and common cause covariates were proposed. Multiple logistic regression was used to 
estimate the propensity score for inverse probability treatment weighting (IPTW) confounder adjustment techniques. 
The proportional odds model was used to estimate the causal effect of place of birth on age-specific childhood 
vaccination. To validate the result obtained from observed data, we used a plasmode simulation of resampling 1000 
samples from actual data 500 times.

Result  Outcome cause and common cause confounder identification techniques gave comparable results in terms 
of treatment effect in the plasmode data. However, outcome causes that contain common causes and predictors of 
the outcome confounder identification gave relatively better treatment effect results. The treatment effect result in 
the IPTW confounder adjustment method was better than that of the regression adjustment method. The effect of 
place of birth on log odds of cumulative probability of age-specific childhood vaccination was 0.36 with odds ratio 
of 1.43 for higher level vaccination status. 

Conclusion  It is essential to use plasmode simulation data to validate the reproducibility of the proposed methods 
on the observed data. It is important to use outcome-cause covariates to adjust their confounding effect on the 
outcome. Using inverse probability treatment weighting gives unbiased treatment effect results as compared to the 
regression method of confounder adjustment. Institutional delivery increases the likelihood of childhood vaccination 
at the recommended schedule.
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Background
In a randomized control trial, “ideal methodology for 
causal inference” [1], random allocation of exposure con-
trols both known and unknown pre-exposure variations 
of subjects that may influence the outcome. However, 
due to ethical and practical issues, randomized control 
trials are used in limited ranges [1]. An alternative non-
randomized research design, called an observational 
study, is used to estimate the causal effect of an exposure 
on the outcome [2, 3]. Observational studies may lack 
internal validity since associations between exposure and 
outcome may be biased due to other factors that act as a 
confounder or selection bias [4].

Confounding is an issue in nearly all observational 
studies that focus on causality. In causal analyses, the 
relationship between the exposure and the outcome 
variables under study can be altered by some other third 
factor. In this case, treatment groups and control groups 
that receive and do not receive the exposure are different 
from one another in some other essential variable that 
is also associated with the outcome [5]. Thus, a variable 
that alters the relationship between exposure, which is 
the potential cause of the outcome, and the outcome, is 
considered a confounder.

According to [6, 7], three characteristics should be sat-
isfied for a variable to be a confounder. It should be asso-
ciated with exposure and outcome; it must be distributed 
unequally between treatment and control groups; and 
it should not be in the causal pathway between expo-
sure and outcome. Temporally, confounders come prior 
to exposure. A covariate that comes after exposure has 
taken place is not a confounder since it is unable to retro-
actively modify the exposure [2].

In observational study, confounders have to be iden-
tified and controlled their effect while estimating the 
association between exposure and outcome. Control-
ling confounders helps to get unbiased estimates of the 
exposure-outcome relationship [8]. How to identify 
confounders and how to deal with them is one of the 
challenges in observational study. There is no common 
consensus criteria to identify which covariates are con-
founders and which are not [9]. A common approach is 
to control as many pre-exposure covariates as possible 
[2]. Studies modified this approach by controlling all 
covariates significantly associated (p-value less than 0.05) 
with the outcome of interest [10, 11] mentioned in [2]. 
Others also stated that control confounders give a prede-
termined magnitude of change (10% or 15%) while esti-
mating the relationship between exposure and outcome 
[10, 12]. Directed acyclic graph (DAG) is also a method 
of identifying confounders to be controlled in the associ-
ation of exposure with the outcome. It aims to identify a 
minimally satisfactory set of well-measured confounders 
that satisfy the definition of confounders to control [2]. 

Confounders can be selected by using statistical grounds 
such that 10% or more of a covariate changes an estimate, 
forward and backward variable selection criteria, and 
machine learning methods [5].

Despite controversies about which method is better, 
change in estimate and significance testing methods are 
widely used to confounder identification even if signifi-
cance testing is acceptable for a P-value of 0.2 or less [9]. 
On the other hand, the use of change in estimate is ques-
tionable due to its low ability to enhance the precision of 
treatment effect estimate [13]. Thus, the two significance 
approaches such as common cause, outcome cause, and 
all pre-treatment covariate approaches were used. To the 
level of our knowledge, confounders that influence the 
causal effect of place of birth on age-specific childhood 
complete vaccination and the level of its effect after con-
trolling confounders has not been documented.

Hence, this study was conducted to identify confound-
ers that result spurious associations between place of 
birth (exposure) and childhood vaccination (outcome). 
In addition, the causal effect of an exposure on the out-
come was estimated by controlling confounders using 
regression and inverse probability treatment weighting 
(IPTW). Plasmode simulation [14] was done to see the 
reproducibility of the identification method and effect of 
exposure on the outcome with such real data.

Method
Study setting and description of data
The data used in this study was obtained from the Ethio-
pian Mini Demographic and Health Survey (EMDHS) 
2019. Specifically, data from birth records that contain 
all records of women aged 15–49 with the most recent 
birth prior to five years of the survey were used. The data 
was collected from March 21, 2019 to June 28, 2019 from 
nationally representative samples using two- stage strati-
fied sampling to provide estimates at the national and 
regional levels as well as for urban and rural areas. In the 
survey, 5,753 women with live births were interviewed 
[15]. However, only children who were alive at the time of 
the survey were considered for this study.

In this study, the exposure variable was mother’s place 
of birth and the outcome variable was age-specific child-
hood vaccination status. Age-specific childhood vaccina-
tion is when mothers or caregivers vaccinate their child 
as per the recommendation of the Ethiopian expanded 
program on immunization [16]. When a child received a 
particular vaccination at the right age, a score of 1 was 
given, otherwise, 0 was given. If a child receives all vac-
cines timely, it is labeled as fully vaccinated. If one or 
more vaccines were missed at each age, it is labeled 
as partially vaccinated and labeled as no vaccination 
when a child took no vaccination at each age. A total 
of 5,150 surveyed children were involved in this study. 
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Pre-exposure covariates such as mothers’ characteristics, 
child characteristics, and household characteristics were 
taken as covariates that possibly confound the associa-
tion between exposures and outcome. The possible rela-
tionship between covariates, exposure and outcome is 
presented in the DAG given in Fig. 1. DAG is a visual rep-
resentation of the assumed causal mechanisms and can 
help to identify covariates to adjust for confounding and 
control confounding bias (Fig. 1). The arrows in the DAG 
show the direction of causal relationships.

Notation and assumption
Let A be the binary exposure with values of 0 and 1, X  
be a possible confounders and Y (a) is the potential out-
come associated with treatment, A = a. The following 
assumptions should be kept for the unbiased causal effect 
of the treatment on the outcome.

Unconfounded assumption: This is also called ignor-
ability assumption where the treatment assignment is 
independent of the potential outcome given the set of 
measured covariate: Y (a) ⊥ A/X  [17]. When propen-
sity score is used as covariate adjustment rather than 
conditioning on them, X  can be replaced by propensity 
score denoted by e (x).

Positivity assumption: 0 < P (A = a/X) < 1, ∀a ϵ 0, 1
, this is an overlap or common support assumption that 

requires every study participant to have a chance to be in 
any of the treatment conditions. The probability of treat-
ment assignment for any participant is neither zero nor 
one under treatment conditions [18].

Stable unit treatment value assumption (SUTVA): 
the potential outcomes of ith subject are not influenced 
by the potential outcome of jth subject for i ̸= j, and 
each unit receives the same version of the treatment [19].

Potential outcome framework and treatment effect
For causal inference under the potential outcome frame-
work [20], the potential outcome is the possible outcome 
under different treatment conditions. For binary treat-
ment, such as place of delivery, A = {0,1}, a subject has 
two potential outcome, Y (1) for A = 1 (when a sub-
ject received treatment) and Y (0) when A = 0 (when 
a subject does not receive treatment). The outcome is 
observed only under one, and not under both treatment 
conditions. If a subject receives treatment level A = 1
, then Y (1) is observed but Y (0) is unobserved; if a 
subject receives treatment level A = 0, then Y (0) is 
observed but Y (1) is unobserved. Under the potential 
outcome framework, the observed outcome is written as:

	 Y = (1 − T ) ∗ Y (0) + T ∗ Y (1)

Fig. 1  DAG for covariates, exposure and outcome. The description of covariates, exposure and outcome is given in the supplementary material
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.
The treatment effect at individual level is Yi (1) − Yi (0) .

Because it is impossible to calculate change of indi-
vidual-level treatment effect, we need to estimate 
average or population-level treatment effects change 
under the assumption of unconfoundness or exchange-
ability. Thus, the average treatment effect between 
treated and untreated subjects is denoted and given by: 
∆ ATE = E (Y (1)) − E (Y (0)).

In the presence of measured baseline covariates 
that could result spurious relationship between treat-
ment (treatment and exposure alternatively used), two 
approaches were used to control confounding effects: the 
first approach uses ordinal regression model conditional 
on treatment and confounders, and the second approach 
uses inverse probability treatment weighting which is 
marginal structural modeling.

Let Yj , j = 0,1, 2 be the status of age-specific child-
hood vaccination, a be place of delivery (0 for home 
delivery and 1 for institutional delivery), then the propor-
tional odds model is given by [21, 22]:

	

For regression approach : g (E (p( Y < j/a, X) ))
= α j − (β 1a + BT

2 X).
� (1)

where g (.) is the link function of the proportional odds 
model.

	ATE = g (E (p( Y < j/1, X) )) − g (E (p( Y < j/0, X) ))

	
For marginal structural modeling : g (E (p( Y < j/a) ))

= α j − β 1a
� (2)

In this case, each value of the subject is weighted by 
IPTW using WeightIt R package [23] and covariate bal-
ancing was checked using cobalt R package [24].

Identification of confounders
Different criteria were used to select cofounders. The 
first was pre-exposure criteria [25]. In this criterion, one 
can consider and control all covariates that come prior 
to exposure under study. The second criterion was sig-
nificance testing criteria (ST) with cutoff P-values fixed at 
less than or equal to 0.2. In this criterion, two approaches 
were used: common cause [26] that states a covariate is 
a confounder when it causes the exposure and outcome; 
outcome cause that states one can consider a covariate to 
be a confounder when it is a cause of the outcome. The 
outcome causes contained covariates associated with 
both exposure and outcome and covariates associated the 
outcome but unrelated to the exposure [17]. Using the 
notation used by Shortreed & Ertefaie (2017), let Xl be 
a set of all pre-treatment covariates, Xp be a set of com-
mon cause covariates, and Xq  be a set of outcome cause 

covariates. These three different covariates were included 
in Eq.  (1) while using the regression method to adjust 
confounders and estimate treatment effect. While using 
Eq. (2) to estimate the treatment effect, we used propen-
sity score to control confounders estimated after fitting 
the generalized linear model given as follows:

	 g (E( P (A = 1/X; θ̂ ) )) = θ̂ 0 + θ̂
T

X � (3)

g(.) is the link function for binary response such as logit 
link functions, and X is one of Xl, Xp and Xq , and θ̂  is 
a vector of estimated coefficients.

Plasmode simulation
The most common data generation approaches are para-
metric and plasmode simulation [27]. In parametric 
simulation, covariates, exposure and outcome data are 
generated from known or predefined stochastic distribu-
tions such that the generated data resembles the realistic 
or representative. Parameters of interest are derived from 
the real data, literature, or set by the user [28, 29]. Para-
metric simulation is mainly used for model development 
and to compare the performance of different models.

Plasmode simulation starts resampling of exposure and 
covariates from the original data. Then the outcome data 
is generated from resampled exposure and covariates. 
The parameters or effect sizes in the simulation process 
are estimated from the original data by modeling the 
relationship of outcome with exposure and covariates. 
Sometimes the parameters can be defined by the user. 
Plasmode simulation is viewed as semi-parametric simu-
lation because exposure and covariates are generated nat-
urally from unknown parametric distribution whereas; 
the outcome is simulated from known distributions and 
resampled exposure and covariate [14, 27]. The approach 
depends on resampling from the practical exposure and 
covariates data without modification in all simulated 
datasets to preserve the relations among these variables 
and complex data structure. It has also the advantage of 
a user-specified exposure effect. Moreover, the simulated 
datasets are used to compare variable selection strategies 
for confounder adjustment via the propensity score [13].

The plasmode data were simulated [27], with the fol-
lowing procedures:

I.	 Exposure and covariates structures are generated by 
resampling from an original data.

II.	Generating outcome that incorporates.

II.1	Determining outcome generating model: linear 
regression with normal distribution was used and 
categorized into ordered categories.
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II.2.	Determining exposure and covariate effect by 
estimation from original data and individual 
specification.

II.3.	Generating outcome data using chosen outcome 
model, effects, and resampled covariates and 
exposure.

The challenges of plasmode simulation are specifying the 
number of plasmode data sets (N), resampling techniques 
(Resampling without replacement, m out of n, and resa-
mpling with replacement, n out of n), and resampling size 
(m). So far there is no defined rule to choose the sam-
pling techniques, to determine simulation and resample 
sizes [27]. In this study, the size of the simulated data set 
or the number of repetitions (N) was specified to be 500 
as used in [14, 27, 30, 31]. Sampling without replacement 
technique was implemented. The m out of n resampling 
with replacement also called subsampling requires fewer 
assumptions and prevents bootstrap failure [27, 32]. In 
addition, the size of the resample (m) was 1000.

Comparison of methods
To compare the performance of methods from simulated 
data, we used different multi-dimensional performance 

measurement metrics illustrated by [29]. These include 
bias, mean square error, empirical standard error, average 
model standard error, and bias eliminated coverage. For 
each performance measurement metrics estimate, Monte 
Carlo standard error was also estimated. The estimates 
of each performance measures from simulation study 
was generated using simsum R function from rsimsum 
package [33, 34] The estimand of the study was treatment 
effect on the outcome.

Result
Distribution of place of birth and its association with the 
outcome
The percentage distribution of place of birth is visual-
ized in Fig. 2. It is shown that, out of 5150 mothers, 2614 
(51%) of them delivered at home and 2536 (49.24%) of 
them delivered at health institutions.

On the other hand, the frequency distribution of 
association of place of delivery with the outcome (age-
specific childhood vaccination status) is visualized in 
Fig. 3. Among 4176 age-specific partially vaccinated chil-
dren, 52.8% (2205) were delivered at health facilities and 
the rest 47.2% (1971) of them were delivered at home. 

Fig. 3  Distribution of vaccination status along with place of delivery

 

Fig. 2  Distribution of place of delivery
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Similarly, from no age-specific vaccinated children, 809, 
only smaller (24.5%, 198) of them were delivered at health 
facilities, and larger (75.5%, 611) of them were delivered 
at home. From on time fully vaccinated children, 165, 
large proportions (80.6%, 133) of them were delivered at 
health institutions (Fig. 3).

Result of plasmode simulation
To make sure plasmode simulation generates realistic 
data that resemble the observed data, we compared the 
distribution of the simulated and observed data. We 
simulated 500 artificial data sets for the outcome each 
containing 1000 mothers with the proportion of child-
hood vaccination status matched with the observed data. 
In Fig. 4, we presented the bar chart for the distribution 
of each category of the outcome. It shows the propor-
tions of each category are similar between simulated and 
observed data sets.

Evaluation of confounder selection strategy
We used simulated data for the covariate selection strat-
egy to be included in propensity score function or to con-
trol with the regression method. Figure 5 is the histogram 

of treatment effect estimator distribution from simula-
tion study. The distribution of the estimator for each con-
founder selection techniques indicates, the estimator is 
nearly symmetrical. Thus, we are able to estimate other 
method performance metrics assuming the estimator 
normally distributed. On the other hand, any of the esti-
mators from simulation study was equal to the true treat-
ment effect which was 0.5.

Figures 6 and 7 also show the result of treatment effect 
for each simulation step of proposed covariate selection 
approaches. Figure 6 presents the treatment effect before 
adjusting confounders, outcome cause (out.cause), com-
mon cause (com.cause), and all pre-treatment covariates 
(All.covariates) adjusted by regression. The distribution 
of crude effects is far from the three approaches. How-
ever, the distribution of treatment effect is similar for the 
three approaches. Figure 7 also shows similar result after 
adjusting with propensity score-based IPTW.

Table  1 demonstrates the estimate of method perfor-
mance metrics for simulation study using inverse treat-
ment probability weighting from 500 simulated data sets 
for each confounder selection approaches. In the genera-
tion of artificial outcomes from real covariates, we fixed 

Fig. 5  Histogram of treatment effect estimate from plasmode simulation for the three confounder identification techniques

 

Fig. 4  Distribution of plasmode and observed data
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the true treatment effect at 0.5 for all approaches and 
confounder adjustment methods. The average treatment 
effect after adjusting confounders was almost similar for 
all approaches with negligible difference between out-
come and common cause. The true treatment effect was 
highly reduced when taking confounders into account 
and adjusting with IPTW.

The absolute value of bias for all-pretreatment covari-
ates was higher than outcome and common cause covari-
ates. Its uncertainty (Monte Carlo simulation study) was 

also higher than the other two approaches. The absolute 
difference of bias between outcome and common cause 
covariates was 0.001 with approximately equal uncer-
tainty values. The bias eliminated coverage of outcome 
and common cause covariates was 88.8% and that of all 
pre-treatment covariates was 89.2% with equal Monte 
Carlo standard error for all approaches. The empirical 
standard error which is the square root of the variance 
of an estimator and measure of the efficiency of an esti-
mator was equal in outcome cause and all-pre-treatment 

Fig. 7  Treatment effect from plasmode simulated data based on IPTW covariate adjustment

 

Fig. 6  Treatment effect for plasmode data with regression covariate adjustment
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covariates. The empirical standard error of common 
cause was little higher than other approaches. On the 
other hand, the model based standard error which is the 
average of the standard error of estimators from 500 sim-
ulation data was equal in outcome and common cause 
confounder selection approaches. However, its value was 
little higher in all pre-treatment confounder selection 
approach than outcome and common cause confounder 
selection approaches. The magnitude of relative percent 
error in standard error in common cause was higher than 
the other two approaches. The difference of power of test 

at 5% between outcome and common cause confounder 
selection approaches was very small (difference = 0.002). 
Considering all method performance measures and tak-
ing the aggregates, outcome cause confounder identi-
fication approach is better than common cause and all 
pre-treatment covariates approach.

Table  2 also shows the estimate of average treatment 
effect and performance measurement metrics for con-
founder identification approaches when confounders 
were adjusted using regression. The bias of treatment 
effect for outcome cause covariates was little smaller than 
the other two approaches (Table 2). The bias eliminated 
coverage of outcome cause covariates somehow more 
than the other two approaches. Similarly, the estimator 
in outcome cause covariates was more efficient than all 
pre-treatment covariates with smaller values of empirical 
standard error and model based standard error.

The magnitude of relative percent error in standard 
error, and the power of test at 5% test of outcome cause 
covariates was smaller than the other two approaches 
(Table  2). The result when confounders were adjusted 
using regression method implies that outcome cause 
covariate performed better than the common cause and 
all pre-treatment covariates.

On the other hand, the bias and mean square error 
of adjusting confounders with IPTW was smaller than 
adjusting confounders with regression method.

Result from observed data
Table  3 contains the effect of treatment (place of birth) 
on outcome (age-specific childhood vaccination) along 
with their standard errors for unadjusted, outcome cause, 
common cause, and all pre-treatment covariates adjusted 
by regression and IPTW. Before using IPTW for mar-
ginal structural model, we checked covariate balance and 
positivity of propensity score for the three confounder 
selection approaches. Figure S1-S3 in the supplementary 

Table 1  Estimates of performance measures for confounder 
identification approaches using plasmode simulation, values in 
parentheses are Monte Carlo standard errors when confounders 
are adjusted with IPTW
Performance measure Outcome 

cause
Common 
cause

All pre-
treatment

Average treatment 
effect estimate

0.019 0.018 0.022

Bias -0.481 (0.01) -0.482 (0.01) -0.978 
(0.02)

Coverage 0.236(0.0190) 0.250 (0.019) 0.22 
(0.002)

Bias eliminated 
coverage

0.888 (0.014) 0.888 (0.014) 0.892 
(0.014)

Empirical standard 
error

0.216(0.007) 0.218(0.007) 0.216 
(0.007)

MSE 0.2784 (0.0097) 0.2794 (0.0098) 1.0028 
(0.0190)

Model based standard 
error

0.167 (0.0003) 0.167 (0.0003) 0.168 
(0.0003)

Relative % error in 
standard error

-22.83 (2.45) -23.48(2.43) -22.20 
(2.47)

Power of 5% test 0.114 (0.014) 0.116 (0.014) 0.108 
(0.014)

Table 2  Estimates of performance measures for confounder 
identification approaches using plasmode simulation, values in 
parentheses are Monte Carlo standard errors when covariates are 
adjusted with regression
Performance 
measure

Outcome 
cause

Common cause All pre-
treatment

Average treatment 
effect estimate

0.020 0.021 0.021

Bias -0.780 (0.0094) -0.791 (0.0094) -0.790 
(0.0097)

Coverage 0.040 (0.0088) 0.040 (0.0088) 0.050 (0.0097)
Bias eliminated 
coverage

0.960 (0.0088) 0.958 (0.0090) 0.954 (0.0094)

Empirical standard 
error

0.211 (0.0067) 0.211 (0.0067) 0.217 (0.0069)

MSE 0.652(0.0150) 0.653 (0.0150) 0.654 (0.0155)
Model based 
standard error

0.209(0.0003) 0.208 (0.0003) 0.213 (0.0003)

Relative % error in 
standard error

-0.847 (3.1422) -1.399 (3.1246) -1.72 (3.1147)

Power of 5% test 0.042 (0.0090) 0.046 (0.0094) 0.052 (0.0099)

Table 3  Effect of place of birth on age-specific childhood 
vaccination when confounders are adjusted by regression and 
IPTW
Confound-
er adjust-
ment 
method

Confounder selec-
tion approach

Average 
treat-
ment 
effect

Standard 
error of 
treatment 
effect

95% CI

Regression Unadjusted treat-
ment effect

1.3 0.081 1.16 1.5

Outcome cause 0.53 0.099 0.34 0.73
Common cause 0.54 0.099 0.34 0.73
All pre-treatment 
covariates

0.51 0.101 0.32 0.71

IPTW Outcome cause 0.36 0.072 0.23 0.50
Common cause 0.37 0.073 0.23 0.52
All pre-treatment 
covariates

0.46 0.075 0.31 0.60
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material shows covariate balance using absolute stan-
dardized mean difference. Figure S4 also shows positivity 
of propensity scores that range from 0.021 to 0.999.

Unadjusted treatment effect on the log odds of the 
cumulative probability of the outcome was 1.3. When 
adjusted for outcome cause, common cause, and all pre-
treatment covariates using the cumulative link model, 
the effect dropped down to 0.53, 0.54, and 0.51 respec-
tively. When using IPTW, the effect dropped down to 
0.36, 0.37 and 0.46 respectively. To compare confounder 
selection approaches, almost all brought the same reduc-
tion of crude effect in the regression technique although 
it looks like all pre-treatment gave the largest reduction 
with higher standard error. When using IPTW, the out-
come cause approach brought the largest reduction with 
relatively the smallest standard error. On the other hand, 
IPTW reduced the unadjusted treatment effect with a 
smaller standard error and narrow confidence interval 
as compared to the regression method. This shows that 
the IPTW confounder adjustment method is preferable 
to the regression method. Based on outcome cause con-
founder selection approach, number of antenatal care 
services, age of household head, age at first birth, house-
hold size, total number of children ever born, birth order 
number, region, place of residence, religion, mother’s 
education status, ownership of television and radio, and 
household wealth status were the confounders for the 
causal effect of place of delivery on age-specific child-
hood vaccination.

Effect of place of birth on age-specific childhood 
vaccination
After identifying and adjusting confounders, the next 
step was estimating the treatment effect on the out-
come. Choosing outcome cause approach for confounder 
selection, and using the IPTW confounder adjustment 
method (Tables  1 and 2), the log odds of institutional 
delivery (coded as 1) versus home delivery was given as 
follows:

	 logit(P (y ≤ j/T ) = α j − 0.36T, T = 0,1

Then the odds ratio of the event, 
y ≤ j is, OR = exp−0.36 = 0.70 and that of y > j is,
OR = exp0.36 = 1.43. This implies that institutional 
delivery decreases the lower level of vaccination status 
(no vaccination and partial vaccination) with 30%. On 
the other hand, institutional delivery increases the likeli-
hood of higher level of vaccination status (partial from no 
vaccination and full vaccination from partial vaccination) 
with 43%.

Discussion and conclusion
Discussion
This study was done to identify confounders and estimate 
the causal effect of place of birth on age-specific child-
hood vaccination. The treatment/exposure (alternatively 
used) variable was place of delivery and the outcome 
variable was age-specific childhood vaccination catego-
rized as no, partial/incomplete, and full/complete vac-
cination. In the process of estimating exposure’s causal 
effect on the outcome, we have to be curious about extra-
neous/cofounding covariates that could alter the effect of 
the exposure on the outcome. Most studies so far focused 
on confounder identification and treatment effect estima-
tion when the outcome is continuous or binary. However, 
to the best of our knowledge, no literature that dealt with 
when the outcome is ordinal, especially the causal effect 
of place of birth on age-specific childhood vaccination.

The study used regression and propensity score-based 
inverse probability treatment weighting to correct con-
founding effects. A common approach is to control as 
many covariates as possible that are observed before 
the treatment [2]. However, including all pre-treatment 
covariates in any confounder controlling methods such 
as regression introduces bias. Adding more covariates 
to the model causes over fitting and unstable coefficients 
due to multicollinearity [35]. A model is best when it 
contains the smallest number of covariates that explain 
the greatest amount of variance [9]. To prove this asser-
tion, we proposed three approaches of confounder selec-
tion to control their effect. These are all pre-treatment 
covariates, the common cause of treatment and outcome 
covariates (real confounders) and outcome cause covari-
ates. As described in [17, 36], the outcome cause covari-
ates included real cofounders and predictors of outcome 
variable.

To show the reproducibility of our confounder selection 
to be included in the regression model and propensity 
score estimation, we used plasmode simulation as used 
in [13, 27]. A key advantage of statistical plasmode simu-
lations is their ability to maintain the intricate structure 
of real-world data by resampling covariate information 
from an actual dataset. For these simulations to be effec-
tive, it is essential to have a suitable representative data-
set, which forms the foundation for the entire plasmode 
simulation study [27]. We resampled 1000 data sets with-
out replacement 500 times out of 5150 total data sets. A 
latent continuous artificial outcome was simulated from 
a known covariate structure and manually added truth 
treatment effect (to be constant across confounder selec-
tion approaches). The effect of each covariate was deter-
mined from the actual relationship of observed data. The 
performance of each confounder selection approaches 
was compared using multi-dimensional performance 
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metrics as described by Morris et al. [29] using IPTW 
and regression based confounder adjusting.

The result from plasmode data set showed that there 
were no notable differences across confounder selection 
approaches but it looks outcome cause approach gives 
better results. On the other hand, common cause covari-
ates are the subset of outcome cause covariates. Hence, 
we used outcome cause covariates to estimate the causal 
effect of place of delivery on timely childhood vaccina-
tion. Even though the regression and IPTW gave compa-
rable results, it seems IPTW can give better results for 
confounder adjustment. However, in the plasmode data, 
there was a huge difference between the true treatment 
effect and the treatment effect after covariate adjustment 
which is too far from the treatment effect from observed 
data. One of the challenges to generating artificial ordi-
nal outcomes is that there is no direct method to simu-
late it. We rather simulate continuous latent outcome and 
then cut in to ordered categories based on the quintiles 
of observed data. In this process, there might be loss of 
information, and the treatment effect in observed and 
simulated data could deviate.

The result from the observed data set, outcome 
cause gave relatively better result as compared to other 
approaches. This is consistent with the findings in the lit-
erature [14, 17, 36]. The limitation of confounder identi-
fication using a regression method is it does not show us 
how treatment and control groups are balanced in terms 
of baseline covariates. On the other hand, the propensity 
score helps us to evaluate how confounders are balanced 
between treatment and control groups. Hence, the result 
of this study showed that IPTW gave better result for 
treatment effect with better confounders balancing.

Finally, after identifying confounders using outcome 
cause approach and adjusting them using IPTW, the 
causal effect of place of birth on age-specific childhood 
vaccination was estimated. The result shows institutional 
delivery enhances the timely vaccination of children.

Conclusion
In causal inference, the identification of confounders is 
an important step before attempting to identify expo-
sure’s effect on outcome. In this study, we considered 
the place of delivery as binary exposure that causes 
age-specific childhood vaccination which is the ordi-
nal outcome. Adding all pre-treatment covariates in the 
regression model or propensity score function could 
result in spurious treatment effect on the outcome. 
Hence, it is important to identify confounders and adjust 
them with propensity scores, or other matching methods. 
In the study, outcome cause covariates (common causes 
and predictors of the outcome) results relatively better 
performance than other proposed methods in terms of 
treatment effect. Because if we include covariates related 

to the treatment and the outcome, there can be other 
covariate(s) that are not related to the treatment but have 
a mixing effect with the treatment on the outcome. Pro-
pensity score inverse probability treatment weighting 
helps to see the balanced confounders between treatment 
and control groups. It also gave better treatment effect as 
compared to regression adjustment of covariates as dem-
onstrated in this study. Institutional delivery enhances 
the likelihood of a newborn baby to get vaccine as per the 
standard schedule.
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