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Abstract
Background  We aimed to develop and validate models for predicting intensive care unit (ICU) mortality of critically 
ill adult patients as early as upon ICU admission.

Methods  Combined data of 79,657 admissions from two teaching hospitals’ ICU databases were used to train and 
validate the machine learning models to predict ICU mortality upon ICU admission and at 24 h after ICU admission by 
using logistic regression, gradient boosted trees (GBT), and deep learning algorithms.

Results  In the testing dataset for the admission models, the ICU mortality rate was 7%, and 38.4% of patients were 
discharged alive or dead within 1 day of ICU admission. The area under the receiver operating characteristic curve 
(0.856, 95% CI 0.845–0.867) and area under the precision-recall curve (0.331, 95% CI 0.323–0.339) were the highest for 
the admission GBT model. The ICU mortality rate was 17.4% in the 24-hour testing dataset, and the performance was 
the highest for the 24-hour GBT model.

Conclusion  The ADM models can provide crucial information on ICU mortality as early as upon ICU admission. 24 H 
models can be used to improve the prediction of ICU mortality for patients discharged more than 1 day after ICU 
admission.
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Background
Predicting the outcomes of critically ill patients may 
provide valuable information for decision-making and 
resource allocation in intensive care unit (ICU) settings 
[1–4]. Developing a predictive model must use variables 
obtained before the prediction time of the model [5–7]. 
The prediction time of most mortality prediction mod-
els for critically ill patients is at 24  h after ICU admis-
sion [8–18]. We notice that a considerable proportion 
of patients were discharged alive or dead within 24 h of 
ICU admission, and mortality of these patients could not 
be predicted by a model developed to make a prediction 
at 24 h or later after ICU admission. To date, only a few 
machine learning models were developed to early predict 
mortality of ICU patients at 1 to 6  h after ICU admis-
sion [19–22]. Therefore, we developed machine learning 
models to predict ICU mortality of critically ill patients 
upon ICU admission and investigated the model perfor-
mance. Moreover, these models were interpreted by fea-
ture importance and personalized risk assessment. For 
patients discharged more than 1 day after ICU admission, 
we developed machine learning models to predict ICU 
mortality of critically ill patients at 24 h after ICU admis-
sion and compared the model performance with conven-
tional severity score models.

Materials and methods
Study design and data source
We developed and validated the admission models (ADM 
models) and 24-hour models (24  H models) to predict 
ICU mortality upon ICU admission and at 24 h after ICU 
admission, respectively, by using data of adult patients 
from two ICU databases. The first database was the Med-
ical Information Mart for Intensive Care (MIMIC)-IV, an 
open-access, anonymized database of 76,540 admissions 
from 2008 to 2019 at a Boston teaching hospital [23, 
24]. Three members in our team have finished the Col-
laborative Institutional Training Initiative training and 
examination (Certification Number: 32697132 for YCY, 
43101861 for KCK, 39956855 for YWC) and have been 
approved to access the MIMIC-IV database. The sec-
ond database was the Center of Outcome and Resource 
Evaluation (CORE), an anonymized database of 11,966 
admissions between 2019 and 2020 at a Taipei teach-
ing hospital, which is a branch of multi-center databases 
of Taiwan CORE. Taiwan CORE is collaborating with 
the Australian and New Zealand Intensive Care Society 
CORE adult patient database [25, 26]. Using CORE data-
sets was approved by the hospital Research Ethics Com-
mittee (REC number 202004016RINB) and registered 
on the ClinicalTrials.gov protocol registration system 
(ID NCT04541849) on 09/09/2020. Written informed 
consent was waived because of the retrospective nature 
and deidentification of protected health information in 

accordance with the Health Insurance Portability and 
Accountability Act Privacy Rule [27]. This study was 
conducted and reported according to the Transparent 
Reporting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis (TRIPOD) statement [28] 
and the recommended guidance [7]. Length of stay (LOS) 
in ICU was calculated as ICU discharge date minus ICU 
admission date.

Population and datasets
For patients with multiple ICU admissions, we only 
included their first ICU admission in the same hos-
pitalization. The exclusion criteria included an age of 
< 18 or < 20 years upon ICU admission for patients in 
the MIMIC − IV and CORE databases, respectively, 
and patients with a death date error in the MIMIC − IV 
database. The TRIPOD statement recommends that 
a nonrandom split of data by time is more effective for 
evaluating model performance because it allows for the 
influence of nonrandom variation between the data sets 
[19]. Therefore, to develop the ADM models, we allo-
cated the records of patients admitted between 2008 and 
2016 from the MIMIC − IV database and between 2019 
and July 2020 from the CORE database into the ADM 
training data set. To validate the ADM models, we allo-
cated the records of patients admitted between 2017 and 
2019 from the MIMIC − IV database and between August 
2020 and December 2020 from the CORE database into 
the ADM testing dataset. When developing and validat-
ing the 24  H models, we excluded patients discharged 
within 1 day (on day 0 or 1) of ICU admission and allo-
cated the remaining records into the 24  H training and 
testing data sets.

Data preprocessing
We extracted the data from the MIMIC − IV database 
by using pgAdmin4 (version 5.2, the pgAdmin Develop-
ment Team) with PostgreSQL 10. We utilized the codes 
available on the GitHub repository ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​o​m​/​
M​I​T​-​L​C​P​/​m​i​m​i​c​-​c​o​d​e​/​t​r​e​e​/​m​a​i​n​/​m​i​m​i​c​-​i​v​​​​​) for data ​e​x​t​r​
a​c​t​i​o​n and processing [29]. We perform additional data 
processing by using the graphical user interface platform 
of RapidMiner Studio (Version 9.10, RapidMiner, Boston, 
United States) [30–32]. We extracted the following vari-
ables from both databases: demographic characteristics 
(e.g., age, weight, and body mass index), premorbid status 
(e.g., metastasis, end-stage renal disease, coronary arte-
rial disease, dementia, chronic heart failure), treatments, 
Glasgow coma scale (GCS), vital signs measurements, 
and laboratory data from the first 24 h after ICU admis-
sion. When training the ADM models, only the variables 
obtained before or upon ICU admission could be used 
as features. When training the 24  H models, only the 
variables obtained before or at 24 h after ICU admission 

https://github.com/MIT-LCP/mimic-code/tree/main/mimic-iv
https://github.com/MIT-LCP/mimic-code/tree/main/mimic-iv
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could be used as features. We checked all the data for 
outliers and errors by using a frequency histogram, and 
errors were corrected when possible (e.g., conversion of 
units of laboratory data). Missing vital signs measure-
ments and GCS were imputed with neighboring values 
from the nearest time points. Missing demographics 
information and laboratory data were imputed using the 
mean or median values from their original databases as 
appropriate.

Outcomes
The outcome to be predicted was ICU mortality, which 
was defined as a death occurring during the ICU stay or 
an urgent discharge home of imminently dying patients 
expressing a wish to die at home.

Feature selection and modeling
We developed and validated the models by using the 
RapidMiner Studio platform (Version 9.10, RapidMiner). 
We trained the models by using three machine learning 
algorithms: logistic regression (LR), gradient boosted 
trees (GBT), and deep learning (DL). We perform 10-fold 
cross-validation method for model training with the 
ADM and 24 H training data sets. The optimized param-
eter operator was used to find out the optimal param-
eter set and determine the best model for GBT models 
training. When training the ADM models, we extracted 
a set of 18 features, including demographic character-
istics, premorbid status, first GCS score and vital signs 
measurements obtained upon ICU admission on the 
basis of their clinical relevance and our analysis of the 
baseline descriptive statistics [33]. When training the 
24  H models, we extracted a set of 40 features, includ-
ing demographic characteristics, premorbid status, GCS 
scores, vital signs measurements, diagnoses, treatments, 
and laboratory data obtained within the first 24  h after 
ICU admission on the basis of their clinical relevance and 
our analysis of the baseline descriptive statistics [33]. In 
addition, LR algorithm was used to predict ICU mortality 
with conventional severity score system, sequential organ 
failure assessment (SOFA) score and acute physiology 
score (APS) of acute physiologic assessment and chronic 
health evaluation (APACHE) III [34, 35], respectively, at 
24  h after ICU admission. The ADM and 24  H testing 
data sets were used for model validation. We interpreted 
the models based on the ranking and weight of feature 
importance, which were calculated using the Explain 
Prediction operator in RapidMiner Studio platform (Ver-
sion 9.10, RapidMiner). This operator derives the weights 
directly from the model explanations. When true labels 
are available for the test data, weights are adjusted based 
on the local explanations: supporting explanations for 
correct predictions increase the weights, whereas con-
tradicting explanations for incorrect predictions also 

contribute positively to the weights. We generated a 
personalized risk assessment and model simulator by 
using the RapidMiner Studio platform (Version 9.10, 
RapidMiner).

Statistical analysis
Regarding statistical analysis, the categorical variables are 
expressed as n (%) and were compared using a χ2 test. The 
continuous variables are expressed as medians (inter-
quartile ranges [IQRs]) and were compared using the 
Mann–Whitney U Test. A two-sided p value of < 0.05 was 
considered statistically significant. Adjustments for mul-
tiplicity were not performed due to the large sample size 
and the presence of highly significant results (most p-val-
ues < 0.001), which may diminish the risk of false-positive 
findings. Results with p-values ranging from 0.01 to 0.05 
should be interpreted with caution. We performed all the 
statistical analysis by using statistical software (SPSS 27; 
IBM SPSS, USA).

We assessed the performance of the models in terms 
of both discrimination and calibration by using their 
AUROC values, area under the precision-recall curve 
(AUPRC) values, sensitivity, precision, specificity, Brier 
score, and calibration plots. Performance measures 
were reported with their 95% confidence intervals (CIs). 
AUPRC is more informative than the AUROC when 
evaluating binary classifiers on imbalanced data [36]. 
We compared the AUROC and AUPRC values by using 
Python (version 3.7.3, Python Software Foundation, Del-
aware, United States) and the scikit-learn package (ver-
sion 0.23.1). The calibration plots were drawn using the 
R software (version 4.1.3, Foundation for Statistical Com-
puting, Vienna, Austria). To investigate the progressive 
decay of the AUROC values of each model, we calculated 
the daily AUROC values for those patients who remained 
in the ICU on day 0 to 14 of ICU admission.

Results
Data set information
We used 65,250 and 14,407 admission records to develop 
and validate the performance of the ADM models, 
respectively (Fig.  1). The clinical characteristics of the 
survivors and nonsurvivors in the ADM training and 
testing data sets are presented in Additional file 1: Table 
S1; the ICU mortality rate in the training and testing data 
sets were 6.6% and 7%, respectively. Of the 14,407 admis-
sions in the ADM testing data set, 38.4%, 49.5%, and 
12.1% were discharged alive or dead within 1 day, within 
2 to 7 days, and more than 7 days after ICU admission, 
respectively. The clinical characteristics of patients from 
the MIMIC − IV and CORE databases in the ADM testing 
data set are presented in Table 1. The number of patients 
with missing data from the MIMIC − IV and CORE 
databases in the ADM testing data set are presented in 
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Additional file 1: Table S2. We used 37,295 and 8,875 
admission records to develop and validate the perfor-
mance of the 24 H models, respectively (Fig. 1). The clini-
cal characteristics of the survivors and nonsurvivors in 
the 24 H training and testing data sets are presented in 
Additional file 1: Table S3. The clinical characteristics of 
the patients from the MIMIC − IV and CORE databases 
in the 24 H testing data set are presented in Additional 
file 1: Table S4. The number of patients with missing data 
from the MIMIC − IV and CORE databases in the 24  H 
testing data set are presented in Additional file 1: Table 
S5.

Performance and feature importance of the ADM and 24 H 
models
The model performance indices during training are pre-
sented in the Additional file 1: Figure S1. The model per-
formance indices of the ADM and 24  H models in the 
testing data set are presented in Fig.  2. Regarding the 
ADM models, the AUROC (0.856, 95% CI 0.845–0.867) 
and AUPRC (0.331, 95% CI 0.323–0.339) of the ADM 
GBT model were higher than those of the ADM LR and 
DL models. Regarding the 24  H models, the AUROC 
(0.910, 95% CI 0.899–0.920) and AUPRC (0.473, 95% CI 

0.463–0.484) of the 24 H GBT model were again higher 
than those of the 24 H LR, DL, APS, and SOFA models. 
The calibration plots of the ADM models are presented 
in Fig.  3. The intercepts and slopes of the calibration 
plots were 0.26 and 0.9, respectively, for the ADM GBT. 
The Brier scores of the ADM LR, GBT, and DL models 
were 0.087, 0.085, and 0.084, respectively. The calibra-
tion plots of the 24 H models are presented in Additional 
file 1: Figures S2. The ranking and weights of the features 
of the ADM and 24  H models with GBT algorithm are 
presented in Fig. 4. The ranking and weights of the fea-
tures of the ADM and 24 H models with LR and DL algo-
rithms are presented in Additional file 1: Figures S3 and 
S4. For the ADM models, mean arterial pressure, body 
temperature, postoperative intensive care, and GCS were 
important features. For the 24 H models, platelet count, 
white cell count, invasive ventilation, body temperature, 
and GCS were important features. The AUROC values of 
the ADM and 24  H models and mortality rate of those 
patients who remained in the ICU on day 0 to 14 of ICU 
admission are presented in Additional file 1: Figures 
S5. The AUROC values of the ADM and 24  H models 
decayed over time.

Fig. 1  Flowchart of patient inclusion criteria and allocation to training and testing data sets. ADM admission, CORE Center of Outcome and Resource 
Evaluation critical care database, DL deep learning, GBT gradient boosting trees, ICU intensive care unit, LR logistic regression, MIMIC Medical Information 
Mart for Intensive Care database
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The performance of models trained with different 
ADM and 24  H training datasets on various ADM and 
24  H testing datasets is detailed in Additional file 1: 
Tables S6 and S7, respectively. For both ADM and 24 H 
models, models trained with hybrid training datasets 
exhibited superior performance on hybrid testing data-
sets. In the MIMIC ADM testing dataset, the AUROC 
of GBT models was higher for model trained with the 
hybrid dataset compared to that trained with the MIMIC 
training dataset. Similarly, in the MIMIC 24  H testing 
dataset, the AUROC for both GBT and DL models was 
higher for models trained with the hybrid dataset than 
for those trained with the MIMIC training dataset.

Personalized risk assessment in a model simulator
An example of personalized risk assessment was dem-
onstrated with a model simulator using the ADM GBT 
model in Additional file 1: Figure S6. In the example, 
the predicted risk of ICU mortality was 21%. The iden-
tified risk factors were mild tachycardia, tachypnea, an 

emergent operation, and a long hospital stay before ICU 
admission. If the value of any risk factor was changed, the 
simulator recalculated the predicted risk accordingly.

Discussion
A total of 38.4% of the admissions in the ADM testing 
data set were discharged alive (36.3%) or dead (2.1%) 
within 1 day; therefore, the 24 H and conventional mod-
els could not be used to predict ICU mortality in these 
patients. The ADM models could predict an individual’s 
risk of ICU mortality on the basis of their demographic 
characteristics, premorbid status, GCS score, and vital 
signs measurements immediately after ICU admission 
with good discrimination and calibration. Compared to 
ADM machine learning models and conventional APS 
and SOFA models, subsequent 24  H machine learning 
models can improve the predictability of ICU mortality 
among patients discharged alive or dead more than 1 day 
after ICU admission.

Table 1  Characteristics of patients from the MIMIC − IV and CORE data in the ADM data sets
Training Testing
MIMIC − IV CORE MIMIC − IV CORE

Number 56,478 8,772 12,103 2,304
Age (years) 66 (54–78) 67 (56–77) 66 (54–76) 67 (56–77)
Female (%) 25,289 (44.8%) 3,527 (40.2%) 5,088 (42%) 883 (38.3%)
Height (cm) 170 (163–178) 162 (156–168) 170 (163–178) 162 (156–168)
Weight (kg) 77.8 (65.1–92.6) 62.4 (53.8–70.1) 78.5 (66-93.3) 62.5 (54.1–70)
CAD 9,133 (16.2%) 1,260 (14.4%) 2,160 (17.8%) 364 (15.8%)
CHF 16,121 (28.5%) 486 (5.5%) 2,897 (23.9%) 129 (5.6%)
ESRD 12,590 (22.3%) 587 (6.7%) 2,026 (16.7%) 138 (6%)
Diabetes 17,200 (30.5%) 26,24 (29.9%) 3,230 (26.7%) 690 (29.9%)
Dementia 1,866 (3.3%) 256 (2.9%) 666 (5.5%) 65 (2.8%)
Metastatic cancer 3,511 (6.2%) 873 (10%) 736 (6.1%) 101 (4.4%)
Postoperative care 7,496 (13.3%) 4,374 (49.9%) 2,051 (16.9%) 1,129 (49%)
Elective operation 3,509 (6.2%) 3,263 (37.2%) 954 (7.9%) 899 (39%)
Pre-ICU hospital stay 0 (0–0) 2 (1–4) 0 (0–1) 2 (1–4)
Upon ICU admission
Glasgow Coma Scale 15 (10–15) 15 (13–15) 15 (7–15) 15 (14–15)
Body temperature (℃) 36.7 (36.4–37.1) 36.3 (35.8–36.8) 36.8 (36.5–37.1) 36.3 (35.7–36.7)
Respiratory rate (bpm) 18 (15–22) 19 (15–22) 18 (16–22) 19 (15–22)
Heart rate (bpm) 86 (75–101) 91 (78–107) 84 (74–99) 90 (77–105)
SBP (mm Hg) 124 (108–142) 134 (116–155) 123 (108–140) 136 (117–155)
DBP (mm Hg) 678 (57–79) 71 (61–83) 69 (59–82) 71 (61–83)
MAP (mm Hg) 87 (76–99) 93 (81–106) 88 (77–100) 94 (82–107)
SOFA score 4 (2–6) 6 (4–10) 4 (2–7) 7 (5–10)
APS 41 (31–56) 55 (41–77) 37 (27–53) 56 (42–76)
ICU mortality 3,572 (6.3%) 753 (8.6%) 803 (6.6%) 209 (9.1%)
Hospital Mortality 5,542 (9.8%) 1,404 (16%) 1,203 (9.9%) 344 (14.9%)
LOS in ICU (days) 2 (1–3) 3 (1–6) 2 (1–4) 2 (1–5)
LOS in hospital (days) 6 (4–11) 16 (8–32) 7 (4–12) 15 (7–28)
Values are presented as numbers (%) or medians (interquartile ranges). APS acute physiology score of the acute physiologic assessment and chronic health evaluation 
(APACHE) III, bpm beats or breaths per minute for heart rate and respiratory rate, respectively, CAD coronary artery diseases, CHF congestive heart failure, CORE Center 
of Outcome and Resource Evaluation critical care database, DBP diastolic blood pressure, ESRD end-stage renal disease, ICU intensive care unit, LOS length of stay, MAP 
mean arterial pressure, MIMIC Medical Information Mart for Intensive Care, SBP systolic blood pressure, SOFA sequential organ failure assessment
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Fig. 2  Performance of the ADM and 24 H models in the testing data sets. Performance measures are presented as values with corresponding 95% confi-
dence intervals. The cutoff value for sensitivity, precision, and specificity was 0.04 for all models. ADM admission, APS acute physiology score of the acute 
physiologic assessment and chronic health evaluation (APACHE) III, AUPRC area under the precision-recall curve, AUROC area under the receiver operating 
characteristic curve, DL deep learning, GBT gradient boosting trees, LR logistic regression, SOFA sequential organ failure assessment
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Our findings suggest that training machine learning 
models to predict ICU mortality upon ICU admission is 
feasible with good predictability. This enables critical care 
teams to identify patients at risk of acute death within 
1 day after ICU admission as early as possible. Addition-
ally, the training times and predictive accuracy clearly 
favor the use of ML models over traditional scores. LR 
models train in seconds, and GBT models take minutes, 
but GBT’s superior performance justifies the increased 
complexity. Our ADM model provides critical immediate 
insights upon ICU admission, an advantage over scores 
like APS and SOFA, which are calculated after 24 h. Fur-
thermore, GBT, DL, and LR outperform APS and SOFA 
in the 24-hour models, demonstrating greater predictive 
power and operational efficiency without the need for 
manual data abstraction, unlike APACHE. These advan-
tages make our models highly suitable for fast-paced clin-
ical settings. Moreover, we examined the AUROC values 
of the ADM on different days after ICU admission. The 
AUROC values of all the ADM models decreased over 
time, reaching < 0.8 on day 3 and < 0.7 on day 6 after ICU 
admission. Numerous factors can affect a model to pre-
dict a patient’s risk of ICU mortality, including treatment 
decision, treatment response, the severity and revers-
ibility of organ injuries, complications, resuscitation 
resources, and socioeconomic status [37–39]. Further-
more, our results revealed that using the 24  H models 
instead of the ADM models to predict ICU mortality 
among patients who have been in the ICU for over 1 day 
can improve the predictability.

In this study, we assessed the feature importance of 
model. We suggest that visualizing feature importance 
can help critical care teams understand how machine 
learning models make decisions [40, 41], and help them 
determine whether a given model is suitable for pre-
dicting ICU mortality among their patients. Regard-
ing calibration plots, if a model has poor calibration, it 

must be recalibrated to ensure accurate prediction [42]. 
The 24  H prediction model incorporates features also 
utilized in the APACHE score, including temperature, 
MAP, heart rate, sodium, potassium, creatinine, PaO2, 
pH, glucose, WCC, GCS, age, and chronic conditions 
like CHF and ESRD, as well as features from the SOFA 
score such as platelet count and MAP. These features 
focus on key physiological and organ function indica-
tors, ensuring a comprehensive assessment of patient’s 
condition. By aligning with established scoring systems 
like APACHE and SOFA, the model leverages proven 
metrics to enhance the accuracy and reliability of its pre-
dictions. In the ADM GBT model, CHF and CAD have 
moderate weights, with Metastasis, ESRD, and Dementia 
contributing at lower weights compared to primary fea-
tures like MAP, temperature, and SBP. In the 24 H GBT 
model, CHF and Metastasis become more important, 
but chronic health conditions overall still have moderate 
weights relative to acute physiological variables.

The relationship between ICU mortality and feature 
severity presents two important considerations. When 
patients show less severe clinical features, this could 
indicate either early ICU admission or pre-admission 
correction of values, both of which influence mortality 
outcomes. Early ICU admission, reflected in milder clini-
cal presentations, typically leads to better prognosis and 
reduced mortality. Similarly, correctable feature values 
upon ICU admission may signify reversible injuries, cor-
relating with improved survival rates. Although pre-ICU 
data was not included in our analysis, these factors help 
mitigate lead-time bias in ICU mortality predictions. 
However, it’s important to note that when predicting lon-
ger-term outcomes such as 90-day survival, overall sur-
vival time, or comparing standardized mortality ratios, 
experts caution that lead-time bias may become more 
significant and should be carefully considered [43–45]. 
Furthermore, s simulator with visualized personalized 

Fig. 3  Calibration plots of the ADM models. ADM admission, DL deep learning, GBT gradient boosting trees, LR logistic regression
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risk of ICU mortality may be used to help patients and 
their families understand the influence of risk fac-
tors. Additional studies are warranted to investigate the 
impact of the personalized risk factors analysis on clinical 
practice in critical care and the shared decision-making 
process with patient and their families.

This study has several limitations. First, the vital signs 
measurements and laboratory data prior to ICU admis-
sion were not available in the CORE database, and the 
information of frailty was not available in the MIMIC − IV 
database. These variables may improve the performance 
of the ADM models. Second, the information of medi-
cations, fluid supplement, and unstructured data were 
not available in the CORE database. These variables may 
improve the performance of the 24 H models. Third, we 
did not classify the patients into subgroups on the basis of 

diagnosis. Forth, Fourth, we did not collect data regarding 
patients’ palliative care status. Palliative care decisions 
may affect the predictability of the 24 h model, as some 
patients may choose a palliative care plan. The decision to 
include this information or exclude these patients should 
be considered based on the prediction model’s purpose. 
The ADM model, however, was less affected by palliative 
care considerations, as the worst values typically indi-
cate a refractory condition that leads to palliative status. 
Furthermore, we acknowledge that the models proposed 
herein will likely be replaced by dynamic patient-level 
prediction models when the electronic medical system 
can real-time provide massive multivariate time-series 
data to the deployed models [20, 46]. One key consid-
eration when evaluating prediction models that utilize 
GCS scores is the management of sedated or ventilated 

Fig. 4  Feature importance of gradient boosting trees models. ADM admission, bmi body mass index, BUN blood urine nitrogen, cad coronary artery 
diseases, chf congestive heart failure, DBP diastolic blood pressure, ED emergency department, ESRD end stage renal disease, GBT gradient boosting 
trees, gcs Glasgow coma scale, hr heart rate, ICU intensive care unit, inv invasive ventilation, LOS length of stay, MAP mean arterial pressure, ph power of 
hydrogen, plat platelet, rr respiratory rate, SBP systolic blood pressure, wcc white cell counts
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patients. In the MIMIC database, patients who cannot 
be assessed due to sedation or ventilation but are other-
wise neurologically intact are typically assigned a GCS 
score of 15 [29]. Our database follows similar standards. 
Additionally, for intubated coma patients, verbal scores 
are adjusted according to the protocol of our Division 
of Neurosurgery. Specifically, patients with GCS scores 
ranging from 2T to 8T receive an additional verbal score 
of 1. Those with a score of 9T are assigned a total score 
of 12 if the motor score is 5 or 14 if the motor score is 6. 
Finally, patients with a score of 10T are assigned a total 
score of 15. We noted that a practical rule was published 
after we built the CORE database [47]. However, these 
rules are not uniformly implemented in most hospital 
electronic health records. Consequently, sedated patients 
may receive highly variable GCS scores, ranging from as 
low as 3 to as high as 15, depending on the care provider. 
Addressing this inconsistency is crucial for the effective 
training and deployment of the machine learning model, 
as it ensures the model’s accuracy, reliability, and ability 
to generalize across diverse clinical settings.

Conclusion
More than one-third of the ICU patients in this study 
were discharged alive or dead within 1 day of ICU admis-
sion. Early ADM prediction models can provide crucial 
information regarding the risk of ICU mortality among 
such patients upon ICU admission. Subsequent 24  H 
models can be used to improve predictability of ICU 
mortality among patients discharged more than 1  day 
after ICU admission.
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