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Abstract 

Background  A prediction model that estimates the risk of elevated glycated hemoglobin (HbA1c) was developed 
from electronic health record (EHR) data to identify adult patients at risk for prediabetes who may otherwise go unde-
tected. We aimed to assess the internal performance of a new penalized regression model using the same EHR data 
and compare it to the previously developed stepdown approximation for predicting HbA1c ≥ 5.7%, the cut-off for pre-
diabetes. Additionally, we sought to externally validate and recalibrate the approximation model using 2017–2020 
pre-pandemic National Health and Nutrition Examination Survey (NHANES) data.

Methods  We developed logistic regression models using EHR data through two approaches: the Least Absolute 
Shrinkage and Selection Operator (LASSO) and stepdown approximation. Internal validation was performed using 
the bootstrap method, with internal performance evaluated by the Brier score, C-statistic, calibration intercept 
and slope, and the integrated calibration index. We externally validated the approximation model by applying 
original model coefficients to NHANES, and we examined the approximation model’s performance after recalibration 
in NHANES.

Results  The EHR cohort included 22,635 patients, with 26% identified as having prediabetes. Both the LASSO 
and approximation models demonstrated similar discrimination in the EHR cohort, with optimism-corrected C-statis-
tics of 0.760 and 0.763, respectively. The LASSO model included 23 predictor variables, while the approximation model 
contained 8. Among the 2,348 NHANES participants who met the inclusion criteria, 30.1% had prediabetes. External 
validation of the LASSO model was not possible due to the unavailability of some predictor variables. The approxima-
tion model discriminated well in the NHANES dataset, achieving a C-statistic of 0.787.

Conclusion  The approximation method demonstrated comparable performance to LASSO in the EHR development 
cohort, making it a viable option for healthcare organizations with limited resources to collect a comprehensive set 
of candidate predictor variables. NHANES data may be suitable for externally validating a clinical prediction model 
developed with EHR data to assess generalizability to a nationally representative sample, depending on the mod-
el’s intended use and the alignment of predictor variable definitions with those used in the model’s original 
development.
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Background
Over 1 in 3 American adults have prediabetes [1], 
defined as having an elevated glycated hemoglobin 
(HbA1c) ≥ 5.7%, and 80% are unaware that they have it 
[1]. Additionally, adults with undiagnosed diabetes com-
prise 23.0% of prevalent diabetes cases in the United 
States [2]. Patients who go on to develop diabetes are at 
increased risk of cardiovascular complications [3], and 
have, on average, healthcare expenses that are 2.3 times 
higher than persons not diagnosed with diabetes [4]. As 
such, screening patients for early detection of elevated 
HbA1c facilitates early intervention, which may prevent 
or delay disease progression, prevent micro- and mac-
rovascular complications, mitigate unnecessary health-
care expenditures attributable to diabetes, and improve 
patient outcomes [5]. Diagnostic prediction models that 
estimate the risk of elevated HbA1c can be implemented 
into the electronic health record (EHR) to identify those 
at risk for prediabetes who may otherwise go undetected.

The American Diabetes Association (ADA) and Cent-
ers for Disease Control and Prevention (CDC) offer a 
prediabetes risk test that includes history of gestational 
diabetes if female, family history of diabetes, physical 
activity, history of hypertension, patient age, sex, height, 
and weight [6]. The CDC Risk Score model, originally 
developed with NHANES 1999–2004 and validated with 
NHANES 2005–2006 [7], demonstrated poor perfor-
mance in NHANES 2013–2014 [8]. This decline may be 
due to differences in predictor variable definitions and 
temporal changes in prediabetes prevalence. Despite 
it hovering just above the conventional level of signifi-
cance, physical inactivity was included in the CDC model 
because of its protective and modifiable nature [7]. How-
ever, variables collected in health surveys, such as physi-
cal activity, are not always routinely captured in EHRs, 
complicating the application of survey-developed models 
to clinical settings.

Previously, Wells et  al. [9] built a logistic regression 
model from EHR data using stepdown approximation 
to predict prediabetes. The model-development cohort 
comprised adult patients of Atrium Health Wake For-
est Baptist Medical Center (AHWFBMC) in Winston-
Salem, North Carolina who had undergone HbA1c 
testing, had prior evidence of hyperglycemia, or had 
a prescription for an antihyperglycemic medication 
between September 2012 and September 2016 [9]. The 
selection of candidate predictors was guided by their 
theoretical relationship to hyperglycemia [9]. Harrell’s 
model approximation method was used to derive the 
most parsimonious model [10]. The following predic-
tors were selected from a larger subset of candidate 
variables in order from most to least importance: age, 
body mass index (BMI), random glucose, race, serum 

non–high-density lipoprotein (non-HDL), serum total 
cholesterol, estimated glomerular filtration rate (eGFR), 
and smoking status [9]. The approximation model was 
internally validated using tenfold cross-validation and 
outperformed alternative models with a C-statistic of 
0.765 [9].

Alhassan et al. [11] replicated the Wells et al. approxi-
mation model using EHR data from Saudi Arabia by 
building three models using identical predictors with 
the exception of race, which was uniform across their 
patient population, and smoking status, which was 
absent from their dataset. While the omission of race 
and smoking status limited the external validation of 
the original model, they replicated the logistic regres-
sion equation used in the original model and validated 
it through tenfold cross-validation, which yielded com-
mendable accuracy and calibration [11]. Alhassan et al. 
found that the model with fewer predictors performed 
the best and that the order of variable importance 
(most to least important: random glucose, age, eGFR, 
cholesterol, non-HDL, and BMI) differed from Wells 
et al. [11] Systematic population differences (e.g., loca-
tion, data collection processes, and individual charac-
teristics) likely contributed to dissimilarities in variable 
importance.

Generally, clinical prediction models perform better 
on the dataset used for development than on new patient 
populations [12, 13]. External validation is essential for 
evaluating a model’s predictive performance on a sepa-
rate dataset that was not part of the model’s development 
[14, 15]. Assessing a prediction model’s performance 
on new data is crucial for testing its generalizability 
and transportability, ensuring that it can reliably sup-
port decision-making in new patient populations before 
widespread implementation [12–15]. Although the Wells 
et al. model was replicated, it has not been compared to 
a model using a different variable selection technique 
within the same development cohort. First, we aimed to 
compare the performance of the prediabetes diagnostic 
model developed using the original approximation step-
down procedure to the LASSO method, as these two 
approaches offer distinct advantages: the approxima-
tion method focuses on creating a parsimonious model 
by retaining the most significant predictors and may be 
easier to interpret, while LASSO shrinks less relevant 
predictors toward zero, potentially enhancing model 
simplicity and performance [10, 16]. By comparing these 
two methods, we sought to ensure the robustness and 
potential advantages of each approach in improving pre-
dictive performance. Additionally, we aimed to exter-
nally validate and recalibrate the approximation model 
using NHANES data to assess its generalizability and 
transportability.
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Methods
The Wake Forest University Health Sciences institu-
tional review board approved this study (IRB00031798) 
and waived informed consent. This study conformed 
to the Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis Or Diagnosis (TRI-
POD + AI) checklist [17]. The development cohort was 
identical to that used in Wells et al. [9], and 35 candidate 
predictor variables were considered (sirolimus was not 
considered due to low prevalence). The outcome of inter-
est was defined as HbA1c ≥ 5.7%, or prediabetes, per the 
original study [9] and the ADA’s diagnostic criteria [18]. 
Given that we used the same dataset previously utilized 
by Wells et  al. for model development, we verified the 
appropriateness of the sample size using the “pmsamp-
size” package [19, 20]. Based on an outcome prevalence 
of 26% [9], a C-statistic of 0.76 [9], and 35 candidate pre-
dictors, we calculated that a minimum sample size of 
1,789 with 446 events was required for model develop-
ment that ensured a shrinkage factor of ≥ 0.9, an absolute 
difference of ≤ 0.05 between the model’s apparent and 
adjusted proportion of variance explained, and a margin 
of error ≤ 0.05 in the estimate of average outcome risk. 
LASSO and approximation logistic regression models 
were built to predict the probability of prediabetes. For 
the LASSO logistic regression, tenfold cross-validation 
was used to select the largest lambda at which the devi-
ance was within one standard error of the minimal devi-
ance. For the stepdown approximation procedure, we 
first fit a full logistic regression model in which continu-
ous variables were fit using the restricted cubic splines 
function with 3 knots. Then, an ordinary least squares 
model was used to approximate the linear predictor of 
the full model. Variables were removed using backward 
elimination until the R-squared value reached 0.95 [10]. 
Both the LASSO and approximation models were inter-
nally validated using 2,000 bootstrap resamples whereby 
the entire modeling process (including tuning param-
eter selection via tenfold cross-validation for the LASSO 
model and backward elimination for the approximation 
model) was repeated for each resample to obtain an opti-
mism-corrected C-statistic, calibration intercept, calibra-
tion slope, Brier score, integrated calibration index (ICI) 
[21, 22], and a bias-corrected calibration curve. The sta-
bility of the LASSO and approximation models was also 
assessed by performing 2,000 bootstrap resamples, after 
which we (1) calculated the average mean absolute differ-
ence between individuals’ original predictions and those 
from the bootstrap models, and (2) generated mean abso-
lute predictor error plots, prediction instability plots, and 
calibration instability plots for the two models [23].

The 2017–2020 pre-pandemic cycle of NHANES was 
used for external validation [24]. NHANES is a yearly 

survey of a nationally representative sample, consisting of 
interviews and physical examinations, designed to evalu-
ate the health of adults and children in the United States. 
Validating the approximation model in NHANES data 
allowed us to assess (1) its transportability to a popula-
tion with a different case-mix than the development data, 
and (2) its generalizability to a nationally representative 
sample. We selected data necessary to derive the predic-
tor variables that corresponded to the original set of can-
didate variables used to build the original model [9]. Due 
to the limited data availability in NHANES, however, we 
were not able to identify peripheral vascular disease and 
neuropathy.

We included adult participants (≥ 18 years of age) with 
an HbA1c. To focus on those with prediabetes who may 
have been missed and would likely benefit from identi-
fication, we excluded participants who indicated that a 
doctor told them they had prediabetes or diabetes and 
those who took a medication indicated for diabetes man-
agement. Additional eligibility criteria included an indi-
cation of fasting status as this conferred that they were 
more likely to undergo the panel of laboratory tests nec-
essary to derive many of the candidate variables, which 
was slightly different from the development data defini-
tion since fasting status was not reliably documented 
in the AHWFBMC EHR. Laboratory values for non-
HDL were calculated by subtracting HDL from total 
cholesterol. A binary variable was created for obesity 
(BMI ≥ 30). We calculated eGFR using the Chronic Kid-
ney Disease Epidemiology Collaboration (CKD-EPI) 
Creatinine Equation (2021) based on SCr, age, and sex 
[25]. We identified participants as taking medications 
only if the prescription container or pharmacy print-
out was observed by the interviewer to limit recall bias 
and accurately capture prescription data. Only complete 
cases were used since the investigators felt that imputa-
tion would not be appropriate at model deployment [9]. 
NHANES variable definitions are in Additional File 1. 
The approximation model was externally validated by 
applying the original regression coefficients to NHANES 
and calculating the predicted probability of prediabetes. 
Additionally, we assessed the approximation model’s 
performance after recalibrating the intercept and overall 
calibration slope by fitting a logistic regression model to 
NHANES with the original approximation model linear 
predictor as the only covariable [26–28]. Predictive per-
formance of the approximation model in NHANES was 
measured using discrimination (C-statistic), calibration 
(calibration intercept and slope, ICI), visually by a calibra-
tion curve, and simultaneous discrimination and calibra-
tion (Brier score). NHANES fasting subsample weights 
were used to estimate population totals, and external 
performance metrics were weighted using normalized 
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fasting subsample weights, which were calculated by 
dividing the fasting subsample weight by the mean of all 
fasting subsample weights for the NHANES validation 
cohort [29]. Due to missingness of many candidate vari-
ables in NHANES we were not able to externally validate 
the LASSO model. We verified the appropriateness of the 
NHANES sample size for external validation using the 
“pmvalsampsize” package [30]. Based on the observed 
distribution of the linear predictor for the approximation 
model in the NHANES sample (mean -1.145, standard 
deviation 1.374), and an outcome prevalence of 30.1%, 
a minimum sample size of 2,204 with 664 events was 
required to externally validate the approximation model 
that precisely estimated an outcome event proportion of 
1 (confidence interval width of 0.2), calibration slope of 
1 (confidence interval width of 0.2), and a C-statistic of 
0.79 (confidence interval width of 0.1). Statistical analy-
ses were performed in R version 4.4.1 (R Foundation for 
Statistical Computing) using the “nephro” [31], “glmnet” 
[32], “rms” (Regression Modeling Strategies), and “Cali-
brationCurves” [33] packages.

Results
Descriptive statistics for the approximation model 
predictor variables across the development EHR and 
NHANES cohorts are in Table  1 (full descriptive statis-
tics are in supplemental Tables 3–5 of Additional File 2). 
The LASSO model had 23 non-zero coefficients (Table 2, 
formula is in supplementary Table 6), with an optimism-
corrected C-statistic of 0.760, intercept of -0.011, and 

slope of 0.987. In comparison, the approximation model 
had 16 coefficients (Table 2, supplemental Tables 7–10), 
with an optimism-corrected C-statistic of 0.763, inter-
cept of -0.007 and a slope of 0.992. The calibration curve 
for LASSO revealed some underestimation for patients 
at moderate risk (Fig. 1). Whereas the calibration curve 
for the approximation model indicated overestimation 
for patients at high risk, the approximation was still well 
calibrated in the lower risk patients where the majority 
of the population lies (Fig. 2). The average mean absolute 
difference between the original LASSO model and boot-
strapped predictions was 1.1%, and between the original 
approximation model and bootstrapped predictions was 
1.8% (see additional file 2 for model instability plots).

The NHANES validation cohort included 2,348 par-
ticipants (Fig.  3). A larger proportion of participants 
(30.1%) had an elevated HbA1c in NHANES compared 
to 26.0% of patients in the development cohort. The 
means for continuous approximation predictors among 
participants with prediabetes between the develop-
ment and NHANES cohort were similar (age 54.8 years 
vs 55.5 years; BMI 33.0% vs 31.1%; non-HDL 144 mg/dL 
vs 138.7 mg/dL; total cholesterol 192 mg/dL vs 191 mg/
dL). The proportion of Black or African American par-
ticipants was slightly higher (37.1% vs 35%), and the pro-
portion of current smokers was similar (23.6% vs 21.1%), 
respectively. The approximation model had a C-statistic 
of 0.787 when applied to NHANES and showed miscali-
bration and overestimation (Table  2 and Fig.  4; Inter-
cept 0.102; Slope 1.097; ICI 0.020), but the calibration 

Table 1  Descriptive statistics for approximation model predictor variables in EHR cohort and 2017–2020 (pre-pandemic) NHANES 
cohort

a Continuous variables are reported as Mean (SD) and categorical variables are reported as n (%)

EHRa NHANESa Weighted NHANES1

N 22,635 2,348 163,945,257

Outcome (HbA1c ≥ 5.7%) 5,892 (26.0%) 706 (30.1%) 36,945,826 (22.5%)

Fasting blood glucose (mg/dL) 96.1 (16.0) 110.5 (27.9) 109.6 (26.3)

Smoking Status
  Current Smoker 1,393 (23.6%) 149 (21.1%) 8,154,533 (22.1%)

  Former Smoker 1,480 (25.1%) 161 (22.8%) 8,538,388 (23.1%)

  Never Smoker 3,019 (51.2%) 396 (56.1%) 20,252,905 (54.8%)

Non-HDL cholesterol (mg/dL) 144.5 (41.7) 138.7 (41.0) 142.5 (42.4)

Total cholesterol (mg/dL) 191.8 (43.1) 190.5 (40.2) 195.0 (41.0)

BMI (kg/m2) 33.0 (8.4) 31.1 (7.5) 31.0 (7.5)

eGFR (mL/min/1.73 m2) 87.9 (30.8) 91.0 (20.3) 91.8 (19.6)

Race
  Black or African American 2,183 (37.1%) 247 (35.0%) 6,561,775 (17.8%)

  Other 487 (8.3%) 243 (34.4%) 8,803,164 (23.8%)

  White or Caucasian 3,222 (54.7%) 216 (30.6%) 21,580,887 (58.4%)

Age (years) 54.8 (14.0) 55.2 (15.7) 54.7 (15.4)
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improved after recalibration (Table 2 and Fig. 5; Intercept 
-0.000; Slope 1; ICI 0.004). Calibration of the approxima-
tion model in NHANES modestly improved with use of 
normalized fasting subsample weights (Table 2 and Fig. 6; 
Intercept 0.033; Slope 1.103; ICI 0.013). The formulas for 
the approximation model recalibrated in NHANES with 
and without sampling weights are available in supple-
mental Tables 9 and 10. (Fig. 7).

Discussion
Both the LASSO and approximation models demon-
strated moderate discriminative performance in the 
development cohort, with the approximation model 
showing better calibration than the LASSO in devel-
opment, and improved discrimination in the external 
validation cohort. The approximation model performed 
similarly to the LASSO model in the development cohort 
despite differences in variable selection methods. The 
LASSO uses shrinkage for variable selection by con-
straining the absolute values of the regression coeffi-
cients to be less than a bound determined by a penalty 

parameter lambda, effectively zeroing out coefficients 
of less relevant predictors to simplify the model [16, 
32]. In contrast, the stepdown/backwards elimination 
method approximates the full logistic regression model 
by retaining the most significant predictors that explain 
the majority of the variance. This process results in a par-
simonious model that effectively captures the key predic-
tive relationships, maintaining similar performance to 
the full model. The approximation method can lead to 
a model that is easier to interpret which is beneficial in 
settings where simplicity and clarity are prioritized. The 
LASSO method can lead to a more simplified model that 
reduces overfitting, improves generalizability, and may 
enhance predictive performance, especially when dealing 
with large datasets with many predictors.

When applied to NHANES data, the approxima-
tion model showed good discriminative ability in pre-
dicting elevated HbA1c levels. Recalibration further 
improved its performance, indicating that some tuning 
to specific populations can enhance the model’s utility 
for identifying individuals with an HbA1c ≥ 5.7%. The 

Table 2  Model performance metrics and 95% confidence intervals for the LASSO and approximation models in the development 
cohort. Performance of the approximation model in 2017–2020 (pre-pandemic) NHANES is also shown

a Performance measures were corrected for optimism using 2,000 bootstrap resamples of the development EHR data, and the 95% confidence intervals for each 
optimism-corrected performance metric were derived from the 2.5th and 97.5th percentiles of these resamples
b 95% confidence intervals were derived from the 2.5th and 97.5th percentiles of 2,000 bootstrap resamples of the NHANES data
c The performance metrics for the weighted NHANES were weighted using normalized fasting subsample weights
d The integrated calibration index (ICI) is the average absolute difference between the predicted probabilities and observed probabilities derived from the locally 
weighted scatter plot smoother (LOWESS). For the weighted NHANES, the loess function was used with the normalized fasting subsample weights specified for the 
weights argument

LASSOa Approximationa External 
validation of 
approximation 
model in 
NHANESb

Logistic 
recalibration of 
approximation 
model in 
NHANESb

External 
validation of 
approximation 
model in 
weighted 
NHANESb,c

Logistic 
recalibration of 
approximation 
model in weighted 
NHANESb,c

N 22,635 22,635 2,348 2,348 2,348 2,348

Candidate variables 35 35

Number of vari-
ables selected

23 8

Number of coef-
ficients

23 16 16 16 16 16

Model Performance

  Calibration-in-
the-large
(calibration inter-
cept)

0.000 (-0.031 
to 0.032)

0.000 (-0.034 
to 0.034)

0.102 (0.001 
to 0.199)

-0.000 (-0.097 
to 0.102)

0.033 (-0.114 
to 0.181)

-0.000 (-0.155 
to 0.150)

  Calibration slope 1.099 (1.061 
to 1.141)

0.992 (0.956 
to 1.029)

1.097 (0.993 
to 1.209)

1.000 (0.909 
to 1.099)

1.103 (0.944 
to 1.274)

1.000 (0.864 to 1.151)

  Brier score 0.161 (0.158 
to 0.163)

0.160 (0.157 
to 0.163)

0.163 (0.154 
to 0.172)

0.163 (0.155 
to 0.171)

0.141 (0.128 
to 0.154)

0.141 (0.129 to 0.154)

  ICId 0.012 (0.009 
to 0.016)

0.009 (0.005 
to 0.013)

0.020 (0.009 
to 0.036)

0.004 0.013 (0.009 
to 0.037)

0.007

  C-statistic 0.761 (0.755 
to 0.768)

0.763 (0.756 
to 0.770)

0.787 (0.768 
to 0.805)

0.787 (0.767 
to 0.807)

0.787 (0.765 
to 0.808)

0.787 (0.766 to 0.808)
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logistic recalibration allowed us to maintain the knowl-
edge collected from the development data while incor-
porating knowledge from new patient data. We did not 

see the need for refitting the approximation model in 
NHANES, as refitting potentially disregards the knowl-
edge gained from the development data [34, 35]. The 

Fig. 1  Calibration curve for LASSO model fit on development EHR cohort

Fig. 2  Calibration curve for approximation model fit on development EHR cohort
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use of normalized fasting subsample weights had negli-
gible impact on the approximation model’s performance 
in NHANES, as normalization scales the weights so that 
their sum equals the sample size, which does not signifi-
cantly influence individual predictions.

Using surveys or epidemiological cohort studies for 
EHR model validation, and vice versa, can be challeng-
ing due to temporal changes in disease prevalence and 
differences in variable measurement [36]. For instance, 
the CHARGE-AF risk score for atrial fibrillation was 

Fig. 3  Flow diagram for 2017–2020 (pre-pandemic) NHANES external validation cohort

Fig. 4  Calibration curve after applying the approximation model coefficients to NHANES
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developed and validated using multiple prospective 
cohort studies, yet performed poorly when it was vali-
dated with single-institution EHR [36, 37]. Cohort 

studies may also have strict inclusion and exclusion crite-
ria, and models developed using such data may have lim-
ited generalizability [27]. Moreover, models developed 

Fig. 5  Calibration curve after recalibrating the approximation model to NHANES

Fig. 6  Calibration curve after applying the approximation model coefficients to NHANES with normalized fasting subsample weights
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from routinely-collected EHR data may not perform well 
on cohort data because of differences in data collection, 
in patient catchment, and in overall outcome and predic-
tor variable occurrence [38–40]. Accordingly, it is recom-
mended that external validation be performed in new 
data that is relevant to the model’s intended use [14, 15]. 
While the approximation model is designed to predict 
elevated HbA1c in a clinical setting, NHANES partici-
pants, though originating from a different context than 
the development data, are relevant because they repre-
sent the underlying target superpopulation of patients 
with prediabetes.

Healthcare organizations with limited resources or 
smaller populations may benefit from applying the origi-
nal coefficients described by Wells et  al., as this can be 
implemented using a calculator outside the EHR, while 
those needing a predefined parsimonious model but 
lacking the capacity to capture all original variables 
may prefer recalibrating the approximation model. If 
data extraction and refitting are feasible, updating the 
approximation model’s coefficients could enhance its 
discriminative ability. Complete full model refitting and 
approximation might be desirable for organizations 
wanting to deploy a prediction model that is more rigor-
ously fit to local patient characteristics and available data, 
especially if the population is considerably different from 
the AHWFBMC EHR and NHANES cohorts as demon-
strated in Alhassan et al. [11].

Strengths and Limitations
Strengths of our study include the use of a relatively 
large sample size for model development and the appli-
cation of bootstrap resampling for internal validation 
and evaluation of predictive performance. The exter-
nal validation was limited by a smaller sample size of 
the NHANES validation cohort, differences in vari-
able definitions between the development cohort and 
NHANES, and the inability to validate the LASSO 
model. Although NHANES includes many of the struc-
tured data elements found in EHRs, it lacked some of 
the disease states associated with diabetes risk. To 
ensure consistent classification of variables, we used 
International Classification of Diseases 10th Revision 
(ICD-10) codes in the NHANES drug files to capture 
diagnoses whenever possible and minimized the use of 
questionnaire variables.

Conclusion
We showed that an approximation model intended to 
identify patients with an elevated HbA1c exhibited 
adequate predictive performance among an external 
population. The results indicate that the model may 
be transportable across different settings, making it a 
valuable and resource-efficient tool in clinical practice 
for identifying patients with prediabetes who could 
benefit from early intervention to prevent disease pro-
gression and adverse outcomes. Further validating the 

Fig. 7  Calibration curve after recalibrating the approximation model to NHANES with normalized fasting subsample weights



Page 10 of 11Casacchia et al. BMC Medical Informatics and Decision Making          (2024) 24:387 

approximation model with external EHR data would 
strengthen evidence of the model’s transportability and 
generalizability, and provide insights into optimizing its 
integration within different EHR systems for use in rou-
tine clinical practice.
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