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Abstract 

Background Modern machine learning and deep learning methods have been widely incorporated in decision 
making processes in healthcare in the form of decision support mechanisms. In healthcare, data are abundant 
but typically not centrally available and, therefore, require some form of aggregation to facilitate training procedures. 
Aggregating sensitive data poses a significant privacy risk, which is why, both in Europe and the United States, legal 
frameworks regulate the treatment of such data. Whilst these measures protect the individual behind the data, they 
pose a significant challenge that results in extensive legal administration related to data sharing efforts. Federated 
learning (FL) offers a way to mitigate these challenges by allowing to learn models in distributed fashion, eliminat-
ing the need to aggregate data for the purpose of training. However, FL comes with a new set of challenges related 
to communication overhead, client selection and efficiency of the FL training procedure, among others.

Methods In this work, we extend on a previously proposed client recruitment approach by incorporating knowledge 
on the local hardware such that it becomes possible to recruit a subset of clients for the federation based on the con-
struct of client-level representativeness, which is expressed in terms of the local target distribution divergence, sample 
size, and the underlying hardware.

Results We show that, for prominent, medical regression and classification tasks, the recruitment approach yields 
results that are on par, or better, compared to the central and federated approaches. The proposed approach 
requires a mere fraction of the data for training and reduces the training time by a factor of 3-4. In addition, we show 
that excluded clients can still significantly benefit from the resulting federated model through local fine-tuning.

Conclusions By expressing the representativeness of clients in function of the deviation in the local target distri-
bution, the sample size and efficiency of the underlying hardware, we are able to define a recruitment approach 
that yields a subset of clients for the federation resulting in significantly reduced training time, without harming pre-
dictive performance, whilst improving the privacy preserving characteristics compared to the standard FL and central 
approaches.

Keywords Federated learning, Client recruitment, Deep learning

Background
Machine learning (ML) and deep learning (DL) methods 
have been widely adopted in the healthcare domain and 
are accompanied by a significant track record showing 
their value over a broad spectrum of applications [1–3]. 
Medical data is omnipresent in large quantities and dif-
ferent modalities, often generated at different medical 
facilities. Patients can be admitted to different hospitals, 
medical care facilities, different wards within hospitals, 
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and so on. Each of these institutions generates data 
related to the care and stay episodes for the correspond-
ing patients, resulting in large quantities of distributed 
data in different modalities. For example, patients admit-
ted to the Intensive Care Unit (ICU) are continuously 
monitored and generate sequences of temporal data. 
When need be, these patients may be transferred to the 
radiology ward where medical imaging generates visual 
representations along with, most often, written radiol-
ogy reports. As such, the data is abundant, heterogene-
ous and distributed. The distributed nature of the data 
manifests at different levels. At the intra-hospital level, 
data can reside on different systems pertaining to differ-
ent wards. At the inter-hospital level, data pertaining to a 
single patient may partially reside at different institutions 
as a result of different care episodes or distinct special-
ties at each of the care facilities. By jointly leveraging all 
the data as input for ML and DL methods, new insights 
can be derived and patient care can be improved beyond 
what was previously possible.

However, the decentralized nature of medical data poses 
a major challenge for the adoption of ML and DL meth-
ods. Especially for DL, large quantities of data are required 
which often need to be pooled and aggregated centrally to 
facilitate training. However, legal and regulatory frame-
works such as the General Data Protection Regulation 
(GDPR) [4], the European Union Artificial Intelligence Act, 
and the United States counterpart, the Health Insurance 
Portability and Accountability Act (HIPAA) [5], impose 
significant restrictions on such central aggregation. These 
frameworks are rightfully instated to warrant privacy for 
the individuals behind the data, nevertheless, by so doing, 
inherently and unintentionally, they impose a significant 
burden for the adoption of advanced DL methods in the 

healthcare domain. Currently, remediating these challenges 
requires for de-identification of the data and subsequent 
agreement upon extensive data sharing agreements.

Federated Learning (FL), as originally proposed by 
McMahan et al. in 2017 [6], stands as a means to miti-
gate the restrictions imposed by the legal frameworks 
and, as showcased in the literature, FL is increasingly 
studied for applications in healthcare. In recent work, 
the value of FL has been illustrated for various research 
and application domains such as for medical imaging, 
and more specifically classification and segmentation 
tasks [7–11]. FL allows to learn complex DL models 
over decentralized data without the need for direct local 
access. Therefore, data owners maintain full control 
over the data, eliminating the need to share or centrally 
aggregate, which directly translates in a reduction of the 
administrative and legal efforts that would be required 
otherwise.

In FL, a central server orchestrates the training proce-
dure of a defined model over multiple local clients. These 
clients can correspond, in practice, to hospitals, mobile 
phones, government institutions, pharmaceutic compa-
nies etc., essentially any sort of party that locally hosts 
data and can provide computational resources. The local 
clients, in combination with the central server, make up 
the federation which communicate with each other bidi-
rectionally to pass model updates. Learning a model in the 
federation generally follows the predefined FL algorithm 
outlined in Algorithm 1, [6]. As illustrated in Algorithm 1, 
the local clients provide a model update to the central 
server after a local iteration of training. These model 
updates are aggregated into a global update according to 
the standard FedAvg algorithm in which the local weight 
matrices are averaged into the global update [6].

Algorithm 1 Standard Federated Learning procedure with T, the number of training rounds, C, all the clients in the federation indexed by c and E, 
the number of epochs for each round of local training
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Although, FL provides a way to mitigate otherwise 
complex privacy related data challenges, it comes 
with its own set of challenges. As indicated, FL facili-
tates learning procedures in distributed settings, 
which inherently means that some form of communi-
cation between the participating instances is required. 
Depending on the scale and amount of participants, 
the required communication may result in significant 
overhead which directly influences the cost and the effi-
ciency of the operation. A vastly different, but major, 
challenge relates to the nature of distributed data. Real-
world, decentralized data is not independent and iden-
tically distributed (non-IID). Decentralized sets of data 
are especially characterized by different underlying 
distributions driven by demographic and geographic 
parameters as well as differences in terms of the unit of 
observation, sampling rate, deviating margins of error 
on the hardware level and different established pro-
cesses for monitoring and reporting. This non-identi-
cally distributed nature of decentralized data can harm 
the federated training procedure, or any training pro-
cedure for that matter, due to the weight divergence in 
local model updates driven by the non-IID data [12]. 
Consequently, this not only harms the training proce-
dure but the eventual outcome in terms of the obtained 
predictive performance.

In FL, the random client selection procedure for each 
round of training, as illustrated in Algorithm  1, has 
been shown to be robust against the non-IID nature of 
decentralized data [6]. However, a significant amount of 
research effort is being dedicated to defining more effi-
cient, informed ways of selecting the best clients at each 
round of training [13–15]. These approaches mostly 
relate to selecting clients in function of previous updates, 
by prioritizing those that provided a more constructive 
update [16, 17]. For instance, in [18], the authors show 
how biasing client selection towards selecting clients 
with larger local loss, results in faster global error con-
vergence. The major downside of these approaches is 
that the evaluation of the value a certain client brings, 
is ad hoc. Therefore, all clients need to partake in the 
federation and participate in at least one round of train-
ing, which is computationally expensive and can pose a 

burden in practice. Similarly, significant research efforts 
are being dedicated to the aggregation approaches for 
construction of the global updates. Again to mitigate the 
downsides of the non-IID data, as well as to allow for 
more robust and efficient training that reaches conver-
gence at a faster pace compared to the standard FedAvg 
approach. To that extent, more advanced methods look 
at weighted averaging depending on the local sample size 
or class imbalance such as in [19]. Other approaches such 
as Stochastic Controlled Averaging [20], look to mitigate 
phenomena such as client-drift resulting from heteroge-
neous, non-IID data. In Table 1 we present a condensed, 
non-exhaustive, overview of the seminal work related to 
federated learning, client selection and aggregation.

In this work, we tackle the challenges related to the 
non-iid nature of decentralized data in FL, for which 
our proposed approach inherently reduces the commu-
nication overhead and improves the privacy preserving 
aspect. As indicated, real-world, decentralized data is 
non-iid in nature. Therefore, the utility of the data hosted 
by each of the participants may vastly differ from one 
host to another. More specifically, data hosted at a given 
participant may be limited in terms of the instances, be 
characterized by underlying distributions that are not 
representative for the average distributions across all 
participants, or may simply be hosted on outdated, slow, 
hardware. In the standard federated learning approach, 
all participants contribute initially to the federation, and 
only once the orchestrating party has gained sufficient 
understanding of how valuable certain participants are, 
it can make informed decisions about which participants 
partake henceforth. Such client selection procedures are 
computationally expensive and require for all partici-
pants to contribute at least once to the procedure. Here, 
we aim to remediate this by relying on client recruitment, 
the foundations for which are provided in the work by 
Ruan et al. [22]. In doing so, we try to evaluate, a priori, 
which participants can yield valuable contributions. 
More formally, a subset of participants can be recruited 
for which it is known, to some extent, that they are repre-
sentative of the global population and will yield valuable 
contributions, resulting in faster convergence without 
having to sacrifice predictive performance. Essentially, 

Table 1 Condensed overview of seminal work related to federated learning approaches, client selection and aggregation

Approach Authors Year Key features

FedAvg McMahan et al. 2017 Averages model updates from multiple clients to create a global model [6]

FedProx Li et al. 2020 Extends FedAvg by addressing system heterogeneity and varying amounts of client data. [21]

FedCS Nishio et al. 2019 Optimizes client selection based on resource conditions to enhance training efficiency [14]

SCAFFOLD Karimireddy et al. 2019 Combines adaptive sampling and stochastic weight averaging to improve training efficiency 
and accuracy. [20]
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participants with non-representative local data can yield 
harmful model updates at training time. Therefore, these 
participants are excluded from partaking in the train-
ing procedure, consequently, omitting the need for more 
intelligent selection and aggregation strategies. To do so, 
a means to evaluate the local representativeness needs 
to be constructed. Specifically in this work, we extend 
our proposed client recruitment approach [23] by incor-
porating knowledge on the local underlying hardware 
architecture. As such, the resulting recruitment approach 
depends on the updated construct of client-level repre-
sentativeness which is expressed in terms of the local 
divergence in the target distribution, local sample size, 
and a proxy of the local training time computed based on 
the hardware information. All of which constitute high-
level, non-privacy infringing statistics that are readily 
available for each of the participants.

The practical validity and utility of the proposed 
approach is evaluated in two prominent healthcare set-
tings. The first of which entails Length of Stay (LoS) 
prediction on patients admitted to the ICU, using the 
real-world eICU dataset [24–26] for which only 47 out 
of the 189 potential clients are recruited. The second set-
ting constitutes the multi-label chest radiograph (CXR) 
classification problem, using the MIMIC CXR data set 
with structured labels [27], for which 29 out of the 100 
potential clients are recruited. These two settings cover 
both managerial and clinical problems in healthcare 
that call for regression and classification approaches, 
and models, respectively. For each of these settings, we 
show that, with federations constructed of recruited cli-
ents only, the resulting models yield predictive perfor-
mances that either outperform or perform on par with 
the performances obtained from the central and stand-
ard federated models as proposed in [6], albeit, at a frac-
tion of the required training time, whilst providing a full 
privacy-guarantee for the non-recruited clients. In addi-
tion, insights are provided that corroborate the validity of 
the approach. By evaluating performance of the trained 
model on clients that did not partake in training (non-
contributing clients), we show that with a single round 
of local fine-tuning, the non-contributing clients can 
achieve performance on par or better compared to per-
formance for the contributing clients. Furthermore, we 
visually show that in the classification setting, the model 
trained with the recruitment approach learns to attribute 
importance to the exact same sub regions as the other 
models, whilst having been exposed to a mere fraction of 
the data at training time.

The remainder of this work is structured as follows: in 
“Methods”  section the client recruitment problem for 
federated learning is presented along with our proposed 
method and experimental settings. “Results”  section 

provides an overview of the obtained results which are 
further discussed in “Discussion”  section. At last, con-
cluding remarks are provided along with suggestions for 
future work in “Conclusions” section.

Methods
Client recruitment
In this work, we do not further explore the alternative 
approaches for client selection and model aggrega-
tion. However, focus is shifted towards client recruit-
ment, which we consider the mechanism to be invoked 
prior to federated learning, consistent with the work in 
[22, 23]. The client recruitment problem for federated 
learning involves recruiting a subset of clients from a 
larger pool to participate in the training process, essen-
tially before any training has occurred. Formally, given 
a set of clients C each with local data Dc , the problem is 
to select a subset Ck ⊂ C for which we can, a priori, say 
they will have valuable contributions to the federation 
based on a limited set of statistics.

By considering a set of limited, non privacy sensitive, 
statistics pertaining to each of the potential clients, we 
can define, to some extent, how valuable each potential 
client is to the federation. By restricting the federation 
to the most valuable clients, the expectation is that the 
cost of model training significantly reduces without 
harming predictive performance.

We define client recruitment as the mechanism that 
operates on a pool of potential clients to establish the 
federation for training, such that the output constitutes 
the clients that will partake in the federation. Consist-
ent with the work in [22, 23] we consider a set C of c 
potential clients from which a subset of clients will be 
recruited. Each of the clients in C hosts a local dataset 
Dc = {(xi, yi)}i where xi and yi respectively denote the 
local inputs and corresponding targets.

To initiate the client recruitment procedure, each cli-
ent in C reports a tuple (Pc, nc,Hc) to the orchestrating 
server. The tuple contains three pieces of information; 
Pc , the local target distribution, nc , the local sample 
size and Hc , the underlying hardware that will sup-
port the local rounds of training. Hc in itself represents 
the floating point operations per second (FLOPS) the 
underlying hardware is capable of computing at a uti-
lization rate that corresponds to the batch size used at 
runtime. The obtained information allows for ng and Pg 
to be calculated as:

with ng the global sample size as the sum over all local 
sample sizes and Pg the global target distribution as the 

(1)ng =

c

c=1

nc, Pg =

c

c=1

Pc,
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sum over all local target distributions. This global target 
distribution is what will be used in the subsequent steps 
to calculate to which extent a particular local target dis-
tribution deviates from the global distribution, hence the 
‘target informed’ aspect of the proposed client recruit-
ment approach.

To further facilitate the client recruitment procedure, 
the local representativeness for each client, νc , is calcu-
lated as:

where νc is expressed as the weighted function of the tar-
get distribution divergence, local sample size and local 
computational efficiency with γdv , γsa and γtr the corre-
sponding weight parameters for each of the three com-
ponents contained in the expression. To illustrate the 
inner workings of (2), we revisit the structure of the tuple 
ci , which consists of three components: P (the outcome 
distribution over local classes), n (the number of local 
instances), and H (the computational capacity). Consider 
three clients with the following characteristics:

For these three clients, the global statistics amount to 
Pg = [24, 76] and ng = 100 . Additionally, we will consider 
a batch size of 4 for this illustration. Thus, the local repre-
sentativeness for c1 is calculated as:

where γdv , γsa , and γtr can be set as parameters assigning 
weight to each of the components in (2).

Furthermore, in (2), β denotes the divergence of the 
local target distribution compared to the global target 
distribution and is calculated as the absolute value of the 
difference between the normalized global and local target 
distributions. Furthermore, by including the term n−0.5

c  , 
clients with larger local data sets are favored over those 
with smaller data sets. As discussed in [22], the larger nc , 
the better the local empirical distribution, P̃c , approxi-
mates Pc . This observation finds its foundation in the 
work discussed in [28, 29] in which is shown that P̃c − Pc 
converges to N (µ, σ 2) with µ = 0 at the rate of O(n−0.5

c ) . 
The last term contributing to the local representativeness 
in (2), denoted by θc , corresponds to the local computa-
tional efficiency based on the underlying local hardware 

(2)
νc = γdv

∣
∣
∣
∣

Pg

ng
−

Pc

nc

∣
∣
∣
∣

︸ ︷︷ ︸

β

+γsan
−0.5
c + γtrθc,

c1 = ([10, 40], 50, 2.0)
c2 = ([9, 21], 30, 1.5)
c3 = ([5, 15], 20, 1.0)

ν1 = γdv

∣
∣
∣
∣

[24, 76]

100
−

[10, 40]

50

∣
∣
∣
∣
+ γsa · 50

−0.5 + γtr ·
flop(50/4)

2.0
,

details Hc . Each of the components in the ν metric are 
individually min-max normalized such that the ampli-
tude of the weight parameters affects each of the compo-
nents in similar fashion. Furthermore, based on Hc , θ is 
calculated as:

where flop denotes the floating point operations required 
for a full forward and backward pass of the data con-
tained in a single batch, bsize corresponds to the batch 
size used for training and Hc denotes the effective FLOPS 
the underlying accelerator can compute per second. 
Essentially, θc represents local computational efficiency 
expressed in terms of the approximate time required to 
process all local data in a single round of training. Intui-
tively, the inclusion of this term means that, ceteris pari-
bus, clients with more potent local compute are favored 
over those with less compute at their disposal.

To recruit the final subset of clients for the federation, 
the local representativeness values, νc , are sorted and 
stored in the vector ν . We define the concept of global 
representativeness, νg , as:

which is, in turn, used to define ι , the fraction of νg that 
should be covered by the clients in the resulting federa-
tion. To that extent, the fraction is calculated as ι = γthνg 
with γth a user defined parameter. The subset of recruited 
clients, Ck , is obtained by collecting the first k clients in 
the sorted vector ν such that the fraction νg they jointly 
represent satisfies the defined threshold, ι . This subset 
of k most representative clients constitutes the clients 
recruited for the federation.

We iterate that the client recruitment procedure is 
invoked only once during initialization of the overall 
training process. It does, however, constitute an extra 
step compared to methods such as Federated Averaging 
[6]. In terms of time complexity, the proposed method 
involves reporting the local statistics, computing the 
global statistics and subsequently computing the local 
representativeness, all of which is done in O(n) opera-
tions where n corresponds to the number of clients. Sort-
ing the resulting values to select the top k clients requires 
O(n log n) . Therefore, our proposed method adds 
O(n log n) complexity to the end-to-end process, under 
the assumption that this additional step is offset by the 
benefits of reduced communication and computational 
overhead during training.

(3)θc =
flop(nc ÷ bsize)

Hc
,

(4)νg =

c∑

c=1

νc,
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Experimental setup
To evaluate the efficacy and utility of the client recruit-
ment approach proposed in “Client recruitment” section, 
two vastly different experimental settings are defined. 
Both of which are of significant importance in the health-
care domain. In the first setting, client recruitment is 
evaluated on the LoS problem whereas the second set-
ting assesses client recruitment for accurate multi-label 
classification of CXRs. The former calls for a regression 
approach and is more managerial in nature, whereas the 
latter constitutes a classification problem which is fore-
most clinical in nature. With this, a broad spectrum of 
problems in the healthcare domain is covered for which 
the client recruitment approach can be evaluated using 
different data modalities and models.

Figure  1 depicts a holistic overview of the experi-
mental setup in which the classification and regression 
models along with the recruitment approach are visu-
ally represented. Figure  1 shows how the central server 
is in charge of establishing a pool of recruited clients by 
obtaining high level information from the potential cli-
ent pool. The recruitment in itself is performed according 
to the method described in “Client recruitment” section. 

Subsequently, the established pool of recruited clients is 
used for the remainder of the standard federated learning 
procedure in accordance with the depicted models, for 
which the data, architectures, and experimental settings 
are presented in the subsequent sections, “Regression” 
and “Classification”.

Regression
The performance and utility of the client recruitment 
approach for federated models, as described in “Client 
recruitment”, in the regression setting, is evaluated on 
the LoS problem, where LoS is defined as the remain-
ing time in ICU for a given patient. Here, LoS is cal-
culated as the difference between time at discharge or 
death TD and time at admission into ICU TA , and is 
expressed in terms of fractional days. Specifically, the 
task is to accurately predict patient LoS in ICU, simi-
lar to the work in [30–33]. Formally, LoS is defined as 
follows, given a dataset D of patient records, each con-
sisting of features xi and corresponding LoS yi for each 
individual patient, where yi = TDi − TAi , the goal is to 
learn a function f (x) that yields ŷ as a prediction for y 
with minimal error.

Fig. 1 Overview of the experimental setup of the client recruitment approach for federated learning in the regression and classification settings
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Data
To evaluate the proposed approach in the regression set-
ting on real-world, multi-center data, the eICU data set is 
used [24–26]. The eICU data set contains data pertaining 
to 208 US hospitals which jointly cover 139.000 uniquely 
admitted patients with over 200.000 registered patient 
stays between 2014 and 2015.

The benefit of using the eICU data set with respect to 
FL is two-fold in that, (i) it is comprised of real world 
data and (ii) all of the instances and observations con-
tained within the data set can be mapped to the origi-
nating institution. The latter is of particular interest as 
this results in true non-IID data splits across the vari-
ous institutions, which is the core envisioned application 
domain of the client recruitment approach. To obtain a 
final, workable cohort of data from the raw set, the data is 
preprocessed in accordance with the preprocessing pipe-
line proposed in [30]. The cohort is restricted to adult 
patients only, for which the first 24 hours of data into 
ICU are extracted and used to predict LoS. The extracted 
data contains a mix of temporal and static features that 
are fused into a single set of inputs. The set of con-
structed inputs is cleaned, re-sampled, one-hot encoded 
and imputed as needed. To track the time since last true 
observation for the imputed values, a decay mask is 
added for the temporal features. For an extensive discus-
sion of the preprocessing pipeline we refer to the work by 
Rocheteau et al. [30].

The obtained data cohort, shown in Table  2, contains 
89,127 unique stays which stem from a total of 189 hos-
pitals. A detailed overview of the static and temporal fea-
tures in the data cohort is provided in Table 3.

As indicated, LoS is expressed in terms of frac-
tional days, which is continuous in nature. However, 
to obtain client level representativeness as shown 
in (2), the divergence of the local target distribu-
tion compared to the global target distribution ( β ) 
needs to be calculated. Therefore, we discretize the 

continuous target by constructing ten bins, such that 
the bins represent the frequency of target values that 
fall within the given bounds. The bins are defined as: 
[(0, 1), [1, 2), [2, 3), ..., [7, 8), [8, 14), [14,+∞)] and are 
used to perform class counting to obtain local target 
distributions.

Figure  2 displays the global target distribution, corre-
sponding to Pg as the aggregation of all local target distri-
butions, compared to a subset of local target distributions. 
Intuitively, the client recruitment approach aims to pre-
exclude those clients for which the local target distribu-
tion vastly diverges from the global target distribution, 
the sample size is not sufficiently large or the underlying 
hardware results in inefficient training. Figure 2 illustrates 
the divergence in some of the local target distributions 
with respect to the global target distribution. Clients with 
the most divergent target distributions are pre-excluded 
from the federation as they can potentially contribute 
non-representative updates. The underlying assumption 
is that, in the federated setting, when local model updates 
are driven by non-representative data, the contribution of 
the local model update to the federation is of lesser value. 
When the local model update is considered at face value 
for aggregation into the global update, the effect of a non-
representative update is not accounted for in the standard 
FedAvg setting. To account for the negative effects of such 
an update, weighting schemes for the aggregation proce-
dure should be introduced. This, however, does not further 
enhance the privacy preserving aspect, nor does it reduce 
the pool of clients in the federation, resulting in reduced 
training time. Nevertheless, each excluded client will still 
obtain a trained model for local use at inference time, as 
will be discussed in “Results” section.

Model architecture
For both the central and federated training procedures, two 
models are employed, the Gated Recurrent Unit (GRU) 
[34], and the Long Short-Term Memory (LSTM) [35] net-
works. Both models belong to the class of deep learning 
models coined as the Recurrent Neural Networks (RNN) 
and have shown good performance when dealing with 
sequential data containing temporal relations. Both the 
GRU and LSTM cells are comprised of a set of gates that 
define the information flow and retention. As such, the 
GRU cell is made up of two sole gates. The reset and update 
gates, respectively denoted as rt and zt in (5). Here, zt con-
trols the information that is to be retained from the previ-
ous state whereas rt controls the amount of information 
from the previous state that is to be forgotten. The reduced 
computational complexity stemming from the two gates 
is a desirable characteristic for FL where communication 
overhead and local computational efficiency pose major 
challenges.

Table 2 Overview of the extracted and preprocessed data 
cohort for the eICU dataset

Number of patient stays 89,127

 Train 62,375

 Validation 13,376

 Test 13,376

Mean LoS 3.69

Median LoS 2.27

Number of features 35

 Temporal 17

 Demographic 18

Number of hospitals (clients) 189
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The governing equations for the GRU cell are shown in 
(5), along with the visual representation. For each discrete 
time step t in the input sequence, the computations out-
lined in the governing equations occur.

(5)

Similarly, the governing equations for the LSTM cell are 
outlined in (6), along with the visual representation. Com-
pared to GRU, LSTM counts one additional gate for a total 

Table 3 Extracted temporal and static features from eICU dataset

Type Feature Description

Temporal FiO2 Patient’s FiO2 value

Bedside glucose Patient’s glucose level

Cvp Patient’s cvp value

Heartrate Patient’s heart rate value

Noninvasivediastolic Patient’s non invasive diastolic value

Noninvasivemean Patient’s non invasive mean value

Noninvasivesystolic Patient’s non invasive systolic value

Respiration Patient’s respiration value

Sao2 Patient’s spO2 value

St1 Patient’s st1 value

St2 Patient’s st2 value

St3 Patient’s st3 value

Systemicdiastolic Patient’s diastolic value

Systemicmean Patient’s mean pressure

Systemicsystolic Patient’s systolic value

Temperature Patient’s temperature value in celsius

Hour Time since admission

Static Hospitalid Surrogate key for the hospital

Gender Gender of the patient

Age Patient’s age in full years

Admissionheight Admission height of the patient in cm

Admissionweight Admission weight of the patient in kg

Intubated Whether patient is intubated at the time of the worst ABG result

Vent Whether patient is ventilated at the worst respiratory rate

Dialysis Whether patient is on dialysis

Eyes GCS score (1 to 4)

Motor GCS score (1 to 5)

Verbal GCS score (1 to 6)

Meds Whether GCS score could not be obtained due to meds

Ethnicity Patient’s ethnicity

Unittype The picklist unit type of the unit

Unitadmitsource Picklist location from where the patient was admitted

Unitstaytype Patient’s unit stay type

Physicianspeciality Picklist specialty of the care provider

> 89 Whether patient is over 89 years old
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of three gates, denoted as ft , it and ot , which correspond to 
the forget gate, input gate and output gate.

The input gate, it , defines how much new information 
is transferred to the current state at time t, whereas the 
forget gate, ft , controls the amount of information from 
the previous state that is to be disregarded. The output 
gate, ot , controls how much information of the new cell 
state can be contained in the new hidden state.

In both the GRU and LSTM architectures as outlined 
in (5) and (6), xt denotes the input at time step t, ht−1 is 
the hidden state at the previous time step t − 1 and ht 
denotes the hidden state at the current time step t. Fur-
thermore, σ is the sigmoid activation function, tanh cor-
responds to the hyperbolic tangent activation function 
and ⊙ represents element-wise multiplication.

The hidden state ht , i.e., the output of the cell, is pro-
vided as the input of a nonlinear Fully Connected 
Network (FCN), which yields a single output value rep-
resenting the predicted LoS. The nonlinearity stems from 
the ReLU activation function leveraged in the FCN as 
shown in (7),

(6)

with ŷt the predicted value for LoS at time t. Employing 
ReLU(x) = max(0, x) forces the outcome to be strictly 
positive. It is impossible for a patient to have a negative 
LoS, therefore we restrict the model to only yield predic-
tions in the positive domain.

Experimental settings
To allow for comparison between the traditional train-
ing procedure in which data is centrally aggregated, the 
federated setting with standard federated averaging and 
the federated setting with the proposed client recruit-
ment approach, we define experimental settings for the 
central and federated approaches in this section. The 
defined experimental setup serves the main purpose 
to answer three central questions related to the pro-
posed approach; (i) Can client recruitment improve 
efficiency without sacrificing performance compared 
to alternative approaches? (ii) Are findings consistent 
across data modalities and learning tasks? and (iii) Can 

(7)ŷt = ReLU
(
Wytht + byt

)
,

Fig. 2 The global target distribution calculated as Pg , (a), and a subset of six local target distributions of the, in total, 189 target distributions, (b). 
Each of the distributions shows the frequency in terms of patients with an observed LoS, restricted until 25 days, locally and globally
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non-contributing clients still benefit from a resulting 
global model? To facilitate comparison, several of the 
settings are fixed over the different settings such that, at 
training time, all training procedures use AdamW [36] 
for optimization and the Mean Squared Logarithmic 
Error (MSLE) as the loss function, which is calculated as:

with yi the true target value and ŷi the predicted value. 
Furthermore, the model hyperparameters are fixed over 
all training iterations, both central and federated. The 
exact settings are shown in Table  4, with L the number 
of layers, N the hidden dimension for each of the lay-
ers, η the learning rate, m the batch size, wd the weight 
decay for the AdamW optimizer and r the dropout rate. 
To obtain the hyperparameters reported in Table 4, grid 
search was performed for GRU to determine the opti-
mal number of hidden layers L and the number of hid-
den units N  per layer. Subsequently, batch size ( m ), 
learning rate (η) , weight decay ( wd ), and dropout rate 
( r ) were obtained using population-based training [37]. 
The hyperparameters optimized for GRU were then kept 
constant for LSTM models to maintain consistency and 
comparability across experiments.

For evaluation of the performance, all resulting models are 
evaluated against the hold-out test set containing data from 
all 189 hospitals. In addition to the MSLE, models are evalu-
ated using the Mean Absolute Error (MAE), Mean Abso-
lute Percentage Error (MAPE) and the Mean Squared Error 
(MSE), shown in (9). As an indication of the time complex-
ity, the training time, denoted as τ , is reported in seconds.

Central training is performed consistent with the tra-
ditional DL procedure in which all data is assumed to be 
centrally available. The architectures presented in (5) and 
(6) are trained for a predetermined amount of 15 epochs 
using the global train and validation sets, which consist of 
the accumulated data over all potential clients, i.e., the 189 
originating hospitals. The resulting central model is subse-
quently evaluated against the hold-out test set.

(8)MSLE =
1

n

n∑

i=1

(log(yi + 1)− log(ŷi + 1))2,

(9)

MAE = 1

n

n∑

i=1

|yi − ŷi|

MAPE = 1

n

n∑

i=1

∣
∣
∣
yi−ŷi

yi

∣
∣
∣

MSE = 1

n

n∑

i=1

(yi − ŷi)
2

Federated training with and without client recruitment 
is simulated as a single process using the FedML frame-
work as proposed in [38]. In this work, for FL without client 
recruitment, clients are either all considered in each round 
of training or a subset is randomly sampled consistent with 
the standard client selection implementation described 
in FedAvg [6]. For FL with client recruitment, the client 
recruitment process described in “Methods” is invoked 
prior to initiating the federation. Following the described 
implementation, the recruitment of clients is influenced 
by four user-defined hyperparameters γdv , γsa, γsa and γth 
which respectively define the importance of the divergence 
in the target distribution, the local sample size, the impor-
tance of the efficiency of the underlying hardware, and the 
fraction of the global representativeness to be covered by 
the recruited clients.

For LoS prediction, four different strategies are imple-
mented. The four approaches differ in terms of the num-
ber of clients that partake in the federation, denoted as ǫ , 
the percentage of clients in the federation that contrib-
ute to each training round, denoted as δ , and whether the 
federation is comprised of recruited clients, or all clients. 
For each of the federated models, each client trains for 
four epochs per round of server-client communication 
for a total of 15 rounds. The resulting model is subse-
quently evaluated against the hold-out test set.

The specifications for the four different FL strategies 
are; (i) Fed-AC (Federated All Clients): all clients make 
up the federation and partake in each training round, (ii) 
Fed-SC (Federated Selected Clients): all clients make up 
the federation, 10% of which are randomly sampled to 
partake in each training round, (iii) Fed-ARC  (Federated 
All Recruited Clients): recruited clients make up the fed-
eration and partake in each training round and (iv) Fed-
SRC (Federated Selected Recruited Clients): recruited 
clients make up the federation, 10% of which are ran-
domly sampled to partake in each training round.

Following the introduction of the strategies, we revisit 
and extend Algorithm 1 to create a formal representation 
of the Fed-SRC strategy which reflects the client recruit-
ment procedure, nested in the entire federated training 
approach. This formal representation can be found in 
Algorithm 2. Similarly, the formal, algorithmic representa-
tions for Fed-AC and Fed-ARC can be found in Appendix 
A. We note that Algorithm  1 constitutes a formal repre-
sentation of the Fed-SC strategy.

Table 4 Hyperparameter settings used for both central and federated training

Model L N η m wd r

GRU 2 32 0.005 128 0.005 0.05

LSTM 2 32 0.005 128 0.005 0.05
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Algorithm 2 Fed-SRC: Federated Learning with Selected Recruited Clients

Time complexity: As indicated in the description for 
each of the individual strategies, each of the included 
strategies considers a different number of clients at each 
round of training depending on the clients in the federa-
tion and sampling strategy. Therefore, the overall time 
complexity for each of the strategies is different. To that 
extent, Fed-SC and Fed-SRC have the added advantage 
that for each round of training, only a subset of the cli-
ents is selected for training, which lowers the required 
communication and computational overhead. For exam-
ple, the Fed-AC strategy considers all clients in every 
round, resulting in the highest overhead with a time 
complexity of O(T · n · E · f ) , where T  is the number of 
global iterations, n is the number of clients, E is the num-
ber of local epochs, and f  represents the complexity of 
local training. The Fed-SC strategy randomly selects a 
subset of clients each round, reducing the overhead to 

O(T · k · E · f ) , where k is the number of sampled clients, 
making it more efficient. The Fed-ARC strategy recruits 
a subset of representative clients, maintaining a similar 
complexity to Fed-AC but with a smaller n , as the total 
pool of clients in the federation has already been reduced 
by the recruitment procedure. Finally, the Fed-SRC strat-
egy optimizes further by sampling from the recruited 
subset, significantly reducing training time and complex-
ity to O(T ·m · E · f ) , where m is the number of sampled 
recruited clients, thus achieving the lowest overhead 
among the proposed methods.

Additional analysis: To provide more extensive 
insight with respect to the proposed client recruit-
ment approach, the approach is evaluated in two addi-
tional settings, using the GRU based Fed-SRC strategy. 
Without interfering in the parameter settings for Fed-
SRC, the client recruitment approach is tweaked such 
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that in the first additional setting, a subset, equally 
large as in the normal Fed-SRC approach, of random 
clients is recruited. In the second setting, the subset, 
again equally large compared to the subset in the nor-
mal Fed-SRC approach, of least representative clients is 
recruited. Intuitively, if the standard Fed-SRC approach 
does in fact yield a more representative subset of cli-
ents, proposed approach should outperform the two 
additional experimental strategies.

Given that the client recruitment mechanism pre-
excludes a set of clients to take part in the federation for 
training on the premise that, the locally hosted data is 
not sufficiently large, diverges significantly in terms of the 
target distribution or has inefficient hardware resources 
for training, we, in addition, evaluate the performance of 
Fed-SRC on the subset of non-recruited clients with and 
without a single round of domain adaptation. More spe-
cifically, the globally obtained federated model is tested 
against the locally hosted test sets at the non-recruited 
clients, only. Subsequently, each of the non-recruited 
clients is allowed to run a single round of fine-tuning on 
the local data after which the fine-tuned model is again 
tested against local test data only.

Classification
In addition to the regression setting, the client recruit-
ment approach is evaluated on the multi-label CXR clas-
sification problem. To this extent, the MIMIC CXR data 
set with structured labels [27] is used. Each of the CXR 
images in the data set is labeled with a multi-label, con-
taining information on the presence or absence of the 
14 possible pathologies. The task is to accurately clas-
sify any given CXR into any of the 14 classes. The task is 
multi-label in nature with 14 dimensions in the outcome, 
pertaining to the 14 classes. Similar to the work in [39], 
we restrict the performance evaluation to five classes of 
interest, namely, Atelectasis, Cardiomegaly, Consolida-
tion, Edema and Pleural Effusion.

Data
The MIMIC CXR data set [27] with structured 
labels contains 227,827 observations, correspond-
ing to 377,095 multi-view chest X-Rays. In Table  5, a 

descriptive summary is provided for the data set and 
the corresponding train, validation and test split used 
throughout this work. The splits are performed such 
that multi-view CXRs corresponding to a single study 
belong to the same split to avoid information leakage.

The data is labeled such that for each observation, 
a corresponding vector of length 14 exists for which 
each entry in the vector constitutes the indication of 
whether the corresponding class is observed (1), not 
observed (0), or it is uncertain (−1) as to whether the 
pathology is present. Following the work presented in 
[39], the uncertainty labels are dealt with by replacing 
(−1) with (1), which has been shown to yield better 
predictive performance. In Table 6, an overview is pro-
vided of the corresponding label counts on each of the 
14 classes.

The CXR images contained in the data set are derived 
from the raw DICOM files. To that extent the pixel val-
ues were normalized to the range [0,  255], and subse-
quently histogram equalized to enhance contrast. To do 
so, pixels are forced towards 0 or 255 such that all pix-
els in [0, 255] appear equally frequent in a given CXR. 
Subsequently, the images are converted to JPG. In addi-
tion to dealing with the uncertainty labels, the raw JPG 
files are preprocessed by center cropping each CXR to 
the dimension 224 × 224 . This is done to fit the input 
dimensions expected by the deep neural network that 
is employed, without losing valuable information in 
the image. In addition, a random horizontal flip is per-
formed on the input in the train set to allow for more 
robust training.

To facilitate federated learning on the CXR data, we 
construct 100 silos, each of which is assigned with a 

Table 5 CXR data set observation count and corresponding 
splits

CXR images 377,095

Observations 227,827

Train 265,019

Validation 55,807

Test 56,269

Number of clients 100

Table 6 Overview of the positive, negative and uncertain label 
observations for each of the 14 classes in the MIMIC CXR data set

Observation Positive Negative Uncertain

Atelectasis 45,808 1,531 10,327

Cardiomegaly 44,845 15,911 6,043

Consolidation 10,778 7,967 4,331

Edema 27,018 25,641 13,174

Enlarged Cardiomediastinum 7,179 5,283 9,375

Fracture 4,390 886 555

Lung Lesion 6,284 862 1,141

Lung Opacity 51,525 3,069 3,831

No Finding 75,455 152,373 0

Pleural Effusion 54,300 27,158 5,814

Pleural Other 2,011 126 765

Pneumonia 16,556 24,338 18,291

Pneumothorax 10,358 42,356 1,134

Support Devices 66,558 3,486 237
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sample rate. Subsequently, the data is split into 1000 data 
shards from which each of the silos samples shards in 
accordance to the previously assigned sample rate. More 
specifically, each silo samples between 1 and 22 shards of 
data. This yields a data set that is imbalanced in terms of 
local sample sizes. Nevertheless, slight label imbalance 
as a result of the structure of the data is also present. To 
facilitate client recruitment, and more specifically, the 
calculation of β in (2), the local class counts for each of 
the 14 classes in the target are considered as the local tar-
get distribution.

Model architecture
For the central and federated training approaches in the 
classification setting, a single deep convolutional neural 
network, DenseNet-121 [40], is used. The DenseNet-121 
architecture is based on the Densely Connected Con-
volutional Networks design principles and consists of 
several core components. The major building blocks the 
architecture is comprised of, are a combination of con-
volutional layers, pooling layers, transition layers, dense 
blocks and a final classification layer. The dense blocks 
constitute a sequence of convolutional layers with batch 
normalization and activations to densely connect the 
feature maps. The dense connections signify shorter con-
nections between layers close to the input and output by 
connecting each layer to every other subsequent layer. By 
doing so, for any layer, all feature maps from previous lay-
ers are used as input to that layer [40]. The task of the 
transition layers is to downsample the feature maps to 
fit to the input of the next dense block through convo-
lutions, batch normalization and pooling. The consecu-
tive combination of each of these components for the 
DenseNet-121 architecture used in this work is summa-
rized in Table 7, for which the last layer corresponds to 
the classification layer that yields the predictions for each 
of the 14 class labels.

Experimental settings
For classification, we again maintain the same model 
and hyperparameter settings across the different learn-
ing approaches. As such, we utilize the Binary Cross 
Entropy (BCE) loss with logits, which is equivalent to 
wrapping regular BCE in a sigmoid activation func-
tion. In addition, AdamW [36] is used for optimization 
throughout the training iterations with the learning rate 
set to 1e − 3 and the weight decay set to 1e − 5 . Both the 
learning rate and decay, were selected based on popula-
tion-based training [37] for hyperparameter selection in 
the central setting. The achieved values were found to 
provide a good balance between convergence speed and 
model accuracy, centrally. Upon centrally establishing the 

parameters, they were kept constant throughout all fed-
erated experiments. Furthermore, all training procedures 
are performed with a batch size of 128. For evaluation 
of the model performance, the area under the receiver 
operator curve (AUC) is calculated for each of the 5 
classes of interest and the training time, denoted as τ , is 
reported to assess time complexity of the different train-
ing procedures.

Central training: Similar to the regression set-
ting, all CXR data is assumed to be centrally available. 
The DenseNet-121 architecture is fully fine-tuned on 
the preprocessed CXR data for 3 consecutive epochs 
and evaluated against the hold out test set, shown in 
Table 5.

Federated training: Here, two different federated 
strategies are considered. Fed-AC and Fed-ARC are 
omitted, the reason for which is two-fold; (i) these strat-
egies are less likely to occur in a real world setting with 
many clients as they rapidly become infeasible to com-
pute within reasonable and actionable time, and (ii), due 
to computational limitations it is not feasible to compute 
these approaches in the experimental setup. As such, the 
two remaining strategies entail, (i) Fed-SC, for which 
all of the clients make up the federation and a subset is 
randomly selected to contribute to each round of train-
ing and (ii) Fed-SRC, for which the recruited clients 
make up the federation and a subset is randomly selected 
to contribute to each round of training. The global 

Table 7 DenseNet-121 model architecture

Layer type In/Out size Architecture

Convolution 112× 112 7× 7 conv, stride 2

Pooling 56× 56 3× 3 max pool, stride 2

Dense Block 1 56 × 56
[
1× 1 conv
3× 3 conv

]

× 6

Transition Layer 1 56× 56

28× 28

Dense Block 2 28 × 28
[
1× 1 conv
3× 3 conv

]

× 12

Transition Layer 2 28× 28

14× 14

Dense Block 3 14 × 14
[
1× 1 conv
3× 3 conv

]

× 24

Transition Layer 3 14× 14

7× 7

Dense Block 4 7 × 7
[
1× 1 conv
3× 3 conv

]

× 16

Classification Layer 1× 1 7× 7 global average pool

14 dimensional fully-connected
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parameters for training are fixed across both approaches 
to ensure fair comparison. To that extent, during each 
round of training, each of the contributing clients to that 
given round locally trains the model for two subsequent 
epochs before providing the central server with a param-
eter update for aggregation. The total number of train-
ing rounds is set to 20. Upon completion, the models are 
evaluated against the hold-out test set for which the per-
class AUC values are reported.

Additional analysis: As an additional step in the anal-
ysis of the resulting classification models, a multi-view 
CXR labeled with Cardiomegaly, Edema and Pleural Effu-
sion is selected from the test set for which the Gradient-
weighted Class Activation Maps (Grad-CAMs) [41] are 
computed. Grad-CAM yields visual explanations with 
respect to the important regions in an image for a cor-
responding prediction. These visualizations, or activa-
tion maps, portray which areas of an image the model 
attributes importance to with respect to a given outcome. 
To this extent, the Grad-CAMs for a multi-view CXR 
with postero anterior and corresponding lateral views 
are computed, and shown for each of the approaches in 
the experiment. This allows for visual evaluation of the 
behaviour of each of the methods. More specifically, 
this allows to determine whether the Fed-SRC approach 
learns to attribute importance similar to the central and 
Fed-SC approaches, whilst relying on significantly less 
training data.

To verify whether the observations based on the vis-
ual analysis hold for all data, we quantify the similarity 
of the activation maps for a larger subset of images in 
the test set. To this extent, we compute the Structural 
Similarity Index (SSIM) [42] and Frechet Inception Dis-
tance (FID) [43] for the activation maps with respect 
to each of the classes of interest. Both of these metrics 
measure similarity between two sets of images. SSIM 
and FID are both often used in the evaluation of image 
synthesis methods, such as Generative Adverserial Net-
works. They can, however, also be used to assess simi-
larity and quality between two sets of images, of which 

one, should constitute the ground truth. SSIM evaluates 
the structural similarity between two specific images. 
By averaging the obtained similarity values over a set 
of images, the average similarity between two sets of 
images can be obtained. FID looks at the similarity, or 
dissimilarity between two sets of images in high dimen-
sional space. That high dimensional space is obtained by 
extracting feature embeddings from both sets of images 
using the Inception v3 network. The actual distance is 
computed as:

with N (µ,�) the multivariate normal distribution esti-
mated from the obtained feature embeddings on the 
Grad-CAMs for the central model and N (µw ,�w) , the 
multivariate normal distribution estimated from the 
obtained feature embeddings on the Grad-CAMs for 
either Fed-SC or Fed-SRC.

To analyze the similarity in the activation maps, a ran-
dom subset of 2000 images from the test set is selected. 
For each of the CXRs in the subset, the activation maps 
using Grad-CAM are computed for the respective mod-
els and corresponding classes of interest. The resulting 
analysis is such that the obtained scores correspond to 
the similarity between (i) Central and Fed-SC, and (ii) 
Central and Fed-SRC, allowing for comparison between 
Fed-SC and Fed-SRC.

Results
In Table  8, an overview is provided of the parameter 
settings for each of the different federated approaches, 
with or without client recruitment, in the regression 
and classification settings as described in “Experimen-
tal settings” and “Experimental settings”. This section 
outlines the obtained results in terms of predictive per-
formance and time complexity and, in addition, pro-
vides the obtained results for the respective additional 
analysis, further validating the proposed client recruit-
ment approach.

(10)FID = �µ− µw�
2 + tr

(

� +�w − 2(��w)
1
2

)

,

Table 8 Paramater settings for the client recruitment approach in both the regression and classification settings, with ǫ the total 
number of clients in the federation, δ the number of clients randomly sampled from ǫ in each round of training and ( γdv , γsa , γtr , γth ) the 
hyperparameters for client recruitment

Setting Strategy ǫ δ γdv γsa γtr γth

Regression Fed-AC 189 189 - - - -

Fed-SC 189 19 - - - -

Fed-ARC 47 47 0.4 0.2 0.1 0.1

Fed-SRC 47 5 0.4 0.2 0.1 0.1

Classification Fed-SC 100 10 - - - -

Fed-SRC 29 6 0.5 0.5 0.4 0.2
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Regression
Table 9 outlines the results for the training procedures 
in the regression setting for both GRU, LSTM and the 
corresponding central and federated approaches. The 
best performing approaches per metric have been 
highlighted in bold and the statistical significance, 
with respect to the Fed-SC approach, is indicated at 
the 1% and 5% confidence level.

The results in Table 9 reflect the performances of the 
federated approaches as well as the central approach for 
both GRU and LSTM. For GRU, our proposed approach, 
Fed-SRC, yields the best performance amongst the fed-
erated models for MAE, MAPE and τ . Whereas Fed-AC 
returns the best performance on MSE and MSLE. For 
LSTM, Fed-AC yields the best MAE, MAPE and MSLE. 
Fed-SRC obtains similar predictive performance with 
the best time to convergence, τ . We note that for both 
models, Fed-ARC has a higher time to convergence 
compared to Fed-SC. Even though the Fed-ARC strat-
egy establishes a federation containing recruited clients, 
the strategy mandates that all recruited clients partake 
in every round of training. In Fed-SC only 10% partakes 
in training each round. In Table 8, δ denotes the number 
of clients in each round. For Fed-SC and Fed-ARC this 
amounts to 19 and 47 respectively, which is in turn why 
Fed-SC converges faster.

For both GRU and LSTM, the proposed Fed-SRC 
strategy significantly outperforms the traditional FL 
approach, Fed-SC, in terms of MAE. For both models, 
the observed performance for MAE is similar to, or 

on par with the central approaches at approximately a 
fourth of the training time.

Additional insights
The subsequent section outlines the results pertain-
ing to the additional experiment in which the cli-
ent recruitment strategy is informed to (i) randomly 
recruit a subset of clients, or (ii) recruit the subset 
of least representative clients. For both approaches, 
the parameter settings reported in Table  8 remain 
unchanged, yielding a subset of 47 random clients, and 
a subset of the 47 least representative clients respec-
tively. The results in Table 10 show that when GRU is 
trained using the Fed-SRC strategy with either random 
or the worst clients in the recruited subset, the mod-
els yield a predictive performance with a MAE of 2.31 
days and 2.33 days respectively. Overall, the perfor-
mance stemming from the procedure with randomly 
selected clients is observably better compared to the 
worst clients strategy.

Table 11 presents the results with respect to the sec-
ond additional experiment in which the obtained feder-
ated model is tested against data from non-contributing 
clients only, yielding a MAE of 2.30 days. Notably, after 
a single round of fine-tuning on the local data, the 
obtained average performance on the local test sets, for 
the non-contributing clients, amounts to a MAE of 2.05 
days. This performance increase, as a result of the local 
fine-tuning, is also reflected in the improved MSE and 
MSLE.

Table 9 Model performance for central and federated models with and without client recruitment. Statistical significance among the 
federated models in comparison to Fed-SC is indicated as a at the 5% significance level and b at the 1% significance level

Model Strategy MAE MAPE MSE MSLE τ(s)

GRU Central 2.21 ± 0.02 0.58 ± 0.06 21.94 ± 0.63 0.33 ± 0.01 2129 ± 18

Fed-AC 2.26 ± 0.05 0.64 ± 0.07b 21.58 ± 0.69b 0.33 ± 0.02b 5232 ±  27b

Fed-SC 2.26 ± 0.06 0.46 ± 0.06 23.98 ± 1.27 0.41 ± 0.06 1470 ± 35

Fed-ARC 2.27 ± 0.12 0.57 ± 0.17 22.67 ± 1.83 0.37 ± 0.05 3359 ±  25b

Fed-SRC 2.21 ± 0.03b 0.46 ± 0.05 23.44 ± 0.85 0.38 ± 0.04a 546 ± 26b

LSTM Central 2.19 ± 0.02 0.53 ± 0.05 22.39 ± 0.47 0.34 ± 0.01 1892 ± 15

Fed-AC 2.20 ± 0.03b 0.47 ± 0.05a 23.21 ± 0.49b 0.37 ± 0.02b 4668 ±  50b

Fed-SC 2.27 ± 0.08 0.45 ± 0.03 24.22 ± 1.16 0.43 ± 0.06 1313 ± 20

Fed-ARC 2.26 ± 0.04 0.43 ± 0.01 24.42 ± 0.46 0.43 ± 0.03 1493 ±  34b

Fed-SRC 2.22 ± 0.03a 0.45 ± 0.02 23.81 ± 0.47 0.40 ± 0.02 616 ± 45b

Table 10 Model performance for the Fed-SRC approach retrained with a subset of recruited clients that either constitute the least 
representative clients according the the recruitment approach or a set of random clients

Model Strategy MAE MAPE MSE MSLE

GRU (Fed-SRC) Random 2.31 ± 0.17 0.46 ± 0.04 24.48 ± 1.63 0.45 ± 0.12

Least representative 2.33 ± 0.12 0.44 ± 0.02 24.84 ± 1.22 0.47 ± 0.08
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Classification
The results for classification are reported in Tables  12 
and 13. Table 12 outlines the AUC scores for each of the 
classes of interest, whereas Table  13 shows the training 
time for each of the corresponding approaches along 
with the average AUC over the classes of interest.

The results in Table  12, represent the achieved 
per-class AUC for the central, Fed-SC and Fed-
SRC approaches. The central approach and FED-SC 
approaches perform on nearly on par across the board. 
Amongst the federated approaches, the proposed Fed-
SRC approach performs slightly worse compared to 
the traditional Fed-SC approach. In this instance, the 
observed performance difference between the federated 
approaches, across all the classes of interest, is limited 
to 0.02 in terms of the AUC.

In Table 13, the average AUC over the classes of inter-
est is presented along with the training time required for 
each of approaches. The proposed Fed-SRC approach 
outperforms both the central and Fed-SC approaches 
in terms of the required training time to achieve the 
reported predictive performance, by a factor of 4. The 
traditional Fed-SC approach, however, reaches conver-
gence at a slower rate than the central approach.

Additional insights
For classification, Fig.  3 and Table  14 jointly represent 
the findings for the additional experiment, in which 
we visually and numerically analyze how the differ-
ent approaches attribute importance to the input with 
respect to a certain outcome.

Figure 3 shows for a single multi-view CXR observation 
in the test set that each of the models consistently attrib-
ute importance to the same sub regions. Regardless of 
the minor variations, the general importance attribution 
across models and across pathologies is consistent with 
respect to the outcome.

As a means to corroborate the visual results shown 
in Fig.  3 Table  14 presents the quantified results with 
respect to similarity in the importance maps for the 
different methods over a subset of 2000 images in the 
test set. As such, for both the Fed-SC and Fed-SRC, the 
obtained results for SSIM and FID represent the simi-
larity in the activation maps from the respective model 
and the central model. The results show that, depend-
ing on the class of interest, irrespective of the similar-
ity metric, Fed-SRC performs slightly better, or worse 
compared to Fed-SC. In general, no significant discrep-
ancies, that would signify divergent behaviour in how 
one of the federated models attributes importance, are 
observed.

Discussion
Regression
Based on the results shown in Table 9, we note that when 
considering MAE, Fed-SRC for both GRU and LSTM 
achieves comparable performance compared to the cen-
tral approaches for the respective models. With respect 

Table 11 Model performance for Fed-SRC tested against data from non-recruited clients only with and without a single round of 
domain adaptation (DA)

Model Strategy MAE MAPE MSE MSLE

GRU (Fed-SRC) Non-recruited 2.30 ± 0.03 0.47 ± 0.07 26.25 ± 1.24 0.40 ± 0.05

Non-recruited + DA 2.05 ± 0.06 0.47 ± 0.05 23.41 ± 0.85 0.38 ± 0.05

Table 12 Model performance expressed in terms of AUC scores for each of the classes of interest for central and federated models 
with and without client recruitment

Model Strategy Atelectasis Cardiomegaly Consolidation Edema Pleural effusion

DenseNet-121 Central 0.77 ± 0.01 0.77 ± 0.01 0.74 ± 0.00 0.84 ± 0.00 0.88 ± 0.01

Fed-SC 0.78 ± 0.00 0.77 ± 0.01 0.74 ± 0.00 0.85 ± 0.01 0.89 ± 0.00

Fed-SRC 0.76 ± 0.06 0.75 ± 0.05 0.72 ± 0.08 0.83 ± 0.04 0.87 ± 0.03

Table 13 Classification training time and AUC over the classes 
of interest

Model Strategy Average AUC τ(s)

DenseNet-121 Central 0.80 ± 0.06 12607 ± 1137

Fed-SC 0.80 ± 0.05 13330 ± 1221

Fed-SRC 0.79 ± 0.06 3141 ± 496
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to the federated approaches, a discrepancy is observed 
for Fed-AC, in that for GRU it performs comparable to 
Fed-SC and Fed-SRC, whereas for LSTM, the Fed-AC 
approach yields the best performance. As LSTMs are 
prone to overfitting, a partial explanation can be found 
in the quantity of data used for Fed-AC. In Fed-AC, all 
data is used, in contrast to the remaining approaches 

that leverage a mere fraction of all available data, which 
could potentially lead to overfitting. In addition, for both 
models, Fed-AC obtains the best MSLE score, which can 
again be attributed to a better overall fit to the data, as 
in Fed-AC, the models have been presented with data 
from all clients, including those with diverging target 
distributions. When considering Fed-SC and Fed-ARC, 

Fig. 3 Grad-CAM visualizations of the pixel importance for each of the 3 labels corresponding to the multi-view CXR selected from the test set. 
Grad-CAM visualizations are shown on the right and, the raw postero anterior and lateral views are shown on the left

Table 14 Similarity in terms of FID (0 would signify perfect similarity) and SSIM (1 would signify perfect similarity) for the Grad-CAM 
activation maps corresponding to 2000 images in the test set and the Fed-SC and Fed-SRC models respectively with activation maps 
from the central model serving as the ground truth

Metric Strategy Atelectasis Cardiomegaly Consolidation Edema Pleural effusion

↑ SSIM Fed-SC 0.864 0.887 0.991 0.884 0.881

Fed-SRC 0.831 0.897 0.959 0.886 0.870

↓ FID Fed-SC 67.88 46.20 6.21 45.11 46.82

Fed-SRC 70.31 36.92 15.10 39.51 43.85
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consistency is observed across all metrics when com-
pared to Fed-SRC. Both Fed-SC and Fed-AC underper-
form compared to our proposed approach.

In this setting, the main comparative discussion revolves 
around the central approach, Fed-SC and Fed-SRC. From 
the results in Table  9, we note that for both GRU and 
LSTM, the client recruitment approach, Fed-SRC, per-
forms significantly better than the standard approach, 
Fed-SC, with respect to all metrics. Most importantly, 
the training time reduces significantly whilst the predic-
tive performance improves or remains on par compared 
to Fed-SC. We further note that, for GRU, Fed-SRC out-
performs the central approach, potentially as a result 
of reduced noise in the training set. As such, the client 
recruitment approach in the regression setting, for both 
GRU and LSTM, outperforms the standard FL approach 
in a fraction of the required training time. In addition, this 
means that the individuals behind the data hosted at the 
non-recruited clients, do not run any privacy risk what-
soever, which constitutes a significant improvement over 
Fed-SC where all data is subject to some form of privacy 
risk.

The results in Table  10 corroborate that the client 
recruitment approach does in fact recruit a subset of cli-
ents that results in better predictive performance. Both of 
the additional approaches, in which the least representa-
tive clients or a set of random clients make up the fed-
eration, yield significantly worse predictive performance 
compared to the proposed Fed-SRC approach, shown in 
Table 9.

In practice, non-recruited clients would still be pro-
vided with a copy of the resulting federated model, 
which is primarily optimized in function of the global 
target distribution. This can yield a model that does not 
generalize well to the non-recruited clients, given that 
they were excluded from partaking in the federation. 
As expected, the results in Table  11, show that when 
evaluating the resulting federated model, as-is, against 
non-recruited clients only, performance is subpar com-
pared to the results in Table  9. However, when allow-
ing for a single round of domain adaptation on the local 
data and subsequent evaluation on the corresponding 
test set for the local client, performance improves to 
an extent that, locally, the fine-tuned model yields sig-
nificantly better predictive performance with an aver-
age MAE of 2.05 days across all non-recruited clients. 
This shows how, when obtaining a global federated 
model, running one additional round of fine-tuning 
can, locally, yield performances that significantly out-
perform the performance of the global federated 

model. Thus, even for excluded clients, the federated 
model to which they did not contribute, can still be of 
significant value. Another benefit relates to the privacy 
enhancing aspect. The proposed methodology ensures 
that non-recruited clients do not participate in any of 
the training rounds and only share a tuple of non-sen-
sitive information when the process is initiated. During 
recruitment, each client reports the target distribution 
( Pc ), the number of data points ( nc ), and the computa-
tional capacity ( Hc ), which are used to calculate local 
representativeness ( νc ). This shared information does 
not include any privacy-sensitive details, maintaining 
the confidentiality of local datasets. Formally, let C be 
the set of all clients, Ck the set of recruited clients, and 
Cnr = C \ Ck the set of non-recruited clients. The non-
recruited clients Cnr are excluded from training, ensur-
ing that the recruited clients Ck , and the overall training 
procedure do not access or depend on any information 
stored at the clients in Cnr . This approach ensures that 
non-recruited clients do not transmit any individual 
records. Although they do not contribute data during 
training, they receive the global model for local fine-
tuning. This merely requires one-way communication 
from server to client, where the non-recruited client 
does not reveal any information with respect to its local 
data. Finetuning can then be performed locally, with 
no further data exchange or requirement to be con-
nected to the federation, preserving the privacy of non-
recruited client data.

Classification
The main observation based on Table  12, is that each 
of the different approaches, central, Fed-SC and Fed-
SRC, yield similar predictive performance with Fed-SRC 
performing slightly worse or on par depending on the 
class of interest. Noteworthy, however, is that Fed-SRC 
obtains similar performance in a fraction of the time 
required for the Fed-SC or central approach. More pre-
cisely, Fed-SRC reduces the training time by a factor 
of approximately 4 compared to the other approaches, 
as shown in Table 13. A major drawback from the Fed-
SC approach, resulting in high training time, is that the 
validation during the training procedure runs against all 
clients in the federation. This imposes significant com-
munication and computational overhead. This setting is 
identical for Fed-SRC with the benefit that for Fed-SRC 
the recruited client pool only contains 29 clients, result-
ing in faster validation times, and therefore, reduced 
overall training time.
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The resulting visualizations in Fig.  3 show that there 
is consistency across the models in terms of activated 
regions in each of the images for the respective pathol-
ogies. This representation shows that the approaches 
identify the pathologies consistently independent of 
the orientation. We note that the activation maps on 
the remaining 11 classes are mainly empty. Naturally, 
the models are not perfect, and thus, misclassifications 
occur, for which the activation maps will incorrectly 
show importance. From this single representation and 
exploratory analysis, we note that the models consistently 
attribute importance to the same sub-regions to make the 
prediction. It should be noted here, that the model result-
ing from the Fed-SRC approach does so whilst only hav-
ing seen a fraction of the data available at training time 
compared to the other methods, and additionally, con-
verges in less than a fourth of the required training time.

The results presented in Table 14 show that, depend-
ing on the class of interest, either Fed-SC or Fed-SRC 
performs slightly better. It should be noted that a SSIM 
of 1 represents perfect similarity whereas a lower 
FID represents higher similarity between the sets of 
images. Nevertheless, performance across the board 
is noted to be similar. When comparing with the acti-
vation maps obtained from the central model, both 
Fed-SC and Fed-SRC, attribute importance to similar 
regions of interest in the images with respect to a cer-
tain prediction. This quantitative approach confirms 
that the visual observations from Fig.  3 hold for a 
larger subset of data. This shows that Fed-SRC, whilst 
having seen significantly less data, still learnt to cor-
rectly attribute importance to the same sub-regions 
compared to the central and Fed-SC approach, in a 
fraction of the training time. For some of the classes, 
Fed-SRC shows higher similarity compared to the 
ground truth, especially when looking at FID. Similar 
to the Fed-SRC model in regression outperforming the 
central approach, this can also be partially attributed 
to the reduction in noisy data as a consequence of the 
client recruitment approach.

Conclusions
In this work, we present the extended client recruitment 
approach such that clients are recruited in function of 
the local sample size, the local target divergence and a 
proxy of the local training time calculated based on the 
hardware information. Furthermore, we evaluate the 
proposed approach in the regression and classification 

settings, encompassing both managerial and clinical 
problem sets in the healthcare domain. In both settings, 
we show how models trained with federations made 
up of recruited clients, outperform, or at least perform 
on par, in terms of predictive power, compared to the 
standard federated or central approaches at a fraction 
of the training time. In addition, we provide evidence 
with respect to the validity of the client recruitment 
approaches by retraining the Fed-SRC model with a sub-
set of randomly recruited clients, as well as the subset of 
least representative clients. In both scenarios, Fed-SRC, 
with the normal set of recruited clients, outperforms the 
two alternative approaches. Furthermore, in the classifi-
cation setting, we visually show how, for a single image in 
the test set, each of the models attribute importance to 
similar regions of the image with respect to a given pre-
diction using Grad-CAM importance maps. We further 
quantify the similarity in the activation maps for each 
of the models on a subset of 2000 test images and show, 
how Fed-SRC performs similar to the central model 
and Fed-SC at a fraction of the training time whilst only 
having seen a limited subset of the most representative 
data. These experiments and corresponding additional 
insights, show that target informed client recruitment 
yields models that perform better or on par compared 
to alternative approaches in terms of predictive power 
in different, relevant healthcare settings whilst signifi-
cantly reducing the required training time, and provid-
ing improved privacy enhancing characteristics.

By introducing the hardware architecture compo-
nent in the client recruitment approach, we open up 
potential future research avenues that allow for more 
detailed assessment of how local training efforts can 
be expressed in terms of more complex cost func-
tions. These cost functions can encompass hard-
ware efficiency, related CO2 emissions, physical 
distance, demographic factors, etc., among others. 
This approach could eventually yield a framework that 
allows to outline the cost structure of intra- and inter-
institutional FL endeavours. Future work will assess 
the performance of the client recruitment approach 
in a non-simulated setting, which is the current main 
drawback of this work. The findings presented herein, 
will still hold in real world implementations as the core 
concept of client recruitment does not change. How-
ever, network latency and communication overhead 
become an important factor, which can be additional 
components to be considered in the client recruitment 
approach.
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Appendix A federated algorithms

Algorithm 3 Fed-AC: Federated Learning with All Clients

Algorithm 4 Fed-ARC: Federated Learning with All Recruited Clients
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