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Abstract 

Background Efficient triage in emergency departments (EDs) is critical for timely and appropriate care. Traditional 
triage systems primarily rely on structured data, but the increasing availability of unstructured data, such as clini-
cal notes, presents an opportunity to enhance predictive models for assessing emergency severity and to explore 
associations between patient characteristics and severity outcomes. This study aimed to evaluate the effectiveness 
of combining structured and unstructured data to predict emergency severity more accurately.

Methods Data from the 2021 National Hospital Ambulatory Medical Care Survey (NHAMCS) for adult ED patients 
were used. Emergency severity was categorized into urgent (scores 1–3) and non-urgent (scores 4–5) based 
on the Emergency Severity Index. Unstructured data, including chief complaints and reasons for visit, were processed 
using a Bidirectional Encoder Representations from Transformers (BERT) model. Structured data included patient 
demographics and clinical information. Four machine learning models—Logistic Regression, Random Forest, Gradient 
Boosting, and Extreme Gradient Boosting—were applied to three data configurations: structured data only, unstruc-
tured data only, and combined data. A mean probability model was also created by averaging the predicted prob-
abilities from the structured and unstructured models.

Results The study included 8,716 adult patients, of whom 74.6% were classified as urgent. Association analysis 
revealed significant predictors of emergency severity, including older age (OR = 2.13 for patients 65 +), higher heart 
rate (OR = 1.56 for heart rates > 90 bpm), and specific chronic conditions such as chronic kidney disease (OR = 2.28) 
and coronary artery disease (OR = 2.55). Gradient Boosting with combined data demonstrated the highest perfor-
mance, achieving an area under the curve (AUC) of 0.789, an accuracy of 0.726, and a precision of 0.892. The mean 
probability model also showed improvements over structured-only models.

Conclusions Combining structured and unstructured data improved the prediction of emergency severity in ED 
patients, highlighting the potential for enhanced triage systems. Integrating text data into predictive models can 
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provide more accurate and nuanced severity assessments, improving resource allocation and patient outcomes. Fur-
ther research should focus on real-time application and validation in diverse clinical settings.

Keywords Emergency department, Predictive modeling, Association study, Unstructured data, Natural language 
processing, Clinical decision support

Introduction
Emergency departments (EDs) are critical points of 
care that manage a diverse array of medical conditions 
with varying degrees of severity [1, 2]. Efficient triage 
and resource allocation are vital to ensuring timely and 
appropriate care for patients [3]. Traditionally, triage 
systems have relied on structured data such as patient 
demographics, vital signs, and medical history to assess 
the urgency of cases [4, 5]. Modern ED triage systems 
typically involve a nurse performing patient assess-
ment and using an algorithm to determine triage acu-
ity. The nurse incorporates subjective information 
obtained from the patient with structured data from 
the EHR into their triage decision. While triage systems 
are effective in predicting resource use and likelihood 
hospitalization [6], current systems rely heavily on the 
training and experience of the nurse to gather neces-
sary data and correctly apply the algorithm. The wealth 
of unstructured data now available in EHRs presents an 
opportunity to refine and augment severity predictions 
by incorporating this rich source of information [7–9].

Natural Language Processing (NLP) techniques have 
shown promise in extracting valuable insights from 
unstructured text data. Specifically, Transformer-based 
models like Bidirectional Encoder Representations 
from Transformers (BERT) have revolutionized the 
field of NLP by enabling deep bidirectional understand-
ing of text [10, 11]. BERT is uniquely suited for pro-
cessing complex medical narratives because it captures 
the context of words in relation to all other words in a 
sentence. This ability sets BERT apart from traditional 
NLP techniques, such as Bag of Words or Term Fre-
quency-Inverse Document Frequency (TF-IDF), which 
are limited by their reliance on isolated word frequen-
cies and their inability to account for word dependen-
cies and nuanced meanings in clinical language [12]. 
The use of BERT allows the models to understand the 
deeper semantics of clinical text, which is crucial in an 
ED setting where word context can dramatically alter 
the interpretation of patient symptoms [13]. Moreover, 
BERT is pre-trained on vast datasets and fine-tuned on 
specific tasks, making it effective even when applied to 
smaller datasets. This advantage of BERT has made it 
a key tool for integrating unstructured and structured 
data to enhance predictive tasks in healthcare [14, 15].

In recent years, NLP models have been applied to 
various clinical tasks, including analyzing clinical notes, 
predicting patient outcomes, and assisting in care pri-
oritization [7–9, 16]. Appling NLP for ED triage has 
also grown significantly. For instance, Stewart et al. [17] 
reviewed various applications of NLP at ED triage, high-
lighting the potential of these techniques to enhance 
triage accuracy and efficiency. The advancements under-
score the promising contribution of NLP to transform-
ing triage practices in EDs. Despite these advances, the 
application of novel approaches to integrate structured 
and unstructured clinical data for predicting emergency 
severity in ED settings remains underexplored [17].

This study aimed to fill this gap by developing and com-
paring models that predict the emergency severity score, 
a critical triage indicator, using both structured and 
unstructured data from the National Hospital Ambu-
latory Medical Care Survey—Emergency Department 
(NHAMCS-ED) for the year 2021 [18]. We hypothesized 
that a combined approach integrating structured data 
with unstructured text data processed through a Trans-
former-based model would outperform models utilizing 
structured data alone or unstructured data alone. By lev-
eraging the comprehensive NHAMCS-ED dataset, our 
goal was to harness the full spectrum of available infor-
mation, enhancing the predictive power and clinical util-
ity of our models.

Method
Data source
The data for this study was obtained from the NHAMCS-
ED dataset for the year 2021. Only adult patients 
(age > 18 years) were included in the study, and patients 
with missing emergency severity scores were excluded. 
This dataset provides comprehensive information on 
patient visits to emergency departments across the 
United States, including demographic details, reasons for 
visit, and diagnostic and treatment data.

Study outcome
The emergency severity score used in this study is based 
on the Emergency Severity Index (ESI), a widely used tri-
age tool in EDs. The ESI assigns scores from 1 to 5 to pri-
oritize patients based on the urgency of their condition. 
A score of 1 represents the most critical cases requiring 
immediate life-saving interventions, while a score of 5 
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indicates non-urgent cases that can safely wait for care. 
These scores are typically assigned by a triage nurse dur-
ing the initial evaluation, using a combination of objec-
tive measures (such as vital signs) and clinical judgment 
[19, 20]. ESI scores directly inform decisions about the 
urgency of treatment. For example, patients with a score 
of 1 need immediate intervention to prevent death, while 
those with a score of 2 are high-risk and must be seen 
quickly to avoid deterioration. Patients with a score of 
3, though stable, still require timely care but can wait 
longer than those with more urgent scores. Meanwhile, 
scores of 4 and 5 represent minor conditions that can 
safely wait for extended periods [21, 22]. While the ESI is 
an ordinal scale, the differences in urgency between con-
secutive scores are not evenly spaced. The difference in 
urgency between a score of 1 and 2 is much greater than 
between scores 3 and 4. For this study, we grouped ESI 
scores into two categories: urgent (scores 1–3) and non-
urgent (scores 4–5). This binary categorization reflects 
common clinical practice, where the main concern is 
whether a patient requires urgent intervention. Although 
this approach reduces some granularity, it aligns with the 
critical decision-making process in EDs, prioritizing the 
need for urgent care [23].

Structured predictors
The structured data extracted from the dataset included 
a variety of variables related to patient demographics, 
visit characteristics, and clinical information. Specifically, 
the structured data encompassed patient demographics 
such as age, sex, and race/ethnicity. Visit characteristics 
included arrival time, mode of arrival, day of the week, 
and whether the patient arrived by ambulance. Clinical 
information comprised vital signs (temperature, heart 
rate, diastolic blood pressure, systolic blood pressure, 
pulse oximetry, respiratory rate), pain level, and medical 
history (conditions such as Alzheimer’s disease/demen-
tia, asthma, cancer, cerebrovascular disease, chronic 
kidney disease, chronic obstructive pulmonary disease, 
congestive heart failure, coronary artery disease, depres-
sion, diabetes mellitus types I and II, end-stage renal 
disease, pulmonary embolism, HIV infection/AIDS, 
hyperlipidemia, hypertension, obesity, obstructive sleep 
apnea, osteoporosis, and substance abuse or depend-
ence). Additional factors considered were the type of 
residence (private residence, nursing home, homeless, or 
other), insurance type, whether the visit was a follow-up 
or within the last 72  h, and the nature of any injury or 
trauma, overdose/poisoning, or adverse effect of medi-
cal/surgical treatment. Missing values in the structured 
data were handled using median imputation, and the data 
were standardized using StandardScaler [24].

Unstructured data and BERT model
Unstructured data consisted of the chief complaints 
and reasons for the injury presented at the ED visits. 
To ensure the quality and consistency of the input data, 
a structured text cleaning process was applied. This 
involved converting all text to lowercase for uniform-
ity, removing punctuation and numbers, and filtering 
out common stopwords (e.g., "and," "the") that do not 
contribute meaningfully to clinical interpretation. These 
steps ensured that the text data retained only relevant 
clinical information.

These cleaned text fields were tokenized using the 
BERT tokenizer from the HuggingFace library [25], pre-
paring the text data for input into a BERT-based model. 
The BERT model represents a significant advancement 
in natural language processing by enabling deep bidirec-
tional understanding of text [26, 27]. Unlike traditional 
models that read text either left-to-right or right-to-left, 
BERT processes text in both directions simultaneously, 
allowing it to understand the context of a word based on 
all surrounding words. This bidirectional approach ena-
bles BERT to capture the nuanced meanings of words 
and phrases in their specific contexts. BERT’s architec-
ture is based on transformers, a type of deep learning 
model that relies on self-attention mechanisms to weigh 
the importance of different words in a sentence. This 
allows BERT to excel at tasks that require understanding 
the relationships between words and the overall meaning 
of sentences. Pre-trained on a vast corpus of text data, 
including books and Wikipedia articles, BERT can be 
fine-tuned on specific tasks such as classification, ques-
tion answering, and named entity recognition.

To prepare the unstructured text data for analysis, we 
used the BERT tokenizer. This process converts the clini-
cal text into a structured format that BERT can inter-
pret, ensuring that important contextual information 
is preserved. The tokenizer breaks down sentences into 
smaller units, allowing BERT to understand the rela-
tionships between words in a given sentence. Follow-
ing tokenization, the text was passed through the BERT 
model to generate numerical embeddings—dense vectors 
that represent the semantic meaning of the text. These 
embeddings capture the context and meaning of the text, 
allowing the model to utilize the full depth of clinical nar-
ratives. The embeddings were then combined with the 
structured data, integrating both textual and numerical 
information to enhance the predictive capability of the 
model.

Predictive model development
For this study, four different machine learning models 
were applied: Logistic Regression (LR), Random Forest 
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(RFM) [28], Gradient Boosting (GB) [29], and Extreme 
Gradient Boosting (XGB) [30]. We implemented four 
machine learning models using Python’s scikit-learn and 
xgboost libraries to evaluate the predictive performance 
of structured data in classifying emergency severity. For 
each model, key parameters were configured, while all 
other parameters were set to their default values. The 
LogisticRegression function from sklearn.linear_model 
was set with a maximum iteration limit of 1000 (max_
iter = 1000) to ensure convergence. The RandomForest-
Classifier function from sklearn.ensemble was employed 
with 500 estimators (n_estimators = 500), balancing accu-
racy and computational efficiency. The GradientBoost-
ingClassifier, also from sklearn.ensemble, was applied 
with default settings, allowing the model to iteratively 
adjust for errors made by prior trees, thereby focusing 
subsequent trees on misclassified instances to improve 
predictive precision. For XGBoost, we utilized XGBClas-
sifier from the xgboost library, configuring it with logloss 
as the evaluation metric to prioritize probability calibra-
tion and classification accuracy. Each of these models 
was trained and evaluated using four distinct approaches: 
structured data, unstructured data, combined data, and a 
mean probability model.

The first approach used only structured data, includ-
ing patient demographics, clinical information, and visit 
characteristics from the NHAMCS-ED dataset. Logis-
tic Regression, Random Forest, Gradient Boosting, and 
XGBoost models were trained on this data. The second 
approach focused solely on unstructured data, processed 
using the BERT model to generate feature vectors. These 
vectors were used as input for the same machine learn-
ing models. The third strategy combined both structured 
and unstructured data, merging quantitative information 
with BERT-extracted features to provide a comprehen-
sive input for the models. The final method employed a 
mean probability model, which averaged the predicted 
probabilities from the structured and unstructured mod-
els. This technique combined the strengths of both data 
types without retraining. All approaches were evaluated 
using fivefold cross-validation.

Evaluation metrics
The evaluation of all models involved calculating ROC 
AUC, accuracy, F1 score, precision, recall, sensitivity, 
and specificity. The models’ predictive probabilities and 
true labels were recorded, and ROC curves were plot-
ted to visualize the performance of each model. The 
cutoff points for classification were determined by find-
ing the thresholds closest to the top-left corner of the 
ROC curve [31, 32]. The ROC AUC quantifies the mod-
el’s ability to differentiate between these two catego-
ries, with higher values (closer to 1.0) indicating better 

discrimination across various threshold values. Accuracy 
reflects the proportion of correct classifications (both 
urgent and non-urgent) out of the total predictions; how-
ever, its utility may be limited when class distribution is 
imbalanced. Precision measures the proportion of true 
positives (correctly classified urgent cases) among all 
instances predicted as urgent, making it particularly use-
ful when minimizing false positives is important. Sensi-
tivity (Recall), on the other hand, evaluates the model’s 
ability to correctly identify all urgent cases, which is 
crucial in emergency department settings where miss-
ing urgent cases could have serious consequences. Speci-
ficity assesses the model’s ability to correctly classify 
non-urgent cases, thereby avoiding over-triage, where 
non-urgent patients are incorrectly labeled as urgent. 
Finally, the F1 score, which is the harmonic mean of 
precision and recall, offers a balanced evaluation of the 
model’s handling of both false positives and false nega-
tives, especially valuable in scenarios with uneven class 
distributions. ROC curves were plotted for each model 
to compare their performance. Additionally, visualiza-
tions such as forest plots of odds ratios and word clouds 
of unstructured variables were generated to illustrate the 
significance and frequency of different variables in the 
dataset.

Results
Among the 8,716 patients included in the study, 25.4% 
were categorized as non-urgent or semi-urgent, while 
74.6% were classified as urgent, emergent, or immedi-
ate. Table  1 and Supplement Table  1 present the base-
line characteristics of U.S. patients presenting to the ED, 
stratified by emergency severity score. Significant differ-
ences were observed between the two groups in terms of 
gender, with a higher proportion of females in the urgent 
category (55.1%) compared to the non-urgent group 
(52.0%, p = 0.0096). Age also varied significantly, with 
older patients more likely to be in the urgent category 
(p < 0.0001). Specifically, 27.5% of patients aged 65 and 
above were in the urgent group, compared to 15.7% in the 
non-urgent group. Race/ethnicity did not show signifi-
cant differences between groups (p = 0.0603). However, 
differences were noted in residence type (p < 0.0001), 
with a higher percentage of urgent patients residing in 
nursing homes (2.8% vs. 1.0%) and a greater proportion 
of non-urgent patients living in private residences (95.8% 
vs. 94.2%). Insurance type also showed significant dif-
ferences (p < 0.0001), with a higher percentage of urgent 
patients covered by Medicare (29.7% vs. 19.0%) and a 
higher percentage of non-urgent patients being unin-
sured (10.4% vs. 8.0%). Arrival by ambulance was signifi-
cantly more common in the urgent group (25.4% vs. 8.2%, 
p < 0.0001). Follow-up visits were slightly more frequent 
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Table 1 Baseline characteristics of U.S. patients presenting to the ED, stratified by Emergency Severity Score, NHAMCS 2021

Non-urgent or Semi-urgent Urgent, Emergent or Immediate p value

2211(25.4) 6505 (74.6)

Gender 0.0096

 Female 1149(52.0) 3587(55.1)

 Male 1062(48.0) 2918(44.9)

Age, y  < 0.0001

 18–39 1071(48.4) 2264(34.8)

 40–65 792(35.8) 2455(37.7)

 >  = 65 348(15.7) 1786(27.5)

Race/ethnicity 0.0603

 White 1315(59.5) 3933(60.5)

 Black 537(24.3) 1496(23.0)

 Hispanic 293(13.3) 811(12.5)

 Other 66(3.0) 265(4.1)

Residence type  < 0.0001

 Private residence 2067(95.8) 5944(94.2)

 Nursing home 22(1.0) 175(2.8)

 Homeless 48(2.2) 118(1.9)

 Other 21(1.0) 74(1.2)

Insurance type  < 0.0001

 Private insurance 598(29.6) 1755(29.9)

 Medicare 385(19.0) 1748(29.7)

 Medicaid or CHIP 718(35.5) 1731(29.4)

 Uninsured 211(10.4) 468(8.0)

 Other 110(5.4) 177(3.0)

Day of Week 0.0085

 Weekdays 1600(72.4) 4891(75.2)

 Weekend 611(27.6) 1614(24.8)

Arrival time 0.0678

 Morning 660(30.1) 1857(28.7)

 Afternoon 646(29.5) 1987(30.7)

 Evening 382(17.4) 1016(15.7)

 Night 504(23.0) 1604(24.8)

Arrive by ambulance 179(8.2) 1615(25.4)  < 0.0001

Follow-up visit 187(8.9) 444(7.4) 0.0243

Seen within last 72 h 78(3.7) 243(4.0) 0.5704

Pain level 0.2265

 No pain 644(37.1) 1933(39.4)

 Mild 569(32.8) 1556(31.7)

 Severe 524(30.2) 1416(28.9)

Temperature 0.0035

 36 °C–38 °C 2082(96.1) 5895(94.5)

 <  = 36 °C 59(2.7) 199(3.2)

 > 38 °C 26(1.2) 144(2.3)

Heart Rate, times/min  < 0.0001

 61–90 1329(60.1) 3504(53.9)

 <  = 60 131(5.9) 422(6.5)

 > 90 751(34.0) 2579(39.6)

DBP mm Hg 0.0002

 60–80 978(44.2) 2762(42.5)
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in the non-urgent group (8.9% vs. 7.4%, p = 0.0243). Pain 
levels, temperature, heart rate, diastolic blood pressure, 
systolic blood pressure, pulse oximetry, and respiratory 
rate all showed significant differences between the two 

groups. In terms of medical history, conditions such as 
cancer, cerebrovascular disease, chronic kidney disease, 
chronic obstructive pulmonary disease, congestive heart 
failure, coronary artery disease, diabetes mellitus type 

Table 1 (continued)

Non-urgent or Semi-urgent Urgent, Emergent or Immediate p value

 < 60 125(5.7) 543(8.3)

 > 80 1108(50.1) 3200(49.2)

SBP mm Hg 0.1919

 80–120 486(22.0) 1438(22.1)

 < 80 31(1.4) 130(2.0)

 > 120 1694(76.6) 4937(75.9)

Pulse oximetry (percent)  < 0.0001

 0–94 136(6.3) 731(11.5)

 95 + 2037(93.7) 5648(88.5)

Respiratory rate per minute  < 0.0001

 12–20 2066(93.4) 5651(86.9)

 < 12 48(2.2) 154(2.4)

 > 20 97(4.4) 700(10.8)

Injury/trauma, overdose/poisoning or adverse effect of medi-
cal/ surgical treatment

 < 0.0001

 Yes, injury/trauma 814(38.0) 1305(20.8)

 Yes, overdose/poisoning 24(1.1) 77(1.2)

 Yes, adverse effect of medical/surgical treatment 54(2.5) 200(3.2)

 No 1210(56.5) 4535(72.3)

 Questionable injury status 38(1.8) 155(2.5)

Medical History
 Alzheimer’s disease/Dementia 18(0.8) 132(2.0) 0.0001

 Asthma 236(10.7) 761(11.7) 0.1909

 Cancer 55(2.5) 408(6.3)  < 0.0001

 Cerebrovascular disease/History of stroke (CVA) 42(1.9) 343(5.3)  < 0.0001

 Chronic kidney disease (CKD) 59(2.7) 382(5.9)  < 0.0001

 Chronic obstructive pulmonary disease (COPD) 106(4.8) 538(8.3)  < 0.0001

 Congestive heart failure (CHF) 60(2.7) 417(6.4)  < 0.0001

 Coronary artery disease (CAD) 96(4.3) 670(10.3)  < 0.0001

 Depression 298(13.5) 1027(15.8) 0.009

 Diabetes mellitus (DM)—Type I 13(0.6) 46(0.7) 0.5549

 Diabetes mellitus (DM)—Type II 139(6.3) 747(11.5)  < 0.0001

 End-stage renal disease (ESRD) 12(0.5) 113(1.7)  < 0.0001

 Pulmonary embolism (PE), deep vein thrombosis (DVT), or venous 
thromboembolism (VTE)

30(1.4) 162(2.5) 0.0017

 HIV infection/AIDS 16(0.7) 54(0.8) 0.628

 Hyperlipidemia 197(8.9) 1069(16.4)  < 0.0001

 Hypertension 566(25.6) 2466(37.9)  < 0.0001

 Obesity (BMI >  = 30) 164(7.4) 604(9.3) 0.0074

 Obstructive sleep apnea (OSA) 60(2.7) 249(3.8) 0.0144

 Osteoporosis 18(0.8) 108(1.7) 0.004

 Substance abuse or dependence 178(8.1) 665(10.2) 0.0028

The variables "Payment type," "Seen within last 72 h," and "Episode of care" have missing proportions between 5 and 10%. The variables "Patient residence," "Arrival 
by ambulance," "Is visit related to an injury/trauma, overdose/poisoning, or adverse effect of medical/surgical treatment?", "Temperature," and "Pulse oximetry" have 
missing proportions of less than 5%
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II, end-stage renal disease, pulmonary embolism, hyper-
lipidemia, hypertension, obesity, obstructive sleep apnea, 
osteoporosis, and substance abuse were more common in 
the urgent group.

Figure 1a and Fig. 1b display forest plots of odds ratios 
with 95% confidence intervals for the various structured 
variables used in the study. These figures illustrate the 
significant predictors of emergency severity, highlight-
ing the relative importance of different factors. In Fig. 1a, 
demographic and visit characteristics are detailed. Female 
patients had higher odds of being classified as urgent 
(OR = 1.15, 95% CI: 1.05–1.26). Age was a significant 
predictor, with patients aged 40–65 having higher odds 
of urgency (OR = 1.32, 95% CI: 1.21–1.44) compared to 
those aged 18–39. Patients aged 65 and above had even 
higher odds (OR = 2.13, 95% CI: 1.88–2.41). Arrival by 
ambulance markedly increased the odds of being urgent 
(OR = 3.65, 95% CI: 3.05–4.36). Medicare coverage was 
associated with higher odds of urgency (OR = 1.79, 95% 
CI: 1.58–2.02), while being uninsured was associated 
with lower odds (OR = 0.75, 95% CI: 0.61–0.91). Patients 
from nursing homes had higher odds of being classi-
fied as urgent (OR = 2.80, 95% CI: 1.73–4.54). Figure  1b 
focuses on clinical information and medical history. 
Heart rate was a significant predictor, with patients hav-
ing heart rates over 90 bpm showing higher odds of being 
urgent (OR = 1.56, 95% CI: 1.42–1.72). Blood pressure 
was also significant; diastolic blood pressure less than 
60  mm Hg was associated with higher odds of urgency 
(OR = 1.53, 95% CI: 1.20–1.95), and DBP greater than 
80  mm Hg showed increased odds (OR = 1.29, 95% CI: 
1.17–1.42). Systolic blood pressure greater than 120 mm 
Hg was associated with higher urgency (OR = 1.10, 95% 
CI: 1.00–1.22). Several medical conditions significantly 
increased the odds of being classified as urgent, includ-
ing cancer (OR = 2.54, 95% CI: 1.91–3.37), chronic kidney 
disease (OR = 2.28, 95% CI: 1.71–3.03), chronic obstruc-
tive pulmonary disease (OR = 1.78, 95% CI: 1.46–2.17), 
congestive heart failure (OR = 2.45, 95% CI: 1.88–3.18), 
coronary artery disease (OR = 2.55, 95% CI: 2.03–3.20), 
end-stage renal disease (OR = 3.37, 95% CI: 1.88–6.05), 
diabetes mellitus type II (OR = 1.90, 95% CI: 1.57–2.30), 
hyperlipidemia (OR = 1.63, 95% CI: 1.40–1.90), hyper-
tension (OR = 1.73, 95% CI: 1.55–1.93), and obesity 
(OR = 1.25, 95% CI: 1.08–1.44).

Figure 2 presents the frequency and word cloud of the 
words in the unstructured variables, providing a visual 
representation of the most common terms found in the 
chief complaints and reasons for the injury presented 
at the ED visits. Table  2 and Fig.  3 summarize the per-
formance metrics for the different models. The results 
demonstrate that integrating structured and unstruc-
tured data leads to improved model performance across 
all classifiers. Logistic Regression showed significant 
improvements when combining both data types, achiev-
ing an AUC of 0.784, an accuracy of 0.717, and a high 
precision of 0.894. Random Forest and Gradient Boosting 
models similarly benefited from the combination, with 
Random Forest achieving an AUC of 0.766 and Gradient 
Boosting reaching 0.789. In particular, Gradient Boosting 
demonstrated strong predictive capabilities with a preci-
sion of 0.892 and an F1 score of 0.797. Extreme Gradient 
Boosting, although slightly weaker with structured data 
alone, showed notable gains when unstructured data was 
included, with a combined AUC of 0.779 and a precision 
of 0.886.

Discussion
Our study demonstrated that combining structured and 
unstructured data significantly improved the prediction 
of emergency severity in an ED setting. By integrating 
clinical narratives with traditional patient demographics, 
vital signs, and medical history, we were able to capture 
a more comprehensive representation of the patient’s 
condition. The results showed that models incorporat-
ing both data types outperformed those relying solely on 
structured or unstructured data. This finding highlights 
the potential of leveraging advanced NLP techniques, 
such as BERT, in conjunction with structured clinical 
data to enhance decision-making in emergency care. 
While the BERT model effectively captured the contex-
tual nuances in clinical notes, the combined approach 
proved most robust, supporting the idea that integrating 
diverse data sources can yield more accurate and action-
able predictions in complex medical environments like 
the ED.

Association analysis and clinical implications
While the association analysis identified several statisti-
cally significant predictors of emergency severity, it is 

Fig. 1 a Forest Plot of Odds Ratios with 95% CI (Log Scale). b Forest Plot of Odds Ratios with 95% CI (Log Scale). The odds ratios (ORs) presented 
in Figure. 1 were derived from a logistic regression model where all variables were mutually adjusted. This means that the ORs account 
for the influence of all other variables included in the model. For example, the OR for age reflects the effect of age on emergency severity 
while controlling for other factors such as gender, vital signs, and medical history. This mutual adjustment allows for a more accurate estimation 
of the individual contribution of each variable to the prediction of emergency severity, minimizing potential confounding effects

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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crucial to differentiate between statistical significance 
and clinical relevance. Chronic conditions such as coro-
nary artery disease, chronic kidney disease, and chronic 
obstructive pulmonary disease were significant predic-
tors in our model. However, the practical relevance of 

these findings for real-time decision-making in ED set-
tings should be critically examined. For instance, while 
the presence of chronic conditions may inform long-
term risk stratification, their immediate impact on triage 
decisions may be limited unless the condition is actively 

Fig. 2 Frequency and the word cloud of the word in the unstructured variables

Table 2 Performance metrics for different data models

Cutoff AUC Accuracy Precision Sensitivity Specificity F1 Score

Logistic Regression
 Structured Data 0.744 0.704 0.635 0.847 0.623 0.668 0.718

 Unstructured Data 0.783 0.760 0.696 0.882 0.685 0.730 0.771

 Combined (Structured + Unstructured) 0.779 0.784 0.717 0.894 0.705 0.753 0.788

 Mean (Structured + Unstructured) 0.735 0.787 0.732 0.888 0.733 0.728 0.803

Random Forest
 Structured Data 0.726 0.701 0.652 0.845 0.654 0.647 0.737

 Unstructured Data 0.715 0.749 0.696 0.868 0.698 0.687 0.774

 Combined (Structured + Unstructured) 0.720 0.766 0.712 0.875 0.716 0.698 0.787

 Mean (Structured + Unstructured) 0.718 0.779 0.723 0.882 0.726 0.716 0.797

Gradient boosting
 Structured Data 0.737 0.711 0.651 0.845 0.652 0.649 0.736

 Unstructured Data 0.747 0.763 0.714 0.876 0.719 0.700 0.790

 Combined (Structured + Unstructured) 0.759 0.789 0.726 0.892 0.719 0.745 0.797

 Mean (Structured + Unstructured) 0.740 0.789 0.729 0.889 0.727 0.734 0.800

Extreme Gradient Boosting
 Structured Data 0.803 0.678 0.623 0.836 0.615 0.645 0.709

 Unstructured Data 0.897 0.734 0.682 0.866 0.679 0.691 0.761

 Combined (Structured + Unstructured) 0.893 0.779 0.714 0.886 0.708 0.733 0.787

 Mean (Structured + Unstructured) 0.782 0.759 0.699 0.870 0.702 0.691 0.777
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contributing to the acute presentation. Thus, although 
these conditions were associated with increased urgency, 
further research is needed to explore their practical role 
in ED triage processes.

In addition, older age and higher heart rate emerged 
as significant predictors, aligning with clinical expecta-
tions that elderly patients and those with abnormal vital 
signs require urgent attention. However, it is important 
to interpret these findings with caution, particularly in 
the context of retrospective analysis. While our model 
can identify factors associated with higher acuity, it does 
not substitute clinical judgment, which remains critical 
in real-time decision-making. The inclusion of unstruc-
tured data, particularly chief complaints, offers a way to 
incorporate nuanced patient information that is often 

missing in structured data, thus improving the predictive 
accuracy of the models.

A notable finding was the association between insur-
ance status and emergency severity. Patients covered by 
Medicare had higher odds of being classified as urgent, 
while uninsured patients were less likely to be classified 
as urgent. This result raises important questions regard-
ing access to care and its influence on triage outcomes. 
One potential explanation is that uninsured patients 
may delay seeking care due to financial concerns, lead-
ing to underrepresentation in our dataset or potentially 
presenting with less acute conditions. Alternatively, 
these findings may reflect broader disparities in health-
care access and utilization, where insurance status influ-
ences not only access to primary care but also ED triage 

Fig. 3 Receiver Operating Characteristic (ROC) curves for the four models evaluated in the study. Each model include the structured data 
model, which uses only structured data such as patient demographics, visit characteristics, vital signs, and medical history; the unstructured 
data model, a BERT-based natural language processing (NLP) model that uses only unstructured data, including chief complaints and reasons 
for injury; the combined input model, a machine learning classification model that integrates both structured data and BERT-extracted features 
from the unstructured data; and the mean probability model, which averages the predicted probabilities from the structured data model 
and the unstructured data model
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decisions [33–35]. The association between Medicare 
coverage and higher urgency might reflect the higher 
baseline health risks of the elderly population, who are 
more likely to suffer from multiple comorbidities. Further 
exploration of how insurance status interacts with other 
social determinants of health, such as socioeconomic 
status and healthcare access, is warranted. Future stud-
ies should aim to validate these findings and examine 
whether controlling for other factors, such as pre-exist-
ing health conditions, changes the relationship between 
insurance status and triage classification. Moreover, this 
finding highlights the need for ED policies that address 
potential biases in triage based on insurance status and 
other social determinants of health.

Model performance and clinical application
Our results demonstrated that integrating structured 
and unstructured data improves the performance of 
predictive models, particularly in complex cases where 
traditional triage systems may fall short. The Gradi-
ent Boosting and Extreme Gradient Boosting models 
achieved the highest performance, with AUCs of 0.789 
and 0.779, respectively, when both data types were com-
bined. The strong performance of these models under-
scores the value of using machine learning techniques 
that can account for non-linear interactions and complex 
relationships between variables, which are often present 
in clinical data.

Our findings can be compared to the findings of 
Brouns et al. (2019) [36] and Veldhuis et al. (2022) [37]. 
Brouns et al. evaluated the Manchester Triage System in 
older emergency department patients, reporting an AUC 
of 0.74 for predicting hospital admissions, a result simi-
lar to the AUCs achieved by our combined data models. 
However, their study noted that MTS had a lower AUC 
of 0.71 for predicting in-hospital mortality, highlighting 
the limitations of relying solely on structured triage sys-
tems in medically complex populations. Our results dem-
onstrate that combining structured and unstructured 
data can address some of these limitations by improving 
predictive accuracy, particularly in more complex cases. 
Similarly, Veldhuis et  al. compared clinical judgment to 
early warning scores and found that clinical judgment 
outperformed risk stratification models, with AUCs 
between 0.70 and 0.89, especially for ICU admissions and 
severe adverse events [37]. While our models performed 
similarly, this emphasizes the need to integrate machine 
learning with clinical judgment. Our models, combining 
structured and unstructured data, outperformed single-
source models, aligning with Veldhuis et  al.’s suggestion 
that clinical tools combined with automated systems 
yield the best results.

In comparison with traditional triage systems, such 
as the Manchester Triage System [36], our models show 
promise in enhancing predictive accuracy by leveraging 
a broader range of patient data, particularly unstructured 
clinical narratives. However, it is essential to emphasize 
that clinical judgment remains a critical component of 
ED decision-making. Predictive models, while valu-
able, should complement—not replace—the expertise 
of healthcare providers, who are best equipped to make 
nuanced decisions in real-time clinical settings.

Limitations and future directions
There are several limitations to this study. First, the study 
is retrospective and relies on the accuracy and com-
pleteness of the NHAMCS-ED dataset. Any missing 
or inaccurately recorded data could impact the model’s 
performance. Although the proportion of missing data 
was relatively low (< 10%), the method of imputation 
(median) might not capture the true underlying values in 
all cases, and different imputation techniques could lead 
to slightly different results. Second, the study focuses on 
data from a single year (2021), which may limit the gen-
eralizability of the findings to other years or different 
hospital settings. Emergency presentations can vary over 
time due to factors such as seasonal changes, pandem-
ics, or other public health events. Future studies should 
validate these findings with data from multiple years and 
diverse clinical environments to ensure the robustness 
and applicability of the models across varying contexts. 
Third, while BERT proved highly effective in processing 
unstructured clinical text, it is computationally intensive 
compared to simpler models such as TF-IDF or logis-
tic regression. The complexity and resource demands 
of BERT may limit its use in real-time ED settings, par-
ticularly in resource-constrained environments. For real-
time applications, it may be beneficial to explore lighter 
models like DistilBERT [38] or other simplified NLP 
approaches that balance computational efficiency with 
performance. Additionally, another important limitation 
involves the potential bias inherent in machine learning 
models [39]. Bias can emerge from the data used to train 
the model, particularly if the dataset reflects existing dis-
parities in healthcare access, treatment, or outcomes. For 
instance, the underrepresentation of uninsured patients 
in the dataset may skew the model’s ability to predict 
outcomes for this group, potentially reinforcing inequi-
ties in healthcare delivery. Furthermore, models trained 
on past data may perpetuate historical biases in clinical 
decision-making, such as differences in treatment rec-
ommendations based on race, gender, or insurance sta-
tus. Addressing this issue will require careful evaluation 
of the model’s performance across diverse patient popu-
lations and the implementation of fairness-enhancing 



Page 12 of 13Zhang et al. BMC Medical Informatics and Decision Making          (2024) 24:372 

techniques, such as bias mitigation algorithms, to ensure 
that the model does not exacerbate existing healthcare 
disparities.

Future research should explore the integration of 
additional data sources, such as imaging and laboratory 
results, to further enhance predictive models [40]. These 
data sources could provide additional valuable informa-
tion that can improve the accuracy of severity predic-
tions. Prospective studies are also needed to validate 
the performance of these models in real-time clinical 
settings. Implementing these models in actual ED work-
flows and assessing their impact on clinical outcomes and 
operational efficiency will provide crucial insights [41]. 
Exploring the use of other advanced NLP models and 
techniques could yield further improvements in handling 
unstructured data. For example, models that incorpo-
rate contextual embeddings or use transfer learning from 
larger clinical datasets could enhance the performance 
of text-based predictions. Additionally, investigating the 
specific contributions of different types of unstructured 
data to the model’s performance can provide valuable 
insights for improving triage protocols and decision-
making processes in EDs.

Conclusion
The integration of structured and unstructured data 
shows promise in enhancing the prediction of emergency 
severity in ED settings. By leveraging advanced NLP tech-
niques and comprehensive data sources, healthcare pro-
viders may improve the accuracy of severity predictions, 
potentially leading to more informed resource allocation 
and better patient outcomes. However, while these find-
ings are encouraging, further validation in diverse clinical 
environments is necessary before definitive claims can be 
made about the model’s broader applicability. Prospec-
tive studies involving multi-year datasets and real-world 
implementation will be essential to confirm the impact 
on clinical decision-making. This study underscores the 
potential of combining diverse data types to support pre-
dictive modeling, but caution is required when interpret-
ing the results, given the need for additional validation. 
The findings contribute to the growing body of work 
on data integration in healthcare and suggest that this 
approach has the potential to support clinical decision-
making in emergency settings, pending further research.
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