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department patient arrivals using feature
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Abstract

Background Emergency department (ED) overcrowding is an important problem in many countries. Accurate pre-
dictions of ED patient arrivals can help management to better allocate staff and medical resources. In this study, we
investigate the use of calendar and meteorological predictors, as well as feature-engineered variables, to predict daily

forecast, Time series forecasting

patient arrivals using datasets from eleven different EDs across three countries.

Methods Six machine learning (ML) algorithms were tested on forecasting horizons of 7 and 45 days. Three

of them - Light Gradient Boosting Machine (LightGBM), Support Vector Machine with Radial Basis Function (SVM-
RBF), and Neural Network Autoregression (NNAR) — were never before reported for predicting ED patient arriv-
als. Algorithms’ hyperparameters were tuned through a grid-search with cross-validation. Prediction performance
was assessed using fivefold cross-validation and four performance metrics.

Results The eXtreme Gradient Boosting (XGBoost) was the best-performing model on both prediction horizons,
also outperforming results reported in past studies on ED arrival prediction. XGBoost and NNAR achieved the best
performance in nine out of the eleven analyzed datasets, with MAPE values ranging from 5.03% to 14.1%. Feature
engineering (FE) improved the performance of the ML algorithms.

Conclusion Accuracy in predicting ED arrivals, achieved through the FE approach, is key for managing human
and material resources, as well as reducing patient waiting times and lengths of stay.

Keywords Emergency department, Patient arrivals, Feature engineering, Machine learning algorithms, Patient visits

Introduction

Emergency department (ED) overcrowding, a global issue
[1-3], poses significant challenges in managing these
environments [3-6]. It refers to an imbalance between
the demand and supply of emergency services. This
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imbalance occurs when demand for emergency beds sur-
passes the current capacity of the ED, including human
and material resources for patient care [7, 8]. Address-
ing the increasing incidence of ED overcrowding calls for
interventions to minimize its impact [9, 10].

ED overcrowding impacts patient satisfaction [11-13],
leading to emotional exhaustion among healthcare teams
[12, 14], and extends patient stays [12]. It results from
external factors such as population growth and the inci-
dence of epidemic events, as well as internal issues such
as delays in patient care and inadequate ED resources [1].
Accurate prediction of patient arrivals helps optimize
resource allocation and improve care quality [15, 16].
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Several studies have focused on predicting patient
arrivals in EDs, primarily using autoregressive integrated
moving average (ARIMA) models [17-23]. However,
while effective for data with systematic variations, these
models are challenged by irregular fluctuations [16, 24].
To overcome this limitation, researchers have turned to
machine learning (ML) algorithms, such as artificial neu-
ral networks (ANN) [7, 15]. Recent advancements pro-
pose hybrid approaches [20, 21], combining statistical
models with ML algorithms and text mining techniques
[25, 26]. Hybrid approaches have demonstrated superior
predictive performance compared to individual models
in forecasting ED patient arrivals [18, 27].

Despite the proven effectiveness of Feature Engineer-
ing (FE) in enhancing ML model performance, existing
studies on patient arrival prediction have yet to explore
its potential. FE has consistently demonstrated signifi-
cant improvements in accuracy across various domains,
including patient flow modeling in healthcare [28], fore-
casting competitions [29], and other predictive modeling
fields [30]. By creating new features through domain
knowledge or exploratory data analysis [31-33], FE can
enhance model performance. As Kuhn and Johnson [31]
note, techniques such as Principal Component Analysis,
one-hot encoding, and other FE methods can substan-
tially improve ML algorithms. This approach has been
successful in prediction competitions such as Kaggle,
where extracting additional features (e.g., those derived
from time data) has led to improved predictive accuracy
[29, 34].

The objectives of this article are threefold: (i) to com-
pare the performance of six ML algorithms (namely,
XGBoost—eXtreme Gradient Boosting, LightGBM—
Light Gradient Boosting Machine, RF—Random Forest,
SVM-RBF—Support Vector Machine with Radial Basis
Function, NNAR—Neural Network Autoregression, and
GLMNET—Lasso and Elastic-Net Generalized Linear
Model) and identify the most accurate ones for predict-
ing daily patient arrivals using data from eleven different
EDs; (i) to apply FE to create calendar-related features,
which are included as predictors in the ML algorithms;
and (iif) to compare prediction accuracy in datasets
treated with FE (i.e., combining FE variables with mete-
orological and calendar predictors), and subsequently
implement a variable selection step based on the RF
technique for all types of EDs analyzed. Two reasons sup-
port the use of an FE approach in this study: (i) its docu-
mented ability to improve ML algorithm performance
[30, 34], and (i) the absence of previous applications in
predicting ED patient arrivals. Meteorological and calen-
dar variables were chosen as predictors, given their wide
use in the area of predicting patient arrivals and general
applicability across different contexts.
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Our research contributes to the state-of-the-art in ED
patient arrival prediction studies in three ways aligned
with our objectives. First, we address a gap in research by
applying ML algorithms—specifically LightGBM, SVM-
RBE, and NNAR—to predict daily ED arrivals, which is
novel in the literature (Sect. “ Background” and recent
studies [20, 35]).

Second, we introduce FE as a means to enhance the
performance of ML algorithms in predicting ED patient
arrivals. While existing literature highlights the use of
ML models and hybrid approaches, there remains a gap
in exploring novel predictor variables for ED arrival
forecasting. Our approach addresses this gap by identi-
fying new predictor variables that significantly improve
the performance of ML models. The latest systematic
review on this topic [36] identified the discovery of new
predictor variables as an underexplored area, calling for
future studies to investigate this further. By demonstrat-
ing that FE-generated variables, across datasets from
different countries, are more influential than traditional
predictors such as meteorological factors, our work not
only improves prediction accuracy but also contrib-
utes to advancing this important aspect of ED arrival
forecasting.

Building on the conclusions of systematic reviews
by Wangon et al. [37] and Jiang et al. [38], which found
that calendar variables are more influential than mete-
orological ones in predicting ED patient arrivals, we pro-
pose an FE approach that creates new variables based on
time-series signatures (timestamps). These time-based
variables have proven to be strong predictors across mul-
tiple datasets. In contrast to prior research that primar-
ily focused on conventional meteorological or calendar
variables, our approach applies FE to generate additional
variables from temporal signatures. Predictive analysis
across datasets from different countries demonstrates
that these feature-engineered variables outperform tradi-
tional predictors in terms of predictive power.

Our analysis of FE datasets with the XGBoost algo-
rithm yields unprecedented results in the current litera-
ture. Third, our study expands the scope by comparing
ML algorithms using data from 11 EDs across three
countries. Most previous studies have focused on single
ED predictions [7, 16, 21, 39-41], which may limit sta-
tistical significance and generalizability. Boyle et al. [22]
analyzed data from 27 EDs but did not explore ML algo-
rithms. Additionally, few studies have employed rigor-
ous comparison methods such as cross-validation for ED
arrival prediction (e.g., [3, 7, 20]). In our study, we employ
grid-search with cross-validation to optimize hyperpa-
rameters across all algorithms and evaluate performance
over two distinct horizons using five-fold cross-valida-
tion. We also use a variable selection step based on RF.
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Background

The literature on patient arrival prediction in EDs has
expanded in recent years, including a number of sys-
tematic literature review articles, e.g., [12, 13, 37, 38].
To avoid overlap with existing studies, specific crite-
ria were applied in the selection of articles discussed in
this section. First, only studies whose main objective is
the prediction of patient arrivals in EDs were included.
Second, only studies published in the past ten years
were included, as the literature reviews by Wargon et al.
[37] (covering the period from 1981 to 2007) and Gul
and Celik [13] (covering the period from 2001 to 2017)
showed that studies prior to 2012 used only traditional
forecasting methods. The third criterion is to select
works that used calendar and meteorological predictors
or only the time series in the prediction.

Thirty-three articles met the search criteria and are
summarized in Table 1. The articles were classified based
on the following characteristics: EDs analyzed and data-
base time frame, forecast object, period and horizon,
predictors tested, forecasting methods applied, most fre-
quently retained predictors, partitioning of the dataset
for validation purposes, performance metrics, and main
results.

Here is a summary of the studies presented in Table 1,
which also includes a glossary of abbreviations and acro-
nyms used throughout the paper. Data periodicity is typi-
cally daily (66.66% of the studies) and hourly (33.33% of
the studies), with 15.15% including both hourly and daily
forecasts. Most articles focus on daily arrival predictions;
hourly predictions are less commonly studied, as most
EDs operate on daily staffing and resource planning [4,
5, 17]. The time frame of the analyzed databases ranged
from one to ten years, with 48.48% of the studies cover-
ing up to three years of observations. A 7-day forecast-
ing horizon was most commonly adopted (51.51% of the
studies), which is considered more useful operationally
[15], given that most EDs rely on short-term planning
schedules.

Calendar predictors most frequently tested were
weekdays (60.60% of the studies), month of the year
(45.45%), holidays (45.45%), school holidays (15.15%),
days before or after holidays (12.12%), and time of day
(12.12%). Meteorological variables most commonly
tested were temperature (42.42% of the studies), pre-
cipitation (18.18%), wind speed (18.18%), and relative
humidity (12.12%). Additionally, 24.24% of the studies
considered only the time series to predict patient arriv-
als. Meteorological and calendar variables most fre-
quently retained in the models were weekdays (82% of
the studies that tested these predictors), holidays (57%),
month of the year (51%), and temperature (100%). Such
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findings are consistent with those reported by Gul and
Celik [13], who identified the most commonly used
independent variables for predicting patient arrivals in
EDs as time of day, weekday, month of the year, days
before or after holidays, vacation days, maximum and
minimum temperatures, precipitation, and wind speed.
Jiang et al. [38], in their literature review on ED patient
arrivals, concluded that calendar variables are predomi-
nant compared to other types of independent variables.

The models for ED arrival prediction listed in Table 1
can be classified into four groups: time series models,
regression models, ML algorithms, and hybrid meth-
ods. Among the time series models, ARIMA [1, 17] and
its variants Autoregressive Integrated Moving Average
with Explanatory Variable (ARIMAX) [18, 54], Seasonal
Autoregressive Integrated Moving Average (SARIMA)
[5, 21], and Seasonal Autoregressive Integrated Moving
Average with external variables (SARIMAX) [3, 46] have
been widely used. Naive models, Seasonal Naive (Snaive)
[47, 54], Error-trend-seasonal (ETS) [20, 45], and Expo-
nential Smoothing (ES) models [5, 46] are also reported,
with emphasis on the seasonal Holt-Winters (HW) model
[1, 23]. The second group includes Logistic regression-
based approaches [4, 6], logistic [55, 56], and Poisson
models [48], which are causal models, unlike most time
series models. More recently, ML algorithms have been
employed to overcome limitations of causal and time
series models. For example, Multilayer Perceptron Neu-
ral Network (MLP) [3, 27], Long Short-Term Memory
(LSTM) [24, 49], k-nearest neighbours (KNN) [20, 41],
XGBoost [5, 55], RF [54, 55], Support Vector Regression
(SVR) [41, 57], Deep Neural Network-based algorithms
[7, 56], such as Recurrent Neural Networks (RNNs) [5,
24], and Convolutional Neural Networks (CNNs) [7, 49],
have been reported in studies. In addition to these three
groups, hybrid approaches have also been used [5, 20,
24, 27]. For instance, Autoregressive Integrated Moving
Average with Linear Regression (ARIMA-LR) [18, 21],
Autoregressive Integrated Moving Average with Artifi-
cial Neural Network (ARIMA-ANN) [4, 18], and Autore-
gressive Integrated Moving Average with Support Vector
Regression (ARIMA-SVR) [35] offer advantages over sin-
gle models as they exploit the strengths of each individual
model to improve prediction accuracy. Reviews by Gul
and Celik [13] and Wargon et al. [37] demonstrate the
predominance of time series models in predicting ED
patient arrivals. In contrast, studies listed in Table 1 dem-
onstrate the increasing application of ML algorithms and
hybrid approaches combining statistical and ML models,
particularly in more recent articles.

Regarding model validation, the most frequent proce-
dure was to split the data into training and testing sets
(70% of the studies). Among these studies, only 33%
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reported the proportion of division between training
and testing sets, with a predominance of 70%/30% and
80%/20%. Furthermore, only 24.24% of the studies in
Table 1 used some form of cross-validation to assess the
quality of the predictions, with five studies [35, 39, 40]
conducting cross-validation only on the training set and
three studies [3, 7, 20] on the complete datasets. Cross-
validation provides a more robust and reliable way to
measure model performance [58].

To assess the accuracy of predictions, the most fre-
quently employed error metrics were Mean Absolute
Percentage Error—MAPE (75.75% of the studies), Root
Mean Square Error—RMSE (45.45%), and Mean Abso-
lute Error—MAE (39.39%). The prevalence of MAPE and
RMSE can be attributed to their scale-independence and
interpretability, which makes them suitable for compara-
tive analysis across studies [6, 42, 59]. Consistently, Gul
and Celik [13] also identified MAPE, RMSE, and MAE as
the top three error metrics commonly used in ED patient
arrival prediction studies.

Regarding prediction performance, our review indi-
cates that 75% of the studies show ML algorithms outper-
forming time series and regression models. Specifically,
when comparing only ML algorithms, the LSTM and
SVR demonstrate superior performance. Furthermore, all
studies considering hybrid approaches report better per-
formance compared to time series and regression mod-
els. Among studies comparing ML algorithms and hybrid
approaches, 78% report hybrid approaches as having the
best performance.

Our review reveals some limitations of the ED patient
arrival prediction literature. First, the number of EDs
analyzed is generally limited, often from geographically
close locations, resulting in low generalizability of the
prediction methods and lack of external validation. Sec-
ond, most studies do not employ cross-validation pro-
cedures. Last, most studies are not reproducible due to
closed data sources and limited or no access to computer
codes used in the analyses.

Materials and methods
Overview of the datasets
This retrospective and multicenter study uses datasets
from 11 EDs in hospitals located in Australia, the USA,
and the Netherlands. The datasets were extracted from
the publicly available Harvard Dataverse [60], covering
the period from January 1, 2014, to December 31, 2016.
Two criteria determined our choice of EDs to be
included in the analysis. The first criterion is diversity.
The sample of EDs includes both public and private hos-
pitals that provide general and specialized care, located
in countries with varying climatic conditions. Including
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multiple datasets from different hospitals and EDs aims
to enhance the generalizability of the results. Such
approach is supported by several authors (e.g., [4, 18,
27, 55, 61]), who suggest the comparison of ML predic-
tion methods across different EDs as a research oppor-
tunity. To the best of our knowledge, there are currently
no available studies that evaluate ML algorithms for pre-
dicting ED arrivals using data from different countries.
The second criterion is the public availability of data.
Research on forecasting is deemed significant when the
datasets used are publicly available, allowing for compa-
rability with other studies and replicability [62].

The majority of EDs included in the study are from
public hospitals (7 out of 11), providing general care (7
out of 11) of medium and low complexity (9 out of 11).
Out of the total number of EDs, four belong to teach-
ing hospitals. All EDs operate 24 h per day, 7 days of the
week. Table A1 gives the characterization of the EDs and
descriptive statistics for the analyzed period. Complete
three-year data were available for all EDs. The 11 com-
plete datasets contained 1,096 observations. The annual
average number of patient arrival events over all datasets
is 46,495. On average, EDs had between 36 and 268 daily
arrivals from January 2014 to December 2016.

Time series signatures use the date entry to generate
a set of time-based variables, namely, day of the month
and year, week of the month and year, defining when
each observation occurred. The theoretical and empiri-
cal justifications for using variables created through
FE were as follows: (i) the time signatures can capture
common seasonal and trend patterns in time series of
patient arrivals in the EDs; (ii) the distinct seasonal pat-
terns identified in the exploratory data analysis of both
weekly and monthly data confirm that the FE approach
for extracting temporal features was well-suited for
this analysis, as nuanced seasonal patterns can be more
precisely captured by specific elements of the arrival
time signatures; (iii) the FE approach improves the per-
formance of ML algorithms [29, 30, 34]; (iv) building
on findings of Wangon et al. [37] and Jiang et al. [38],
which demonstrated that calendar variables are more
predictive than meteorological variables for forecast-
ing ED arrivals, we adopt a FE approach that generates
new variables from time-series timestamps. Specifi-
cally, day-of-the-week patterns are frequently retained
as critical predictors due to their strong association
with patient arrival volumes. For instance, multiple
studies [16, 20] and [21] have shown that Mondays
often experience higher arrival rates, underscoring the
significance of such temporal variables in improving
predictive accuracy. This approach not only aligns with
previous research but also enhances the model’s ability
to capture relevant temporal patterns in ED demand;
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(v) the presence of weekly cycles and annual seasonal-
ity in patient arrival time series is widely documented
in the literature. Including variables created through
FE based on temporal patterns allows these cyclical
patterns to be captured, which is essential for more

Table 2 Predictors and outcome variable
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accurate predictive models. The FE predictor variables
used are presented in Table 3.

To assess the impact of FE on the performance of ML
prediction algorithms, the predictors of interest con-
tained in Tables 2 and 3 were selected based on the RF
algorithm, which includes distinct subsets of predictor

Feature type Variable name Description Variable type
Calendar data Day of the week Day of week in which the patient arrived at the ED. The Binary
categorical variable was deployed into seven dummy vari-
ables, each indicating a day of the week
Month of the year Month of the year in which the patient arrived at the ED.  Binary
The categorical variable was deployed into twelve dummy
variables, each indicating a month of the year
Meteorological data Minimum daily temperature Minimum temperature (in Celsius) of the arrival day Continuous
Mean daily temperature Mean temperature (in Celsius) of the arrival day Continuous
Maximum daily temperature Maximum temperature (in Celsius) of the arrival day Continuous
Daily patient arrivals at the ED Arrivals Total number of daily patient arrivals at the ED Discrete

Table 3 Feature engineered predictors and their description

Calendar feature name Description

Calendar feature type

date_index.num

date_half

date_quarter

date_mday

date_qday

date_yday

date_mweek

date_week

date_week2

date_week3
date_week4

date_mday7

Time is converted into a numerical value in seconds from a fixed base date set at 2014-01-01
00:00:00 =0, where 2014-01-02 corresponds to 86,400 s, 2014-01-03=172,800, and so on. The
variable represents the number of seconds elapsed from 2014-01-01 to 2016-01-31

The variable indicates whether the date falls in the first or second half of the year (e.g., 2014-01-
01=1,2014-07-01=2)

It represents the quarterly component of the index. The year is divided into four quarters, each
including three consecutive months. The variable indicates to which quarter of the year a specific
date belongs (e.g., January 15=1; April 28 =2), enabling data analysis based on quarterly patterns
or trends

The variable indicates the day of the month associated with a particular date (e.g., January 15=15)

The variable represents the day of the quarter, ranging from 1 to 92 for a given date, with each
quarter including from 90 to 92 days (e.g., June 30=91, as it is the 91st day of the second quarter;
September 30=92, as it is the 92nd day of the third quarter)

The variable represents the day of the year, ranging from 1 to 365, for a given date (e.g., March
31 is the 90th day of the year), enabling analysis and grouping of data based on annual patterns
or trends

The variable represents the week of the month, ranging from 1 to 5, for a given date (e.g., January
7=1;January 15=3)
The variable represents the week number of the year (considering the first week starts on the first

Sunday). Thus, in a year where January 1st falls on a Tuesday, this week is designated as week 53
of the previous year. Week 1, in turn, begins on January 6th

The variable is a binary indicator representing the biweekly frequency module. The term “module”
refers to the number that represents two possible states in each two-week cycle, taking values of 1
or0 (e.g, January 7=1; January 14=0; January 15=1)

The variable represents the three-week frequency module. The variable can take on values of 1, 2,

or 0 (e.g, January 7=1; January 14=2; January 15=0; and January 22=1)

The variable represents the quadriweekly frequency module, with values ranging from 0to 3 (e.g.,
January 7=1; January 14=2; January 15=3; January 22=0; and January 29=1)

The variable is used to order each weekday occurrence within a month, starting from 1 (e.g.,
the first Saturday of the month will have mday7 =1, the second mday7 =2, and so on; the same
applies to other weekdays)

Numeric

Categorical [1 or 2]

Categorical [1 to 4]

Categorical
[1t031]

Categorical
[1t092]

Categorical [1 to 365]

Categorical
[1to5]

Categorical
[1t053]

Binary [1 or 0]

Categorical
[0to 2]

Categorical
[0to 3]

Categorical
[1to5]
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variables for each ED. By conducting variable selection,
we can analyze the effect of FE on the six predictive
models. The selected subsets of predictors give the most
important predictors within each dataset.

Thirty-four candidate predictor variables were used,
including FE variables. A variable selection step based on
RF was performed to identify the most important vari-
ables, considering that some of the FE variables may not
result significant in describing the dependent variable
(number of patients).

Proposed method
Figure 1 displays the flowchart of the proposed method,
with steps detailed in the following subsections.

Step 1

In the first step, the 11 datasets are divided into training
and testing sets, considering the temporal structure of
each dataset. Two test sets are generated for each dataset,
containing 7 and 45 observations in each cross-validation
fold. The test sets are created in a sliding manner, thus
respecting the temporal order of the 5 folds of time-series
split cross-validation (TSCV) used in all ML algorithms.
This split of training and testing is repeated several times
for the 7 and 45-day test sets, corresponding to approxi-
mately 97%/3% and 80%/20% splits. The 7-day test hori-
zon was chosen as it has been widely used in previous
studies (see Table 1), facilitating performance compari-
son with existing research in the field. The 45-day hori-
zon corresponds to an 80% training and 20% testing data
split, as recommended by Hyndman and Athanasopoulos
[63].

Step 2
In step 2, prior to training the ML algorithms, the data-
sets are first pre-processed following the stages below:

Stage 1: Feature engineering [30, 64] involves the cre-
ation of additional variables related to the calendar
and derived from the patient’s visit date to the ED,
corresponding to the time series signature [65]. Fea-
ture-engineered variables were created with the aim
of enhancing the performance of ML algorithms, as
recommended by Verdonck et al. [30]. The complete
set of predictors considered in the analysis consists
of the feature-engineered variables (Table 3) and the
original variables (Table 2).

The FE variables were created using the timetk
package [65] in R, utilizing the step_timeseries_sig-
nature() function. The function automatically gener-
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ates a set of variables based on the information in the
date column regarding the number of patients arriv-
als, and is used to create a "time series signature,”
which decomposes a temporal variable (such as dates
or timestamps) into several derived variables that
represent different components of the date.

A step-by-step description of the function’s process
is as follows: (i) A temporal data column is provided
as input to the function, which can be in either Date
or POSIXct format (date and time). The column must
be specified within the data frame to which the trans-
formation will be applied. (ii) the function decom-
poses the time variable into several derived variables,
including various components of the timestamp,
such as year, month, day of the month (mday), day
of the year (yday), week of the year (week), quar-
ter, and others. (iii) the variables generated are then
added to the data frame as additional columns, each
representing a specific temporal feature. This allows
the original data frame to contain all the derived time
characteristics, which can then be used in ML mod-
els. For more details, readers can refer to [66, 67].
Stage 2: Min—max normalization of continuous pre-
dictors. The stability and prediction performance of
ML algorithms depends on the quality of input data
[68]. Observations of all continuous predictor vari-
ables (except for dummy variables) were rewritten in
the [0,1] interval to eliminate scale effects, using the
expression:

Xnorm = (X — Xmin) | Xmax — Xmin) (1)

where x and %, are the observed and normalized
observations, and x4y and x,,;, are the variable’s
maximum and minimum observed values.

Stage 3: Variable selection plays a key role in ML
workflows, contributing to faster training, increased
accuracy, and easier analysis of the modeled phe-
nomenon’s mechanisms [69]. The use of ML algo-
rithms is often criticized due to the difficulty in vis-
ualizing the impact of predictors on the outcome of
interest [70], which is intensified in the case of a large
number of predictors. To assess the importance of
variables, a variable selection procedure based on an
RF was adopted [71].

The complete set of predictors from the 11 analyzed
datasets was submitted to the RF wvariable selection
method. Two approaches are commonly used to assess
the importance of a variable in the method: permutation
importance and impurity-based importance [72]. Our
study adopted the permutation importance approach,
and the selection was conducted in four steps: (i) train
an RF model using the complete dataset; (ii) employ the
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Step 1: Splits of the training and test sets of the 11 emergency departments
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permutation importance method to calculate importance
scores for each variable; (iii) rank variables based on their
importance scores and organize them in descending
order of importance; and (iv) establish a cutoff thresh-
old for selecting a subset of top-performing predictor
variables to be used as a reduced dataset in subsequent
analyses.

The permutation importance method begins by creat-
ing a prediction model using the complete dataset and
recording its accuracy. Subsequently, one of the variables
in the dataset is chosen, and its values are randomly shuf-
fled while the other variables remain unchanged. This
process eliminates any existing relationship between the
dependent variable and the shuffled variable, and that
will be reflected in the model accuracy if the original rela-
tionship is significant [73]. The next step involves record-
ing the difference in accuracy between the initial model
and the model with the shuffled variable, which becomes
the variable’s importance score. The larger the score, the
more important the variable is in the prediction [74].
After shuffling for all 34 predictor variables in the data-
sets, the obtained scores are arranged in descending
order, and only variables with scores above the threshold
value are retained in the reduced datasets.

The RF variable selection method was chosen for two
reasons: (i) Bommert et al. [72] conducted an analysis of
22 variable selection methods on 16 high-dimensional
datasets across various domains, concluding that RF dis-
played the highest accuracy compared to other methods;
and (ii) the technique has not been adopted in previous
studies on predicting patient arrivals in EDs. It is impor-
tant to note that the GLMNET regressor has a variable
selection step imbedded in the model, which was deac-
tivated. Thus, RF variable selection was employed in
all algorithms, enabling a direct comparison of their
performances.

Step 3

Once the ideal subset of input variables is defined, it is
necessary to refine ML methods by optimizing their
hyperparameters. To achieve that, a grid search [31] was
employed. The method involves defining ranges of candi-
date values for the tuning parameters [75] and evaluating
combinations of values that result in models that better
fit the data. RMSE is the most commonly used metric for
this purpose [31, 75]; see Eq. (5).

In our application, we conducted a grid search with
fivefold cross-validation for hyperparameter optimiza-
tion of all tested algorithms, as recommended by Kuhn
and Johnson [31]. We used the "tune" package [76] in
conjunction with the tidymodels framework [77] to com-
pute the best parameter combinations across 25 candi-
date models for each ML algorithm. The optimal tuning
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parameters yielded the lowest RMSE, calculated using
the training portion of the datasets. Extensive reports
of the grid search are available upon request from the
authors.

Step 4

According to Hyndman and Athanasopoulos [63] and
Kuhn and Johnson [64], the most suitable method for
assessing the performance of modeling datasets with
temporal dependence is the TSCV. This type of valida-
tion captures the effects of trends, seasonality, and other
aspects that may be present in time series [63, 64]. Unlike
classical cross-validation techniques such as k-fold,
which assume independence and identical distribution
of observations, TSCV avoids random splitting between
training and test sets, respecting the temporal sequence
of the data [63, 64]. TSCV involves the following stages:

1. Split the Dataset: The data is initially divided into
training and test subsets, considering their temporal
sequence. Older observations are used for training,
while more recent observations are allocated for test-
ing [63, 64].

2. Define a Moving Window: A fixed-size moving win-
dow is defined to create subsequent folds; it dictates
the extent of the training and test data in each itera-
tion [63]. In our study, 7 and 45-day windows were
tested.

3. Iterate: At each iteration, the moving window is
shifted forward along the time series, i.e., the sec-
ond resampling uses the test set from the initial split
(referred to as skip 1) as part of the training set. Con-
sequently, the size of the training sets in each fold
is not the same since they grow cumulatively as the
moving window progresses [64].

4. Evaluate performance: After five iterations, perfor-
mance is assessed by calculating the average of the
error metric values for the five test sets.

Figure 2 illustrates the stages above for the 45-day mov-
ing window. Four recent studies ( [20, 40, 50, 78]) also
used TSCV when predicting patient arrivals.

Overview of selected machine learning algorithms
and performance metrics
In this section, we justify the choice of ML algorithms
tested in our comparative analysis. In Appendix Table A2,
algorithms are grouped by similarity and summarized,
with primary references provided for readers to access
detailed information.

XGBoost is a Gradient Boosting (GB) algorithm that
builds trees iteratively to predict residuals and combines
them for final predictions [79]. It efficiently handles large
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Time-series split cross-validation (TSCV)
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ML algorithms skipped 45 days to

avoid overlapping test sets.
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Fig. 2 Example of a TSCV implementation on a generic dataset considering a 45-day moving window

datasets by adding weak learners and transforming them
into a strong model [79]. LightGBM is a GB variant that
uses a histogram-based and leaf-wise approach to opti-
mize tree construction [80]. LightGBM speeds up train-
ing and reduces memory usage with techniques such as
Gradient-based One-Side Sampling (GOSS) and Exclu-
sive Feature Bundling (EFB). RF is an ensemble method
that builds multiple decision trees on random data
subsets, reducing overfitting and increasing accuracy.
SVM-RBF solves regression problems by using a kernel
function to maximize margins and minimize prediction
errors [58]. The RBF kernel measures similarity between
instances, and key parameters such as gamma and C
are optimized to improve predictive performance [58].
NNAR is a neural network model that uses lagged values
of a time series as inputs, forming a model analogous to
ARIMA [63]. NNAR has input, hidden, and output lay-
ers, with the number of hidden nodes determined by lag
order, and parameters optimized [63]. GLMNET com-
bines linear regression with regularization (LASSO and
Ridge) to handle high-dimensional data [81]. It uses the
elastic-net penalty (o) and regularization parameter (A)

to balance variable selection and shrinkage, with optimal
values determined via cross-validation [81].

The selection of these algorithms was motivated by the
following reasons: (i) XGBoost [40, 55], RF [7, 20], and
GLMNET [20] are reported as presenting superior per-
formance in patient arrival prediction; (ii) to the best
of our knowledge, LightGBM, SVM-RBE, and NNAR
are being used for the first time in such context; (iii)
XGBoost, LightGBM, and GLMNET are the fastest ML
methods in terms of execution speed and computational
efficiency [79-81]. Given that predictions were made on
11 datasets, the computational time of the algorithms
becomes a crucial factor; and (iv) the use of the three
decision tree-based algorithms (XGBoost, LightGBM,
and RF) in the same study is justified by differences in
their tree construction strategies (e.g., XGBoost adopts a
level-wise strategy while LightGBM uses a leaf-wise strat-
egy [80]) and distinct approaches to handling overfitting
(e.g., XGBoost employs Gradient Boosting to mitigate
overfitting, whereas LightGBM utilizes GOSS to address
the issue), as explained in Table A2.

The performance of the models presented in Table A3
in predicting ED arrivals in horizons of 7 and 45 days
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was determined by analyzing four metrics: (i) MAPE in
Eq. (2); (ii) Symmetric Mean Absolute Percentage Error
(SMAPE) in Eq. (3); (iii) Mean Absolute Scaled Error
(MASE) in Eq. (4); and (iv) RMSE in Eq. (5).

In Sect. " Background", we demonstrated that the most
commonly used metrics for evaluating patient arrival
predictions are MAPE and RMSE. Both metrics enable
direct comparison since they are scale-independent,
allowing for the assessment of predictions across differ-
ent scenarios [36, 78]. MAPE presents results in percent-
age form, which is more easily interpretable [59]. sMAPE
also provides results in percentage form, being consid-
ered a suitable choice in time series with zero entries
[82], which can occur when there are no patient arriv-
als on certain days. According to Hyndman and Koehler
[82], MASE is a superior metric for assessing forecasting
model accuracy since it is less sensitive to outliers, less
variable in small samples, scale-independent, easy to
interpret, and can be used to compare the accuracy of
various time series [82]. MASE values smaller than 1 (the
closer to 0, the better) indicate that the model’s forecast is
better than the Naive model [82]. RMSE is a measure that
represents the squared differences between predicted
and actual values. A RMSE value close to zero indicates
a better model fit to the data, as it signifies smaller differ-
ences between predicted and actual values.
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In all equations above, y,, denotes the observed value of
the series at time ¢, 7,, denotes the predicted value of the
series at time £, and T is the total number of observations
in the time series.

Results

Exploratory data analysis

Figure 3 displays the time series of daily patient arriv-
als in the analyzed datasets. Time series graphs allow
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observing data behavior over time, as indicated by [63].
Figure 3 reveals distinct arrival patterns and fluctuations.
Most ED series exhibit periodic variations, indicating
seasonality, high pointwise variability over the years, and
nonlinear trends. Such characteristics justify the choice
of ML models to describe patients’ arrival patterns, as
they are more suitable to capture complex non-linear
data behaviors [7].

Fig. 4 displays box plots stratifying patients’ daily arriv-
als by day of the week (top) and month of the year (bot-
tom) for each ED dataset. Mondays and Sundays are
the busiest days, totaling 363,874 (15.02%) and 360,578
(14.88%) of the arrivals, respectively. In opposition,
Wednesdays had the lowest arrival numbers (333,242
or 13.75%). Mondays displayed significant variation in
arrivals across EDs, consistent with previous findings
reported by [16, 20] and [21]. In general, patient arriv-
als peaked on Mondays, decreasing through the week,
reaching the lowest point on Wednesdays, and starting
to increase again on Fridays, reaching another peak on
Sundays. Prior studies have also noted increased arrivals
on Fridays [3, 6, 15]. Monthly analysis indicates August
as the busiest month (213,936 arrivals or 8.83%), followed
by March (211,986 arrivals or 8.75%); in opposition,
November had the lowest number of arrivals (181,020
or 7.47%). The strong seasonal pattern identified in the
datasets across days of the week and months of the year
indicates that the FE approach for extracting temporal
features was appropriate for the analysis.

Forecasting performance

To assess performance, metrics were computed using
eqns. (2) to (5) in each cross-validation resampling set.
The average performance was analyzed across two test
sets, with durations of 7 and 45 days. In Table 4 present
the performance results for the algorithms tested. Results
demonstrated that the application of FE contributed to
enhancing the algorithms’ performance.

XGBoost achieved the best performance in five out of
the eleven analyzed datasets, displaying MAPE values
ranging from 5.08% to 21.37%, sMAPE values ranging
from 4.96% to 7.22% and RMSE values from 7.03 to 24.14
for a 7-day prediction horizon. XGBoost used different
combinations of ten variables for each dataset, includ-
ing index.num, yday, week, half, quarter, mday, qday,
minimum, mean, and maximum temperatures, day of the
week (Monday, Tuesday, Friday, Saturday, and Sunday),
and month of the year (August).

For the 45-day test sets, XGBoost and NNAR displayed
the best performance across ten of the datasets, with
MAPE values ranging from 5.08% to 19.41%, sMAPE
values ranging from 5.11% to 6.16%, and RMSE from
7.89 to 25.14. The variables used consisted of different
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combinations of the following predictors: index.num,
yday, week, half, quarter, mday, qday, minimum, mean,
and maximum temperatures, day of the week (Sunday,
Monday, Wednesday, Thursday, and Friday), and month
of the year (August and November). Table A3 allows vis-
ualizing algorithms that exhibited superior performance
across all datasets and the most important predictors
used in the forecasts.

Fig. 5 illustrates the comparisons of the fivefold
cross-validation predictions and the fivefold average,
represented by the vertical line in the graphs, for six algo-
rithms across two horizons.

Feature importance

Since the literature does not indicate a universal cutoff
threshold value for feature selection, we tested different
values (0.60, 0.70, 0.80, 0.90) across all datasets. The final
choice of threshold considered two main criteria: (i) find-
ing the optimal trade-off between quantity of variables,
model simplification, and model performance; and (if)
the authors’ expertise in modeling medical datasets.

During the testing phase, adopting a threshold value
of 0.60 resulted in retaining a large number of predictor
variables with importance scores below 10%, while the
threshold of 0.90 retained only four candidate variables
across all datasets, eliminating several with high impor-
tance scores and undermining model performance. A
final threshold value of 0.70 was chosen as it provided the
best balance between the number of variables retained
and model performance.

Considering the different sets of variables retained
in each dataset and the varying importance weights
assigned to them by the ML prediction algorithms, we
conclude that the most important variables in the ana-
lyzed datasets were index.num, yday, week, qday, quar-
ter, minimum, mean, and maximum temperatures,
and dummy variables representing the day of the week
(mainly Monday, Wednesday, Friday, and Sunday). The
results of the permutation importance scores via RF for
the top ML algorithms can be viewed in Fig. 6. Table A4
summarizes the top 10 most important predictors across
all datasets for the best ML algorithms in each dataset.
The FE variables index.num, yday, and week displayed
higher importance scores in the ML models for the
majority of datasets analyzed. This result demonstrates
that the FE approach can enhance the performance of
ML in predicting daily patient arrivals in EDs.

Discussion

This study introduces some methodological innova-
tions for predicting patient arrivals using ML algo-
rithms, addressing certain limitations reported in the
literature. First, we adopted a grid-search with fivefold
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Table 4 Results of average performance metrics using grid-search with fivefold cross-validation

ED ANTONIUSH- ED ARMA

OVE

Methods Resampling MAPE sMAPE MASE RMSE Methods Resampling MAPE sMAPE MASE RMSE

7-day test set
XGBoost Mean 19.15 1845 0.89 8.13 XGBoost  Mean 5.74 561 0.80 11.72
LightGBM 2289 2021 1.06 9.29 LightGBM 5.90 578 0.85 11.54
RF 2376 2042 111 9.68 RF 5.84 5.70 0.82 11.96
SVM-RBF 20.59 18.49 0.93 845 SVM-RBF 552 540 0.78 11.69
NNAR 19.45 17.87 0.90 8.10 NNAR 6.01 591 0.85 12.05
GLMNET 20.18 18.15 0.93 8.26 GLMNET 548 535 0.77 11.44

45-day test set
XGBoost Mean 1629 1595 0.79 7.89 XGBoost  Mean 5.90 5.89 0.73 12.62
LightGBM 17.40 15.92 0.79 7.95 LightGBM 6.05 6.00 0.74 12.74
RF 21.04 1833 093 9.06 RF 6.08 6.04 0.74 12.60
SVM-RBF 18.35 16.49 0.82 8.26 SVM-RBF 597 5.94 0.73 12.70
NNAR 17.83 16.22 0.81 8.04 NNAR 6.25 6.18 0.76 13.00
GLMNET 1847 16.56 0.83 8.24 GLMNET 5.90 5.90 0.73 12.64

ED BRONOVO ED DAVIS

Methods Resampling MAPE sMAPE MASE RMSE Methods Resampling MAPE sMAPE MASE RMSE

7-day test set
XGBoost Mean 1410 1337 0.63 849 XGBoost  Mean 9.90 9.90 0.90 24.14
LightGBM 15.50 14.40 0.69 8.91 LightGBM 1091 10.75 0.96 27.05
RF 15.19 14.71 0.69 8.97 RF 10.99 11.17 0.98 27.87
SVM-RBF 1401 1357 063 853 SVM-RBF 1031 1017 0.90 2536
NNAR 13.64 1311 0.61 8.28 NNAR 10.12 10.09 0.90 2531
GLMNET 1410 1364 0.63 838 GLMNET 1046 10.30 0.91 25.79

45-day test set
XGBoost Mean 1322 1274 0.76 8.54 XGBoost  Mean 1099 11.06 0.96 26.94
LightGBM 1325 1276 0.76 857 LightGBM 1088  10.76 093 2624
RF 13.15 12.81 0.76 8.60 RF 11.10 11.25 0.98 27.81
SVM-RBF 12.75 12.68 0.75 8.56 SVM-RBF 10.51 10.37 091 25.77
NNAR 12.85 1245 0.74 837 NNAR 1029 1023 0.90 25.14
GLMNET 12.61 12.58 0.75 8.56 GLMNET 10.57 1041 092 26.01

ED JOON ED KEM

Methods Resampling MAPE sMAPE MASE RMSE Methods Resampling MAPE sMAPE MASE RMSE

7-day test set
XGBoost Mean 503 4.96 0.93 16.50 XGBoost  Mean 2137 1960 0.50 7.03
LightGBM 4.73 4.66 0.88 15.96 LightGBM 2339 2010 0.52 7.59
RF 4.84 4.80 0.90 16.84 RF 2441 2070 0.52 7.62
SVM-RBF 4.61 4.52 0.85 16.22 SVM-RBF 2287 2032 0.52 7.27
NNAR 5.09 5.02 094 16.68 NNAR 2162 1898 048 7.10
GLMNET 491 4.76 0.88 16.85 GLMNET 23.21 20.00 0.51 7.53

45-day test set
XGBoost Mean 511 511 0.78 17.49 XGBoost  Mean 1941 17.68 0.51 7.15
LightGBM 5.08 5.06 0.77 17.45 LightGBM 20.77 18.65 0.54 7.37
RF 5.01 498 0.76 1743 RF 2020 1843 053 740
SVM-RBF 4.98 497 0.76 17.25 SVM-RBF 19.15 18.02 0.52 7.18
NNAR 513 5.04 0.77 17.67 NNAR 18.92 1742 0.50 6.92
GLMNET 536 527 0.80 18.10 GLMNET 1947 1821 0.53 7.37

ED PM ED RG

Methods Resampling MAPE sMAPE MASE RMSE Methods Resampling MAPE sMAPE MASE RMSE
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Table 4 (continued)
7-day test set
XGBoost Mean 9.72 9.54 0.71 18.61 XGBoost Mean 7.21 7.22 0.81 12.96
LightGBM 1050 1017 0.76 20.01 LightGBM 6.81 6.79 0.74 12.87
RF 9.89 9.68 0.71 18.66 RF 6.55 6.51 0.71 11.93
SVM-RBF 11.22 1044 0.77 20.77 SVM-RBF 737 7.35 0.81 13.67
NNAR 9.58 9.20 0.67 18.32 NNAR 7.55 744 0.83 13.66
GLMNET 1194 11.01 0.81 22.01 GLMNET 7.83 7.65 0.86 14.05
45-day test set
XGBoost Mean 8.67 8.58 0.87 18.68 XGBoost  Mean 6.23 6.16 0.69 11.42
LightGBM 8.85 8.63 087 18.85 LightGBM 6.31 6.17 0.69 11.54
RF 8.83 8.63 0.87 18.83 RF 6.28 6.15 0.69 1147
SVM-RBF 9.08 891 0.90 19.64 SVM-RBF 6.77 6.65 0.75 12.07
NNAR 9.02 8.96 091 19.85 NNAR 6.77 6.64 0.75 12.15
GLMNET 9.73 9.54 0.96 21.06 GLMNET 6.72 6.63 0.75 12.03
ED RPH ED SCG
Methods Resampling MAPE sMAPE MASE RMSE Methods Resampling MAPE sMAPE MASE RMSE
7-day test set
XGBoost Mean 5.90 5.96 0.94 14.89 XGBoost  Mean 5.08 5.08 0.85 11.93
LightGBM 6.24 6.37 0.99 15.75 LightGBM 535 533 0.94 1217
RF 6.54 6.49 1.03 15.72 RF 525 524 0.90 11.96
SVM-RBF 6.21 6.28 0.98 1545 SVM-RBF 522 523 0.87 12.12
NNAR 6.37 643 1.00 15.63 NNAR 521 5.19 0.90 11.73
GLMNET 6.79 6.97 1.07 16.86 GLMNET 5.85 572 0.99 12.75
45-day test set
XGBoost Mean 6.04 596 0.84 1457 XGBoost  Mean 5.64 5.60 0.82 1261
LightGBM 6.06 598 0.84 14.67 LightGBM 572 5.68 0.82 12.71
RF 6.01 5.96 0.84 14.44 RF 5.69 5.60 0.81 12.56
SVM-RBF 571 574 0.81 14.37 SVM-RBF 5.69 5.60 0.81 12.56
NNAR 5.85 5.86 0.83 14.25 NNAR 6.06 5.89 0.85 1337
GLMNET 6.63 6.85 098 16.61 GLMNET 6.35 6.13 0.88 13.71
ED WESTEINDE
Methods Resampling MAPE sMAPE MASE RMSE
7-day test set
XGBoost Mean 849 8.56 0.79 14.01
LightGBM 847 843 0.78 14.00
RF 8.74 8.75 0.81 14.18
SVM-RBF 8.18 820 0.76 13.71
NNAR 821 8.29 0.77 13.88
GLMNET 8.27 8.39 0.78 14.01
45-day test set
XGBoost Mean 7.12 7.15 0381 12.57
LightGBM 7.30 7.29 0.83 12.77
RF 7.62 7.64 0.87 13.27
SVM-RBF 7.44 744 0.85 12.94
NNAR 7.38 731 0.83 13.09
GLMNET 7.55 7.53 0.86 13.16

cross-validation for hyperparameter optimization across
all algorithms. Overfitting of the ML algorithms was
avoided using the TSCV method, and the results

obtained are generalizable because we used datasets
from eleven EDs in different countries. As of the lit-
erature review, none of the studies listed in Table 1 had
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Fig. 5 lllustrates the comparison of the fivefold cross-validation prediction and the fivefold average represented by the vertical line in the graphs
for six algorithms at two horizons. Note: The graphs present the performance of resampling predictions using a variable selection step for the 7-day

and 45-day test sets in each ED
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used grid-search for hyperparameter tuning. Second, we
adopted an FE approach to improve algorithm perfor-
mance, which is new in the ED patient arrival prediction
literature. Third, we incorporated a feature selection step
based on RFs. These methodological innovations enabled
more precise and reliable results in patient arrival predic-
tion. Our approach stands out compared to similar works
in terms of prediction performance.

Sudarshan et al. [7] compared three ML algorithms in
forecasting daily arrivals for a 7-day horizon. The LSTM
algorithm, incorporating six meteorological and seven
calendar variables, achieved average MAPEs of 9.31%
and 8.91%. Xu [18] employed six ML and hybrid methods
to predict daily arrivals for a 7-day horizon. The methods
incorporated variables such as day of the week, month of
the year, holidays, school vacations, and temperatures.
The ARIMA-LR with smoothing achieved MAPEs rang-
ing from 6.1% to 12.9% and RMSEs from 5.33 to 147.

Vollmer et al. [20] compared the performance of eight
statistical and ML models in forecasting daily arrivals
considering 1 to 7-day horizons. They used variables such
as day of the week, month of the year, public holidays,
school vacations, temperatures, and precipitation. The
GLMNET model achieved the best performance, with
MAPE values of 6.8% and 8.6%. Yousefi et al. [21], in fore-
casting daily arrivals using the LSTM model for horizons
of 1 to 7 days, incorporated predictors such as football
game events, weekends, and holidays, reporting an aver-
age MAPE of 5.55%.

Pekel et al. [39] compared three hybrid ML algorithms
in forecasting daily arrivals, using variables such as
month of the year, day of the week, holidays, and maxi-
mum temperature. The PSO-ANN model achieved the
best performance, with MAPE values of 6% and RMSE
of 53.29. Zhang et al. [41] compared nine ML mod-
els in forecasting daily arrivals for a 90-day horizon,
incorporating seven calendar variables and eight mete-
orological variables. The SVR model displayed the best
performance, with a MAPE of 8.81% and RMSE of 26.84.

In forecasting daily arrivals for a 53-day horizon, Zhao
et al. [49] compared eight ML and statistical methods,
testing variables such as day of the week, temperature,
and relative humidity. The DLSTM algorithm was the
best-performing, with a MAPE of 5.67% and RMSE of
25.29. Petsis [40] produced daily arrival forecasts for 1
and 2 days ahead, incorporating nine calendar and five
meteorological variables using XGBoost. The obtained
results showed MAPEs of 6.5% and 6.91%, along with
RMSE values of 22.96 and 23.9. Finally, Rocha and Rod-
rigues [5] compared ten ML algorithms and hybrid meth-
ods in forecasting daily arrivals using calendar variables
such as year, month of the year, day of the week, time of
day, and holidays. The RNN-1L model displayed the best
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performance, with RMSE values ranging from 4.8 to 26
and sMAPE values from 4.3% to 21.3%.

Our study compared six ML algorithms using the FE
approach in forecasting daily arrivals using datasets
from eleven EDs for horizons of 7 and 45 days, display-
ing performance improvements compared to previous
studies. Table 5 provides a horizon-based comparison
between our study and the best-performing methods in
the literature.

We incorporated the FE approach into the ML work-
flow to predict daily patient arrivals in EDs, which we
believe represents a significant contribution to the
research field. The results obtained across eleven EDs
indicate that FE variables were informative in forecast-
ing daily patient arrivals. Studies on ML for predicting
patient arrivals typically rely solely on meteorological
variables and traditional calendar variables, such as day
of the week and month of the year [5, 7, 18, 20, 21, 39—
41, 49]. The performance of the prediction algorithms
was positively impacted by the inclusion of FE variables,
especially index.num, yday, week, and qday. Predicting
patient arrivals in EDs is not a new research topic. How-
ever, this is the first study that systematically investigates
whether FE variables are relevant predictors for daily
patient arrival forecasts.

The scope of this study, encompassing 11 different
EDs, allowed us to assess the importance of using FE
to improve the generalizability of our results. Verdonck
et al. [30] recommended the use of FE in ML-based anal-
ysis workflows to enhance algorithm performance. The
FE approach employed in this study created a set of new
predictor variables based on arrival timestamps. A recent
systematic review on ED arrival forecasting [36] suggests,
for future studies, that exploring new variables with the
potential to become significant and reliable predictors is
an underexplored area requiring further research. Our
study addresses this demand.

Specifically in the EDs of Antoniushove, ARMA, Davis,
Joon, PM, RG, RPH, and Westeinde hospitals, it was
observed that the FE variables index.num, yday and week
displayed high levels of importance (Fig. 6), surpassing
those attributed to meteorological variables, which are
typically considered informative in predicting patient
arrivals in EDs, e.g., [3, 6, 7, 41, 42, 46].

The systematic review by Wangon et al. [37] concluded
that calendar variables hold greater importance than
meteorological variables in predicting patient arriv-
als in EDs, aligning with our findings. Another system-
atic review by Jiang et al. [38] supported this conclusion,
indicating that traditional calendar variables are more
frequently used compared to other types of predictor
variables. Our study also demonstrated the importance
of predictors associated with temperatures and days of
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Table 5 Comparison of the forecasting performance achieved with related works stratified by forecasting horizon

Forecasting Horizon Reference and year Method(s) used MAPE(%) RMSE

3 up to 7 days ahead Marcilio et al. [42] 2013 GLM and GEE 4,5-9,9 not applied
Xu[18] 2016 ARIMA-LR (smoothing), ARIMA-LR and GLM 6,8-9,6 70,5-104
Calegari et al. [46] 2016 SARIMA, SS and SMHW 10,67-12,01 not applied
Asheim et al. [48] 2019 Poisson time-series regression model 31-38 not applied
Jilani et al. [15] 2019 NN e FTS 3.03-7,42 6,16-16,55
Whitt et al. [3] 2019 SARIMAX 8,4-10,59 not applied
Zhang et al. [35] 2019 ARIMA, SVR and ARIMA-SVR 7,02-7,36 19,20-20,34
Choudhury and Urena [1] 2020 ARIMA, HW and NN not applied 1,55-27,86
Yousefi et al. [21] 2020 LSTM 5,59-6,31 not applied
Erkamp et al. [6] 2021 MLR 8.68-12.20 not applied
Rocha and Rodrigues [5] 2021 RNN, XGBoost and RNN-XGBoost not applied 47-49
Vollmer et al. [20] 2021 GLMNET, LM and GBM 6,7-8,6 not applied
Sudarshan et al. [7] 2021 RF, LSTM and CNN 8,91-10,69 not applied
Cheng etal. [61] 2021 SARIMAX, HW and VAR 5-15,3 not applied
Murtas et al. [83] 2022 ARIMA 6,6-11,2 not applied
Petsis et al. [40] 2022 XGBoost 6,5-6,91 22,96-23,9
Tuominen et al. [54] 2022 ARIMAX, RLS-FS and RLS-SA 6,6-6,9 not applied
Tello et al. [57] 2022 ARIMA and SVR 3,34-517 14,10-20,57
Zhang et al. [41] 2022 SVR, RF and KNN 8,81-9,63 26,84-30,23

Current study 7-day test set ED ARMA GLMNET and SVYM-RBF 548-5,52 11,44-11,69
ED JOON SVM-RBF and LightGBM 4,61-4.73 15,95-16,22
EDRG RF and LightGBM 6,55-6,81 11,93-12,87
ED RPH XGBoost and SVM-RBF 5,90-6,21 14,89-15,45
ED SCG XGBoost and NNAR 5,08-5,21 11,73-11,93

8 up to 45 days ahead Marcilio et al. [42] 2013 GLM and GEE 8,7-12,8 not applied
Bergs et al. [45] 2014 ETS 2,63-4,76 not applied
Calegari et al. [46] 2016 SARIMA, SS and SMHW 11,35-12,29 not applied
Juang [19] 2017 ARIMA 8,91 not applied
Carvalho-Silva et al. [23] 2018 ARIMA 5,22-9,29 not applied
Jilani et al. [15] 2019 NN e FTS 2,01-2,81 57,30-167,89
Khaldi et al. [27] 2019 EEMD-ANN, DWT-ANN and ANN not applied 52,86-149,23
Vollmer et al. [20] 2021 GLMNET, LM and GBM 6,8-89 not applied
Pekel et al. [39] 2021 PSO-ANN, Bayesian ANN and GA-ANN 6-8,8 53.29-83.85
Tuominen et al. [54] 2022 ARIMAX, RLS-FS and RLS-SA 74-78 not applied
Susnjak et al. [78] 2023 Voting regressor 8,9-128 10,60-15,9
Gafni-Pappas et al. [50] 2023 RF and XGBoost not applied 18,94-18,96

Current study 45-day test set ED ARMA XGBoost and GLMNET 5,90-5,90 12,62-12,64
ED JOON SVM-RBF and RF 4.98-5.01 17,25-17,43
ED RG XGBoost and RF 6,23-6,28 11,42-1147
ED RPH SVM-RBF and NNAR 571-5,85 14,25-14,37
ED SCG XGBoost and RF 5,64-5,69 12,61-12,56

ANN Artificial Neural Networks, ARIMA Autoregressive Integrated Moving Average, ARIMAX Autoregressive Integrated Moving Average with Explanatory Variable,
ARIMA-LR ARIMA-Linear regression, CNN Convolutional Neural Networks, DBN Deep Belief Network, EEMD-ANN Artificial Neural Networks with Ensemble Empirical
Mode decomposition, XGBoost Extreme Gradient Boosting, RLS-FS Floating Search with Recursive Least Squares, FTS Fuzzy Time Series, CNN-GRU Gated recurrent
unit with convolutional neural networks, GA-ANN Genetic Algorithm-based ANN, GLMNET Generalized Linear Models via Coordinate Descent, GLM generalized
linear model, GBM Gradient Boosting Machines, HW Holt-Winters, KNN k-nearest neighbours, LM Linear model, LSTM Long Short-Term Memory, MLR Multiple Linear
Regression, MSARIMA Multivariate Autoregressive Integrated Moving Average, NN Neural Network, NNAR Neural Network Autoregression, PSO-ANN Particle Swarm
Optimization algorithm-based ANN, RF Random Forest, RNN Recurrent Neural Networks, RBM Restricted Boltzmann machines, SARIMA Seasonal Autoregressive
Integrated Moving Average, SARIMAX Seasonal Autoregressive Integrated Moving Average with external variables, SS Simple Seasonal Exponential Smoothing,
RLS-SA Simulated Annealing with Recursive Least Squares, SVM-RBF Support Vector Machine with Radial Basis Function, SVR Support Vector Regression, VAR Vector

Autoregression Model
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the week, with results consistent with other similar stud-
ies, e.g., [41]-[43] for temperatures, and [3, 6, 7, 47] for
days of the week.

Notably, both NNAR and XGBoost achieved bet-
ter forecasting results. In addition to the use of feature-
engineered variables, there are reasons related to model
structure that justify their better performance. NNAR
is effective at capturing nonlinear and complex pat-
terns in time series, as it combines the flexibility of neu-
ral networks with an autoregressive approach, allowing
the model to learn from past dependencies in the data
to make more accurate predictions [63]. This ability to
model nonlinear complexities is particularly advanta-
geous in-patient arrival forecasting, where the volume of
visits can be influenced by a combination of seasonal fac-
tors, such as weather variations, holidays, and epidemic
events. Nonlinearities, if present, are also more easily
captured by the large number of feature-engineered vari-
ables derived from arrival timestamps.

On the other hand, the XGBoost algorithm, based on
decision-trees, offers several advantages that are par-
ticularly valuable in patient arrival forecasting, namely:
(i) ability to avoid overfitting, which is essential in emer-
gency demand forecasting where data variability can be
significant, (ii) capacity to generalize results with large
volumes of data, and (iii) iterative learning mechanism
that corrects errors from previous decision trees by
adjusting the residuals. These characteristics allows the
model to efficiently learn from the data, adapting to dif-
ferent patient arrival patterns, such as seasonal variations
or demand peaks.

Managerial implications and practical implementation

The creation of calendar features through FE has proven
highly effective in enhancing the predictive performance
of ML models, particularly in forecasting patient arriv-
als across multiple EDs in three countries. This approach
demonstrates that timestamps associated with time series
data capture fundamental seasonal patterns and trends
essential for accurate forecasting. Temporal components
such as the day of the month and week of the year enable
models to recognize recurring behaviors and underlying
dynamics of patient flow, which are key for predicting
daily patient volumes.

Incorporating FE variables into ML models allows
for better identification of these recurring patterns,
thereby improving the accuracy of predictions. Such
enhanced performance has significant practical impli-
cations for ED management. Accurate forecasts enable
better staffing decisions, ensuring adequate healthcare
provider availability, especially during peak periods
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such as weekends and Mondays. Additionally, under-
standing temporal patterns aids in optimizing sched-
uling strategies, reducing wait times, and improving
patient care. Furthermore, precise predictions facili-
tate efficient management of limited resources, such
as physical space and medical supplies, by allowing for
proactive decision-making and reducing pressure on
the healthcare system.

Consider two hypothetical ED scenarios to illustrate
the impact of accurate predictions. The first scenario
involves staff allocation. With accurate forecasts predict-
ing increased patient volume during weekends or holi-
days, emergency managers can adjust work schedules or
hire additional staff, thereby avoiding overload and main-
taining care quality.

The second scenario focuses on bed and equipment
management. If forecasts indicate a significant increase
in patient arrivals, hospitals can proactively manage
resources by adjusting internal logistics and prioritiz-
ing discharges or transfers. Inaccurate predictions could
lead to bed shortages, resulting in patients being placed
on stretchers in hallways and increasing health risks.
Advance knowledge of demand patterns also enables
hospitals to redirect excess patients to other facilities
within public health networks.

Hospitals can implement automated systems that lever-
age FE data directly in the decision-making process. For
example, integrating predictions from ML models into
hospital management software could trigger automatic
alerts recommending staff scheduling adjustments based
on predicted arrivals. Such systems are particularly valu-
able in urban centers with variable demand. Additionally,
accurate predictions can help reduce operational costs
by optimizing the management of supplies and medica-
tions, such as anticipating and adjusting stock levels for
seasonal demands.

The main cost-—benefit aspects of implementing ML
models for predicting patient arrivals in EDs are: (i)
reduction in operational costs from more accurate pre-
dictions that enable staffing adjustments, such as lower-
ing overtime and temporary hire costs; (ii) reduction in
emergency purchasing costs through better demand pre-
dictions that optimize stock management, avoiding waste
or shortages during critical times; (iii) improved man-
agement of bed occupancy and equipment use, prevent-
ing overcrowding and improving patient flow, thereby
reducing emergency care costs; and (iv) integration of
ML models into ED management systems, enabling
automated alerts for real-time decisions, optimizing
responses to demand fluctuations and alleviating over-
load during peak periods. These benefits are particularly
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relevant in resource-limited settings, where accurate
predictions help prevent unnecessary expenses, improve
resource allocation, and support the healthcare system’s
sustainability while ensuring quality care for all patients.

Conclusion

In this paper, we compared the performance of six ML
algorithms across two forecast horizons for predicting
daily arrivals in EDs. We used both traditional meteor-
ological and calendar predictors alongside feature-engi-
neered variables. The algorithms were optimized using
hyperparameter tuning via fivefold cross-validated
grid-search. Variable selection was conducted using
a random-forest method, identifying key predictors
such as index.num, yday, week, qday, minimum, mean,
and maximum temperatures, and the day of the week.
Performance evaluation employed four error metrics
within a fivefold cross-validation framework.

Our results surpass many existing studies in the lit-
erature, demonstrating superior predictive accuracy
crucial for effective resource management in EDs,
reducing patient waiting times and lengths of stay.
Notably, XGBoost consistently outperformed other
models across all forecast horizons, with FE signifi-
cantly enhancing the predictive capabilities of all ML
algorithms.

Unlike typical studies on ED patient arrival predic-
tion, our findings are robust and can be readily applied
and replicated in other ED settings. We have provided
comprehensive R code for all methodological steps and
used publicly accessible datasets, facilitating easy adap-
tation and extension with additional predictor variables
as needed.

This study presents some limitations. The first is asso-
ciated with the databases analyzed. The advantages of
including additional informative predictor variables,
such as wind speed, air quality, precipitation, holidays,
and special or epidemic events, in improving predic-
tion quality were not explored. Such variables could be
valuable for enhancing ML performance and represent
a promising direction for future research. Future stud-
ies could also apply FE to other variables, such as mete-
orological data, to assess potential performance gains.
Other limitations include the use of only one variable
selection method, based on the RF technique via per-
mutation importance, which may introduce bias into
the results. By relying on a single selection method,
such as RF, the study may prioritize variables based on
a specific criterion, potentially overlooking other rele-
vant variables that could be identified using alternative
selection methods. Additionally, the adoption of com-
putationally intensive ML algorithms, such as SVM-
RBF and NNAR, with hyperparameter tuning, may
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pose challenges in hospital settings with limited com-
putational resources. These algorithms require high
processing power, which may hinder their implementa-
tion in hospitals with constrained infrastructure.

Reproducibility

The R code for replicating all the results obtained in
this study is available in the GitHub repository (https://
github.com/forecastingEDs/Feature-engineering-and-
machine-learning-algorithms).

Abbreviations
ANN Artificial neural networks

ARIMA Autoregressive Integrated Moving Average

ARIMA-ANN  Autoregressive Integrated Moving Average with Artificial Neu-
ral Network

ARIMA-LR Autoregressive Integrated Moving Average with Linear Regression

ARIMA-SVR Autoregressive Integrated Moving Average with Support Vector
Regression

ARIMAX Autoregressive Integrated Moving Average with Explanatory
Variable

BiLSTM Bidirectional Long Short-Term Memory

CNN Convolutional Neural Networks

DLSTM Deep Stacked Architecture with Long Short-Term Memory

DNNs Deep Neural Networks

ED Emergency department

EFB Exclusive Feature Bundling

ES Exponential Smoothing

ETS Error-trend-seasonal

FE Feature engineering

GB Gradient Boosting

GLMNET Lasso and Elastic-Net Generalized Linear Model

GOSS Gradient-based One-Side Sampling

HW Holt-Winters

KNN K-nearest neighbours

LightGBM Light Gradient Boosting Machine

LR Logistic regression

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MASE Mean Absolute Scaled Error

ML Machine learning

MLP Multilayer Perceptron Neural Network

NNAR Neural Network Autoregression

PSO-ANN Particle Swarm Optimization algorithm-based ANN

RF Random forest

RMSE Root Mean Square Error

RNN Recurrent Neural Networks

RNN-1L Recurrent Neural Network with One Layer

SARIMA Seasonal Autoregressive Integrated Moving Average

SARIMAX Seasonal Autoregressive Integrated Moving Average with
external variables

Snaive Seasonal Naive

SMAPE Symmetric Mean Absolute Percentage Error

SVM-RBF Support Vector Machine with Radial Basis Function

SVR Support Vector Regression
TSCV Time-series split cross-validation
XGBoost eXtreme Gradient Boosting

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/512911-024-02788-6.

[ Supplementary Material 1. J



https://github.com/forecastingEDs/Feature-engineering-and-machine-learning-algorithms
https://github.com/forecastingEDs/Feature-engineering-and-machine-learning-algorithms
https://github.com/forecastingEDs/Feature-engineering-and-machine-learning-algorithms
https://doi.org/10.1186/s12911-024-02788-6
https://doi.org/10.1186/s12911-024-02788-6

Porto and Fogliatto BMC Medical Informatics and Decision Making

Acknowledgements
We sincerely thank the editor and reviewers for their time and effort in review-
ing this article.

Authors’ contributions

BP and FF collaboratively devised and structured the research plan. BP
developed the computational programming, data analysis, and composed the
manuscript. BP and FF oversaw the study’s design and execution, evaluat-

ing data analysis procedures. FF extended methodological support/advice,
writing, and critically reviewed the manuscript. All authors contributed to data
interpretation, provided feedback on earlier drafts, and approved the final
version of the manuscript.

Funding
Not applicable.

Data availability

Dataset is publicly available and was acquired from the Harvard Dataverse
database [60].The R codes for all methodological steps developed are pro-
vided at the following GitHub repository: (https://github.com/forecastingEDs/
Feature-engineering-and-machine-learning-algorithms).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 23 January 2024 Accepted: 26 November 2024
Published online: 18 December 2024

References

1. Choudhury A, Urena E. Forecasting hourly emergency department
arrival using time series analysis. Br J Heal Care Manag. 2020;26(1):34-
43. https://doi.org/10.12968/bjhc.2019.0067.

2. L. He, S. Chalil Madathil, A. Oberoi, G. Servis, and M. T. Khasawneh,

"A systematic review of research design and modeling techniques
in inpatient bed management,” Comput Ind Eng. 2019;127(October
2018):451-466.

3. WhittW, Zhang X. Forecasting arrivals and occupancy levels in an emer-
gency department. Oper Res Heal Care. 2019;21:1-18. https://doi.org/10.
1016/j.0rhc.2019.01.002.

4. Yucesan M, Gul M, Celik E. A multi-method patient arrival forecasting
outline for hospital emergency departments. Int J Healthc Manag.
2018;13(51):283-95. https://doi.org/10.1080/20479700.2018.1531608.

5. Rocha CN, Rodrigues F. Forecasting emergency department admis-
sions. J Intell Inf Syst. 2021;56(3):509-28. https://doi.org/10.1007/
510844-021-00638-9.

6. Erkamp NS, van Dalen DH, de Vries E. Predicting emergency department
visits in a large teaching hospital. Int J Emerg Med. 2021;14(1):1-12.
https://doi.org/10.1186/512245-021-00357-6.

7. Sudarshan VK, Brabrand M, Range TM, Wiil UK. Performance evaluation of
Emergency Department patient arrivals forecasting models by including
meteorological and calendar information: A comparative study. Comput
Biol Med. 2021;135(January):104541. https://doi.org/10.1016/j.compb
iomed.2021.104541.

8. American College of Emergency Physicians (ACEP). Crowding. Policy
statement. Ann Emerg Med. 2013;61(6):726-7. https://doi.org/10.1016/j.
annemergmed.2013.03.037.

9.  Ortiz-Barrios MA, Alfaro-Saiz JJ. Methodological approaches to support
process improvement in emergency departments: A systematic review.

(2024) 24:377

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Page 31 of 33

Int J Environ Res Public Health. 2020;17(8):2-41. https://doi.org/10.3390/
jlerph 17082664

. Rasouli HR, Aliakbar Esfahani A, and Abbasi Farajzadeh M, “Challenges,

consequences, and lessons for way-outs to emergencies at hospitals: a
systematic review study.BMC Emerg Med. 2019;19(1):62. https://doi.org/
10.1186/512873-019-0275-9.

. Armony M, Israelit S, Mandelbaum A, Marmor YN, Tseytlin Y, Yom-Tov GB.

On patient flow in hospitals: A data-based queueing-science perspective.
Stoch Syst. 2015;5(1):146-94. https://doi.org/10.1214/14-ssy153.

. Morley C, Unwin M, Peterson GM, Stankovich J, Kinsman L. Emergency

department crowding: A systematic review of causes, consequences and
solutions. PLoS ONE. Aug.2018;13(8): €0203316. https://doi.org/10.1371/
journal.pone.0203316.

. Gul M, Celik E. An exhaustive review and analysis on applications of

statistical forecasting in hospital emergency departments. Heal Syst.
2018;00(00):1-22. https://doi.org/10.1080/20476965.2018.1547348.

. Moukarzel A, et al. Burnout syndrome among emergency department

staff: Prevalence and associated factors. Biomed Res Int. 2019;2019:2-10.
https://doi.org/10.1155/2019/6462472.

. Jilani T, Housley G, Figueredo G, Tang PS, Hatton J, Shaw D. Short and

Long term predictions of Hospital emergency department attendances.
Int J Med Inform. 2019;129(May):167-74. https://doi.org/10.1016/j.ijmed
inf.2019.05.011.

. Harrou F, Dairi A, Kadri F, Sun Y. Forecasting emergency department

overcrowding: A deep learning framework. Chaos, Solitons Fractals.
Oct.2020;139: 110247. https://doi.org/10.1016/J.CHAOS.2020.110247.

. Chen C-F, Ho WH, Chou HY, Yang SM, Te Chen |, Shi H-Y. Long-term

prediction of emergency department revenue and visitor volume using
autoregressive integrated moving average model. Comput Math Meth-
ods Med. 2011;2011:2-7. https://doi.org/10.1155/2011/395690.

. Xu Q,Tsui KL, Jiang W, Guo H. A Hybrid Approach for Forecasting Patient

Visits in Emergency Department. Qual Reliab Eng Int. 2016;32(8):2751-9.
https://doi.org/10.1002/qre.2095.

. Juang WC, Huang SJ, Huang FD, Cheng PW, Wann SR. Application of time

series analysis in modelling and forecasting emergency department
visits in a medical centre in Southern Taiwan. BMJ Open. 2017;7(11):1-7.
https://doi.org/10.1136/bmjopen-2017-018628.

Vollmer MAC, et al. A unified machine learning approach to time series
forecasting applied to demand at emergency departments. BMC Emerg
Med. 2021;21(1):1-14. https://doi.org/10.1186/512873-020-00395-y.
Yousefi M, Yousefi M, Fathi M, Fogliatto FS. Patient visit forecasting in an
emergency department using a deep neural network approach. Kyber-
netes. 2020;49(9):2335-48. https://doi.org/10.1108/K-10-2018-0520.
Boyle J, et al. Predicting emergency department admissions. Emerg Med
1.2012;29(5):358-65. https://doi.org/10.1136/emj.2010.103531.
Carvalho-Silva M, Monteiro MTT, de Sé-Soares F, Doria-Ndbrega S. Assess-
ment of forecasting models for patients arrival at Emergency Depart-
ment. Oper Res Heal Care. 2018;18:112-8. https://doi.org/10.1016/j.orhc.
2017.05.001.

Harrou F, Dairi A, Kadri F, Sun Y. Effective forecasting of key features in
hospital emergency department: Hybrid deep learning-driven methods.
Mach Learn with Appl. Mar.2022;7: 100200. https://doi.org/10.1016/].
mlwa.2021.100200.

Lucini FR, et al. Text mining approach to predict hospital admissions
using early medical records from the emergency department. Int J Med
Inform. 2017;100:1-8. https://doi.org/10.1016/}.ijmedinf.2017.01.001.
Lucini FR, et al. Man vs. machine: Predicting hospital bed demand from
an emergency department. PLoS One. 2020;15(8):1-11. https://doi.org/
10.1371/journal.pone.0237937.

Khaldi R, EI Afia A, Chiheb R. Forecasting of weekly patient visits to emer-
gency department: Real case study. Procedia Comput Sci. 2019;148:532—
41. https://doi.org/10.1016/j.procs.2019.01.026.

Isken MW, Aydas OT, Roumani YF. Queueing inspired feature engineering
to improve and simplify patient flow simulation metamodels. J Simul.
Feb.2023;00(00):1-18. https://doi.org/10.1080/17477778.2023.2181716.
Bojer CS, Meldgaard JP. Kaggle forecasting competitions: An overlooked
learning opportunity. Int J Forecast. Apr.2021;37(2):587-603. https://doi.
0rg/10.1016/j.ijforecast.2020.07.007.

Verdonck T, Baesens B, Oskarsdéttir M, vanden Broucke S. Special issue on
feature engineering editorial. Mach Learn. 2024;113(7):3917-28. https://
doi.org/10.1007/510994-021-06042-2.


https://doi.org/10.12968/bjhc.2019.0067
https://doi.org/10.1016/j.orhc.2019.01.002
https://doi.org/10.1016/j.orhc.2019.01.002
https://doi.org/10.1080/20479700.2018.1531608
https://doi.org/10.1007/s10844-021-00638-9
https://doi.org/10.1007/s10844-021-00638-9
https://doi.org/10.1186/s12245-021-00357-6
https://doi.org/10.1016/j.compbiomed.2021.104541
https://doi.org/10.1016/j.compbiomed.2021.104541
https://doi.org/10.1016/j.annemergmed.2013.03.037
https://doi.org/10.1016/j.annemergmed.2013.03.037
https://doi.org/10.3390/ijerph17082664
https://doi.org/10.3390/ijerph17082664
https://doi.org/10.1186/s12873-019-0275-9
https://doi.org/10.1186/s12873-019-0275-9
https://doi.org/10.1214/14-ssy153
https://doi.org/10.1371/journal.pone.0203316
https://doi.org/10.1371/journal.pone.0203316
https://doi.org/10.1080/20476965.2018.1547348
https://doi.org/10.1155/2019/6462472
https://doi.org/10.1016/j.ijmedinf.2019.05.011
https://doi.org/10.1016/j.ijmedinf.2019.05.011
https://doi.org/10.1016/J.CHAOS.2020.110247
https://doi.org/10.1155/2011/395690
https://doi.org/10.1002/qre.2095
https://doi.org/10.1136/bmjopen-2017-018628
https://doi.org/10.1186/s12873-020-00395-y
https://doi.org/10.1108/K-10-2018-0520
https://doi.org/10.1136/emj.2010.103531
https://doi.org/10.1016/j.orhc.2017.05.001
https://doi.org/10.1016/j.orhc.2017.05.001
https://doi.org/10.1016/j.mlwa.2021.100200
https://doi.org/10.1016/j.mlwa.2021.100200
https://doi.org/10.1016/j.ijmedinf.2017.01.001
https://doi.org/10.1371/journal.pone.0237937
https://doi.org/10.1371/journal.pone.0237937
https://doi.org/10.1016/j.procs.2019.01.026
https://doi.org/10.1080/17477778.2023.2181716
https://doi.org/10.1016/j.ijforecast.2020.07.007
https://doi.org/10.1016/j.ijforecast.2020.07.007
https://doi.org/10.1007/s10994-021-06042-2
https://doi.org/10.1007/s10994-021-06042-2

Porto and Fogliatto BMC Medical Informatics and Decision Making (2024) 24:377 Page 32 of 33

31. Kuhn M, Johnson K. Feature Engineering and Selection: A Practical 52. Reboredo JC, Barba-Queiruga JR, Ojea-Ferreiro J, Reyes-Santias F. Fore-
Approach for Predictive Models. Taylor & Francis Group; 2019. [Online]. casting emergency department arrivals using INGARCH models. Health
Available: https://bookdown.org/max/FES/. Econ Rev. Oct.2023;13(1):51. https://doi.org/10.1186/513561-023-00456-5.

32. Butcher B, Smith BJ. Feature Engineering and Selection: A Practical 53. Rostami-Tabar B, Browell J, Svetunkov I. Probabilistic forecasting of hourly
Approach for Predictive Models. Am Stat. Jul.2020;74(3):308-9. https:// emergency department arrivals. Heal Syst. May2023;00(00):1-17. https://
doi.org/10.1080/00031305.2020.1790217. doi.org/10.1080/20476965.2023.2200526.

33. Petropoulos F, et al. Forecasting: theory and practice. Int J Forecast. 54. Tuominen J, et al. Forecasting daily emergency department arrivals
Jul.2022;38(3):705-871. https://doi.org/10.1016/].ijforecast.2021.11.001. using high-dimensional multivariate data: a feature selection approach.

34, Ejohwomu OA, et al. Modelling and Forecasting Temporal PM2.5 BMC Med Inform Decis Mak. 2022;22(1):1-12. https://doi.org/10.1186/
Concentration Using Ensemble Machine Learning Methods. Buildings. $12911-022-01878-7.
2022;12(1):46. https://doi.org/10.3390/buildings12010046. 55. DeHond A, et al. Machine learning for developing a prediction model of

35. Zhang, Luo L, Yang J, Liu D, Kong R, Feng Y. A hybrid ARIMA-SVR hospital admission of emergency department patients: Hype or hope?
approach for forecasting emergency patient flow. J Ambient Intell Int J Med Inform. Aug.2021;152: 104496. https://doi.org/10.1016/J.1JMED
Humaniz Comput. 2019;10(8):3315-23. https://doi.org/10.1007/ INF.2021.104496.
$12652-018-1059-x. 56. Hong WS, Haimovich AD, Taylor RA. Predicting hospital admission at

36. Silva E, Pereira MF, Vieira JT, Ferreira-Coimbra J, Henriques M, Rodrigues emergency department triage using machine learning. PLoS ONE.

NF. Predicting hospital emergency department visits accurately: A sys- Jul.2018;13(7): €0201016. https://doi.org/10.1371/journal.pone.0201016.
tematic review. Int J Health Plann Manage. Jul.2023;38(4):904-17. https:// 57. Tello M, et al. Machine learning based forecast for the prediction of inpa-
doi.org/10.1002/hpm.3629. tient bed demand. BMC Med Inform Decis Mak. 2022;22(1):1-13. https://

37. Wargon M, Guidet B, Hoang TD, Hejblum G. A systematic review of mod- doi.org/10.1186/512911-022-01787-9.
els for forecasting the number of emergency department visits. Emerg 58. Kuhn M, Johnson K. Applied Predictive Modeling. New York: Springer
Med J. 2009;26:395-9. https://doi.org/10.1136/em;j.2008.062380. New York; 2013. https://doi.org/10.1007/978-1-4614-6849-3.

38. Jiang S, Liu Q, Ding B. A systematic review of the modelling of patient 59. Makridakis S. Accuracy concerns measures: theoretical and practical
arrivals in emergency departments. Quant Imaging Med Surg. concerns. Int J Forecast. 1993;9(4):527-9. https://doi.org/10.1016/0169-
2023;13(3):1957-19. https://doi.org/10.21037/qims-22-268. 2070(93)90079-3.

39. Pekel E, Gul M, Celik E, Yousefi S. Metaheuristic Approaches Integrated 60. Van der Linden N.“ED visits and temperature,'Harvard Dataverse, V1.
with ANN in Forecasting Daily Emergency Department Visits. Math Probl Emergency department visits and temperature for a selection of hos-
Eng. 2021;2021:1-14. https://doi.org/10.1155/2021/9990906. pitals in the Netherlands, USA, Botswana, Pakistan, and Australia. 2019.

40. Petsis S, Karamanou A, Kalampokis E, Tarabanis K. Forecasting and https://doi.org/10.7910/DVN/QHPZOX.
explaining emergency department visits in a public hospital. J Intell Inf 61. Cheng Q, Tanik N, Scott C, Liu Y, Platts-mills TF, Ziya S. Forecasting emer-
Syst. 2022;59(2):479-500. https://doi.org/10.1007/510844-022-00716-6. gency department hourly occupancy using time series analysis. Am J

41. ZhangY, Zhang J, Tao M, Shu J, Zhu D. Forecasting patient arrivals at Emerg Med. 2021,48:177-82. https://doi.org/10.1016/j.ajem.2021.04.075.
emergency department using calendar and meteorological infor- 62. Makridakis S, Assimakopoulos V, Spiliotis E. Objectivity, reproducibility and
mation. Appl Intell. 2022;2021:11232-43. https://doi.org/10.1007/ replicability in forecasting research. Int J Forecast. Oct.2018;34(4).835-8.
510489-021-03085-9. https://doi.org/10.1016/j.ijforecast.2018.05.001.

42. Marcilio |, Hajat S, Gouveia N. Forecasting daily emergency department 63. Hyndman RJ, Athanasopoulos G. Forecasting: Principles and Practice.
visits using calendar variables and ambient temperature readings. Acad 3rd ed. Melbourne: OTexts; 2021. [Online]. Available: https://otexts.com/
Emerg Med. 2013,20(8):769-77. https://doi.org/10.1111/acem.12182. fpp3/.

43. Menke NB, Caputo N, Fraser R, Haber J, Shields C, and Menke MN, “A retro- 64. Kuhn M, Johnson K. 3.4 Resampling. In: Feature Engineering and Selec-
spective analysis of the utility of an artificial neural network to predict ED tion: A Practical Approach for Predictive Models. Taylor & Francis Group;
volume! Am J Emerg Med. 2014;32(6):614-617. https://doi.org/10.1016/]. 2019. [Online]. Available: https://bookdown.org/max/FES/resampling.
ajem.2014.03.011. html#rolling-origin-forecasting.

44, Kadri F, Harrou F, Chaabane S, Tahon C. Time series modelling and 65. Dancho M, Vaughan D. timetk: A Tool Kit for Working with Time Series. R
forecasting of emergency department overcrowding. J Med Syst. Package; 2023. [Online]. Available: https://cran.r-project.org/package=
2014;38(107):2-20. https://doi.org/10.1007/510916-014-0107-0. timetk.

45. Bergs J, Heerinckx P, Verelst S. Knowing what to expect, forecasting 66. M. Dancho,"Calendar Features, Comprehensive R Archive Network CRAN,
monthly emergency department visits: A time-series analysis. Int Emerg 2024. https://business-science.github.io/timetk/articles/TKO1_Working_
Nurs. Apr.2014;22(2):112-5. https://doi.org/10.1016/.ien}.2013.08.001. With_Time_Series_Index.html#time-series-signature (accessed 12 Dec

46. CalegariR, Fogliatto FS, Lucini FR, Neyeloff J, Kuchenbecker RS, Schaan 2022).

BD. Forecasting daily volume and acuity of patients in the emergency 67. M. Dancho,"Working with the Time Series Index Using Timetk,"2017.
department. Comput Math Methods Med. 2016;2016:2-8. https://doi. http://cran.nexr.com/web/packages/timetk/vignettes/TKO1_Working_
org/10.1155/2016/3863268. With_Time_Series_Index.ntml (accessed 12 Dec 2022).

47. Hertzum M. Forecasting Hourly Patient Visits in the Emergency Depart- 68. Zhu X, Hu J, Xiao T, Huang S, Wen'Y, Shang D. An interpretable stacking
ment to Counteract Crowding. Ergon Open J. 2017;10(1):1-13. https:// ensemble learning framework based on multi-dimensional data for real-
doi.org/10.2174/1875934301710010001. time prediction of drug concentration: The example of olanzapine. Front

48. Asheim A, Bache-Wiig Bjernsen LP, Naess-Pleym LE, Uleberg O, Dale J, Pharmacol. 2022;13(September):1-20. https://doi.org/10.3389/fphar.2022.
Nilsen SM. Real-time forecasting of emergency department arrivals using 975855.
prehospital data. BMC Emerg Med. 2019;19(1):42. https://doi.org/10.1186/ 69. LiJ, etal. Feature Selection: A Data Perspective. ACM Comput Surv.
$12873-019-0256-z. 2016;50(6). https://doi.org/10.1145/3136625.

49. X.Zhao, J.W. Lai, A. F.Wah Ho, N. Liu, M. E. Hock Ong, and K. H. Cheong, 70. Greenwell BM, Boehmke BC. Variable Importance Plots—An Introduc-
“Predicting hospital emergency department visits with deep learn- tion to the vip Package. R J. 2020;12(1):343. https://doi.org/10.32614/
ing approaches, Biocybern. Biomed Eng. 2022;5537(August):127-133. RJ-2020-013.
https://doi.org/10.1016/j.bbe.2022.07.008. 71. Pawley S, Kuhn M, Jacques-Hamilton R. colino: Recipes Steps for Super-

50. Gafni-Pappas G, Khan M. Predicting daily emergency department visits vised Filter-Based Feature Selection. R Package; 2023. [Online]. Available:
using machine learning could increase accuracy. Am J Emerg Med. https:/stevenpawley.github.io/colino.

Mar.2023;65:5-11. https://doi.org/10.1016/j.ajem.2022.12.019. 72. Bommert A, Sun X, Bischl B, Rahnenfuhrer J, Lang M. Benchmark for filter

51. HuY, etal. Use of Real-Time Information to Predict Future Arrivals in the methods for feature selection in high-dimensional classification data.
Emergency Department. Ann Emerg Med. 2023;81(6):728-37. https://doi. Comput Stat Data Anal. 2020;143:106839. https://doi.org/10.1016/j.csda.
0rg/10.1016/j.annemergmed.2022.11.005. 2019.106839.

73. Gémez-Ramirez J, Avila-Villanueva M, Ferndndez-Blazquez MA. Selecting

the most important self-assessed features for predicting conversion


https://bookdown.org/max/FES/
https://doi.org/10.1080/00031305.2020.1790217
https://doi.org/10.1080/00031305.2020.1790217
https://doi.org/10.1016/j.ijforecast.2021.11.001
https://doi.org/10.3390/buildings12010046
https://doi.org/10.1007/s12652-018-1059-x
https://doi.org/10.1007/s12652-018-1059-x
https://doi.org/10.1002/hpm.3629
https://doi.org/10.1002/hpm.3629
https://doi.org/10.1136/emj.2008.062380
https://doi.org/10.21037/qims-22-268
https://doi.org/10.1155/2021/9990906
https://doi.org/10.1007/s10844-022-00716-6
https://doi.org/10.1007/s10489-021-03085-9
https://doi.org/10.1007/s10489-021-03085-9
https://doi.org/10.1111/acem.12182
https://doi.org/10.1016/j.ajem.2014.03.011
https://doi.org/10.1016/j.ajem.2014.03.011
https://doi.org/10.1007/s10916-014-0107-0
https://doi.org/10.1016/j.ienj.2013.08.001
https://doi.org/10.1155/2016/3863268
https://doi.org/10.1155/2016/3863268
https://doi.org/10.2174/1875934301710010001
https://doi.org/10.2174/1875934301710010001
https://doi.org/10.1186/s12873-019-0256-z
https://doi.org/10.1186/s12873-019-0256-z
https://doi.org/10.1016/j.bbe.2022.07.008
https://doi.org/10.1016/j.ajem.2022.12.019
https://doi.org/10.1016/j.annemergmed.2022.11.005
https://doi.org/10.1016/j.annemergmed.2022.11.005
https://doi.org/10.1186/s13561-023-00456-5
https://doi.org/10.1080/20476965.2023.2200526
https://doi.org/10.1080/20476965.2023.2200526
https://doi.org/10.1186/s12911-022-01878-7
https://doi.org/10.1186/s12911-022-01878-7
https://doi.org/10.1016/J.IJMEDINF.2021.104496
https://doi.org/10.1016/J.IJMEDINF.2021.104496
https://doi.org/10.1371/journal.pone.0201016
https://doi.org/10.1186/s12911-022-01787-9
https://doi.org/10.1186/s12911-022-01787-9
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1016/0169-2070(93)90079-3
https://doi.org/10.1016/0169-2070(93)90079-3
https://doi.org/10.7910/DVN/QHPZOX
https://doi.org/10.1016/j.ajem.2021.04.075
https://doi.org/10.1016/j.ijforecast.2018.05.001
https://otexts.com/fpp3/
https://otexts.com/fpp3/
https://bookdown.org/max/FES/resampling.html#rolling-origin-forecasting
https://bookdown.org/max/FES/resampling.html#rolling-origin-forecasting
https://cran.r-project.org/package=timetk
https://cran.r-project.org/package=timetk
https://business-science.github.io/timetk/articles/TK01_Working_With_Time_Series_Index.html#time-series-signature
https://business-science.github.io/timetk/articles/TK01_Working_With_Time_Series_Index.html#time-series-signature
http://cran.nexr.com/web/packages/timetk/vignettes/TK01_Working_With_Time_Series_Index.html
http://cran.nexr.com/web/packages/timetk/vignettes/TK01_Working_With_Time_Series_Index.html
https://doi.org/10.3389/fphar.2022.975855
https://doi.org/10.3389/fphar.2022.975855
https://doi.org/10.1145/3136625
https://doi.org/10.32614/RJ-2020-013
https://doi.org/10.32614/RJ-2020-013
https://stevenpawley.github.io/colino
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.1016/j.csda.2019.106839

Porto and Fogliatto BMC Medical Informatics and Decision Making (2024) 24:377

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

to mild cognitive impairment with random forest and permutation-
based methods. Sci Rep. Nov.2020;10(1):20630. https://doi.org/10.1038/
541598-020-77296-4.

Makungwe M, Chabala LM, Chishala BH, Lark RM. Performance of linear
mixed models and random forests for spatial prediction of soil pH. Geo-
derma. 2021;397(April):115079. https://doi.org/10.1016/j.geoderma.2021.
115079.

Kuhn M, Silge J. Tidy Modeling with R: A Framework for Modeling in the
Tidyverse. 1st ed. O'Reilly Media; 2022. [Online]. Available: https://www.
tmwr.org/grid-search.html.

M. Kuhn, “tune: Tidy Tuning Tools 2023. [Online]. Available: https://cran.r-
project.org/package=tune

M. Kuhn and H. Wickham, “Tidymodels: a collection of packages for mod-
eling and machine learning using tidyverse principles.” 2020. [Online].
Available: https://www.tidymodels.org

T. Susnjak and P. Maddigan, “Forecasting patient demand at urgent care
clinics using explainable machine learning,’ CAAI Trans. Intell. Technol.,,
pp. 1-22, Jul. 2023, https://doi.org/10.1049/cit2.12258.

T.Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System,’

in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA: Association
for Computing Machinery, Aug. 2016, pp. 785-794. https://doi.org/10.
1145/2939672.2939785.

G. Ke et al, “LightGBM: A highly efficient gradient boosting decision tree,
in Advances in Neural Information Processing Systems, Long Beach, CA,
USA, 2017, pp. 3147-3155.

Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Lin-
ear Models via Coordinate Descent. J Stat Softw. 2010;33(1):1-22. https://
doi.org/10.18637/js5.v033.i01.

Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy.
Int J Forecast. 2006;22:679-88. https://doi.org/10.1016/j.ijforecast.2006.03.
001.

Murtas R, Tunesi S, Andreano A, Russo AG. Time-series cohort study to
forecast emergency department visits in the city of Milan and predict
high demand: a 2-day warning system. BMJ Open. 2022;12(4): €056017.
https://doi.org/10.1136/bmjopen-2021-056017.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Page 33 of 33


https://doi.org/10.1038/s41598-020-77296-4
https://doi.org/10.1038/s41598-020-77296-4
https://doi.org/10.1016/j.geoderma.2021.115079
https://doi.org/10.1016/j.geoderma.2021.115079
https://www.tmwr.org/grid-search.html
https://www.tmwr.org/grid-search.html
https://cran.r-project.org/package=tune
https://cran.r-project.org/package=tune
https://www.tidymodels.org
https://doi.org/10.1049/cit2.12258
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1136/bmjopen-2021-056017

	Enhanced forecasting of emergency department patient arrivals using feature engineering approach and machine learning
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Background
	Materials and methods
	Overview of the datasets
	Proposed method
	Step 1
	Step 2
	Step 3
	Step 4

	Overview of selected machine learning algorithms and performance metrics

	Results
	Exploratory data analysis
	Forecasting performance
	Feature importance

	Discussion
	Managerial implications and practical implementation

	Conclusion
	Reproducibility

	Acknowledgements
	References


