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Abstract 

Background Emergency department (ED) overcrowding is an important problem in many countries. Accurate pre-
dictions of ED patient arrivals can help management to better allocate staff and medical resources. In this study, we 
investigate the use of calendar and meteorological predictors, as well as feature-engineered variables, to predict daily 
patient arrivals using datasets from eleven different EDs across three countries.

Methods Six machine learning (ML) algorithms were tested on forecasting horizons of 7 and 45 days. Three 
of them – Light Gradient Boosting Machine (LightGBM), Support Vector Machine with Radial Basis Function (SVM-
RBF), and Neural Network Autoregression (NNAR) – were never before reported for predicting ED patient arriv-
als. Algorithms’ hyperparameters were tuned through a grid-search with cross-validation. Prediction performance 
was assessed using fivefold cross-validation and four performance metrics.

Results The eXtreme Gradient Boosting (XGBoost) was the best-performing model on both prediction horizons, 
also outperforming results reported in past studies on ED arrival prediction. XGBoost and NNAR achieved the best 
performance in nine out of the eleven analyzed datasets, with MAPE values ranging from 5.03% to 14.1%. Feature 
engineering (FE) improved the performance of the ML algorithms.

Conclusion Accuracy in predicting ED arrivals, achieved through the FE approach, is key for managing human 
and material resources, as well as reducing patient waiting times and lengths of stay.

Keywords Emergency department, Patient arrivals, Feature engineering, Machine learning algorithms, Patient visits 
forecast, Time series forecasting

Introduction
Emergency department (ED) overcrowding, a global issue 
[1–3], poses significant challenges in managing these 
environments [3–6]. It refers to an imbalance between 
the demand and supply of emergency services. This 

imbalance occurs when demand for emergency beds sur-
passes the current capacity of the ED, including human 
and material resources for patient care [7, 8]. Address-
ing the increasing incidence of ED overcrowding calls for 
interventions to minimize its impact [9, 10].

ED overcrowding impacts patient satisfaction [11–13], 
leading to emotional exhaustion among healthcare teams 
[12, 14], and extends patient stays [12]. It results from 
external factors such as population growth and the inci-
dence of epidemic events, as well as internal issues such 
as delays in patient care and inadequate ED resources [1]. 
Accurate prediction of patient arrivals helps optimize 
resource allocation and improve care quality [15, 16].
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Several studies have focused on predicting patient 
arrivals in EDs, primarily using autoregressive integrated 
moving average (ARIMA) models [17–23]. However, 
while effective for data with systematic variations, these 
models are challenged by irregular fluctuations [16, 24]. 
To overcome this limitation, researchers have turned to 
machine learning (ML) algorithms, such as artificial neu-
ral networks (ANN) [7, 15]. Recent advancements pro-
pose hybrid approaches [20, 21], combining statistical 
models with ML algorithms and text mining techniques 
[25, 26]. Hybrid approaches have demonstrated superior 
predictive performance compared to individual models 
in forecasting ED patient arrivals [18, 27].

Despite the proven effectiveness of Feature Engineer-
ing (FE) in enhancing ML model performance, existing 
studies on patient arrival prediction have yet to explore 
its potential. FE has consistently demonstrated signifi-
cant improvements in accuracy across various domains, 
including patient flow modeling in healthcare [28], fore-
casting competitions [29], and other predictive modeling 
fields [30]. By creating new features through domain 
knowledge or exploratory data analysis [31–33], FE can 
enhance model performance. As Kuhn and Johnson [31] 
note, techniques such as Principal Component Analysis, 
one-hot encoding, and other FE methods can substan-
tially improve ML algorithms. This approach has been 
successful in prediction competitions such as Kaggle, 
where extracting additional features (e.g., those derived 
from time data) has led to improved predictive accuracy 
[29, 34].

The objectives of this article are threefold: (i) to com-
pare the performance of six ML algorithms (namely, 
XGBoost—eXtreme Gradient Boosting, LightGBM—
Light Gradient Boosting Machine, RF—Random Forest, 
SVM-RBF—Support Vector Machine with Radial Basis 
Function, NNAR—Neural Network Autoregression, and 
GLMNET—Lasso and Elastic-Net Generalized Linear 
Model) and identify the most accurate ones for predict-
ing daily patient arrivals using data from eleven different 
EDs; (ii) to apply FE to create calendar-related features, 
which are included as predictors in the ML algorithms; 
and (iii) to compare prediction accuracy in datasets 
treated with FE (i.e., combining FE variables with mete-
orological and calendar predictors), and subsequently 
implement a variable selection step based on the RF 
technique for all types of EDs analyzed. Two reasons sup-
port the use of an FE approach in this study: (i) its docu-
mented ability to improve ML algorithm performance 
[30, 34], and (ii) the absence of previous applications in 
predicting ED patient arrivals. Meteorological and calen-
dar variables were chosen as predictors, given their wide 
use in the area of   predicting patient arrivals and general 
applicability across different contexts.

Our research contributes to the state-of-the-art in ED 
patient arrival prediction studies in three ways aligned 
with our objectives. First, we address a gap in research by 
applying ML algorithms—specifically LightGBM, SVM-
RBF, and NNAR—to predict daily ED arrivals, which is 
novel in the literature (Sect.  “  Background” and recent 
studies [20, 35]).

Second, we introduce FE as a means to enhance the 
performance of ML algorithms in predicting ED patient 
arrivals. While existing literature highlights the use of 
ML models and hybrid approaches, there remains a gap 
in exploring novel predictor variables for ED arrival 
forecasting. Our approach addresses this gap by identi-
fying new predictor variables that significantly improve 
the performance of ML models. The latest systematic 
review on this topic [36] identified the discovery of new 
predictor variables as an underexplored area, calling for 
future studies to investigate this further. By demonstrat-
ing that FE-generated variables, across datasets from 
different countries, are more influential than traditional 
predictors such as meteorological factors, our work not 
only improves prediction accuracy but also contrib-
utes to advancing this important aspect of ED arrival 
forecasting.

Building on the conclusions of systematic reviews 
by Wangon et al. [37] and Jiang et al. [38], which found 
that calendar variables are more influential than mete-
orological ones in predicting ED patient arrivals, we pro-
pose an FE approach that creates new variables based on 
time-series signatures (timestamps). These time-based 
variables have proven to be strong predictors across mul-
tiple datasets. In contrast to prior research that primar-
ily focused on conventional meteorological or calendar 
variables, our approach applies FE to generate additional 
variables from temporal signatures. Predictive analysis 
across datasets from different countries demonstrates 
that these feature-engineered variables outperform tradi-
tional predictors in terms of predictive power.

Our analysis of FE datasets with the XGBoost algo-
rithm yields unprecedented results in the current litera-
ture. Third, our study expands the scope by comparing 
ML algorithms using data from 11 EDs across three 
countries. Most previous studies have focused on single 
ED predictions [7, 16, 21, 39–41], which may limit sta-
tistical significance and generalizability. Boyle et al. [22] 
analyzed data from 27 EDs but did not explore ML algo-
rithms. Additionally, few studies have employed rigor-
ous comparison methods such as cross-validation for ED 
arrival prediction (e.g., [3, 7, 20]). In our study, we employ 
grid-search with cross-validation to optimize hyperpa-
rameters across all algorithms and evaluate performance 
over two distinct horizons using five-fold cross-valida-
tion. We also use a variable selection step based on RF.
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Background
The literature on patient arrival prediction in EDs has 
expanded in recent years, including a number of sys-
tematic literature review articles, e.g., [12, 13, 37, 38]. 
To avoid overlap with existing studies, specific crite-
ria were applied in the selection of articles discussed in 
this section. First, only studies whose main objective is 
the prediction of patient arrivals in EDs were included. 
Second, only studies published in the past ten years 
were included, as the literature reviews by Wargon et al. 
[37] (covering the period from 1981 to 2007) and Gul 
and Celik [13] (covering the period from 2001 to 2017) 
showed that studies prior to 2012 used only traditional 
forecasting methods. The third criterion is to select 
works that used calendar and meteorological predictors 
or only the time series in the prediction.

Thirty-three articles met the search criteria and are 
summarized in Table 1. The articles were classified based 
on the following characteristics: EDs analyzed and data-
base time frame, forecast object, period and horizon, 
predictors tested, forecasting methods applied, most fre-
quently retained predictors, partitioning of the dataset 
for validation purposes, performance metrics, and main 
results.

Here is a summary of the studies presented in Table 1, 
which also includes a glossary of abbreviations and acro-
nyms used throughout the paper. Data periodicity is typi-
cally daily (66.66% of the studies) and hourly (33.33% of 
the studies), with 15.15% including both hourly and daily 
forecasts. Most articles focus on daily arrival predictions; 
hourly predictions are less commonly studied, as most 
EDs operate on daily staffing and resource planning [4, 
5, 17]. The time frame of the analyzed databases ranged 
from one to ten years, with 48.48% of the studies cover-
ing up to three years of observations. A 7-day forecast-
ing horizon was most commonly adopted (51.51% of the 
studies), which is considered more useful operationally 
[15], given that most EDs rely on short-term planning 
schedules.

Calendar predictors most frequently tested were 
weekdays (60.60% of the studies), month of the year 
(45.45%), holidays (45.45%), school holidays (15.15%), 
days before or after holidays (12.12%), and time of day 
(12.12%). Meteorological variables most commonly 
tested were temperature (42.42% of the studies), pre-
cipitation (18.18%), wind speed (18.18%), and relative 
humidity (12.12%). Additionally, 24.24% of the studies 
considered only the time series to predict patient arriv-
als. Meteorological and calendar variables most fre-
quently retained in the models were weekdays (82% of 
the studies that tested these predictors), holidays (57%), 
month of the year (51%), and temperature (100%). Such 

findings are consistent with those reported by Gul and 
Celik [13], who identified the most commonly used 
independent variables for predicting patient arrivals in 
EDs as time of day, weekday, month of the year, days 
before or after holidays, vacation days, maximum and 
minimum temperatures, precipitation, and wind speed. 
Jiang et al. [38], in their literature review on ED patient 
arrivals, concluded that calendar variables are predomi-
nant compared to other types of independent variables.

The models for ED arrival prediction listed in Table 1 
can be classified into four groups: time series models, 
regression models, ML algorithms, and hybrid meth-
ods. Among the time series models, ARIMA [1, 17] and 
its variants Autoregressive Integrated Moving Average 
with Explanatory Variable (ARIMAX) [18, 54], Seasonal 
Autoregressive Integrated Moving Average (SARIMA) 
[5, 21], and Seasonal Autoregressive Integrated Moving 
Average with external variables (SARIMAX) [3, 46] have 
been widely used. Naive models, Seasonal Naive (Snaive) 
[47, 54], Error-trend-seasonal (ETS) [20, 45], and Expo-
nential Smoothing (ES) models [5, 46] are also reported, 
with emphasis on the seasonal Holt-Winters (HW) model 
[1, 23]. The second group includes Logistic regression-
based approaches [4, 6], logistic [55, 56], and Poisson 
models [48], which are causal models, unlike most time 
series models. More recently, ML algorithms have been 
employed to overcome limitations of causal and time 
series models. For example, Multilayer Perceptron Neu-
ral Network (MLP) [3, 27], Long Short-Term Memory 
(LSTM) [24, 49], k-nearest neighbours (KNN) [20, 41], 
XGBoost [5, 55], RF [54, 55], Support Vector Regression 
(SVR) [41, 57], Deep Neural Network-based algorithms 
[7, 56], such as Recurrent Neural Networks (RNNs) [5, 
24], and Convolutional Neural Networks (CNNs) [7, 49], 
have been reported in studies. In addition to these three 
groups, hybrid approaches have also been used [5, 20, 
24, 27]. For instance, Autoregressive Integrated Moving 
Average with Linear Regression (ARIMA-LR) [18, 21], 
Autoregressive Integrated Moving Average with Artifi-
cial Neural Network (ARIMA-ANN) [4, 18], and Autore-
gressive Integrated Moving Average with Support Vector 
Regression (ARIMA-SVR) [35] offer advantages over sin-
gle models as they exploit the strengths of each individual 
model to improve prediction accuracy. Reviews by Gul 
and Celik [13] and Wargon et  al. [37] demonstrate the 
predominance of time series models in predicting ED 
patient arrivals. In contrast, studies listed in Table 1 dem-
onstrate the increasing application of ML algorithms and 
hybrid approaches combining statistical and ML models, 
particularly in more recent articles.

Regarding model validation, the most frequent proce-
dure was to split the data into training and testing sets 
(70% of the studies). Among these studies, only 33% 
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reported the proportion of division between training 
and testing sets, with a predominance of 70%/30% and 
80%/20%. Furthermore, only 24.24% of the studies in 
Table 1 used some form of cross-validation to assess the 
quality of the predictions, with five studies [35, 39, 40] 
conducting cross-validation only on the training set and 
three studies [3, 7, 20] on the complete datasets. Cross-
validation provides a more robust and reliable way to 
measure model performance [58].

To assess the accuracy of predictions, the most fre-
quently employed error metrics were Mean Absolute 
Percentage Error—MAPE (75.75% of the studies), Root 
Mean Square Error—RMSE (45.45%), and Mean Abso-
lute Error—MAE (39.39%). The prevalence of MAPE and 
RMSE can be attributed to their scale-independence and 
interpretability, which makes them suitable for compara-
tive analysis across studies [6, 42, 59]. Consistently, Gul 
and Celik [13] also identified MAPE, RMSE, and MAE as 
the top three error metrics commonly used in ED patient 
arrival prediction studies.

Regarding prediction performance, our review indi-
cates that 75% of the studies show ML algorithms outper-
forming time series and regression models. Specifically, 
when comparing only ML algorithms, the LSTM and 
SVR demonstrate superior performance. Furthermore, all 
studies considering hybrid approaches report better per-
formance compared to time series and regression mod-
els. Among studies comparing ML algorithms and hybrid 
approaches, 78% report hybrid approaches as having the 
best performance.

Our review reveals some limitations of the ED patient 
arrival prediction literature. First, the number of EDs 
analyzed is generally limited, often from geographically 
close locations, resulting in low generalizability of the 
prediction methods and lack of external validation. Sec-
ond, most studies do not employ cross-validation pro-
cedures. Last, most studies are not reproducible due to 
closed data sources and limited or no access to computer 
codes used in the analyses.

Materials and methods
Overview of the datasets
This retrospective and multicenter study uses datasets 
from 11 EDs in hospitals located in Australia, the USA, 
and the Netherlands. The datasets were extracted from 
the publicly available Harvard Dataverse [60], covering 
the period from January 1, 2014, to December 31, 2016.

Two criteria determined our choice of EDs to be 
included in the analysis. The first criterion is diversity. 
The sample of EDs includes both public and private hos-
pitals that provide general and specialized care, located 
in countries with varying climatic conditions. Including 

multiple datasets from different hospitals and EDs aims 
to enhance the generalizability of the results. Such 
approach is supported by several authors (e.g., [4, 18, 
27, 55, 61]), who suggest the comparison of ML predic-
tion methods across different EDs as a research oppor-
tunity. To the best of our knowledge, there are currently 
no available studies that evaluate ML algorithms for pre-
dicting ED arrivals using data from different countries. 
The second criterion is the public availability of data. 
Research on forecasting is deemed significant when the 
datasets used are publicly available, allowing for compa-
rability with other studies and replicability [62].

The majority of EDs included in the study are from 
public hospitals (7 out of 11), providing general care (7 
out of 11) of medium and low complexity (9 out of 11). 
Out of the total number of EDs, four belong to teach-
ing hospitals. All EDs operate 24 h per day, 7 days of the 
week. Table A1 gives the characterization of the EDs and 
descriptive statistics for the analyzed period. Complete 
three-year data were available for all EDs. The 11 com-
plete datasets contained 1,096 observations. The annual 
average number of patient arrival events over all datasets 
is 46,495. On average, EDs had between 36 and 268 daily 
arrivals from January 2014 to December 2016.

Time series signatures use the date entry to generate 
a set of time-based variables, namely, day of the month 
and year, week of the month and year, defining when 
each observation occurred. The theoretical and empiri-
cal justifications for using variables created through 
FE were as follows: (i) the time signatures can capture 
common seasonal and trend patterns in time series of 
patient arrivals in the EDs; (ii) the distinct seasonal pat-
terns identified in the exploratory data analysis of both 
weekly and monthly data confirm that the FE approach 
for extracting temporal features was well-suited for 
this analysis, as nuanced seasonal patterns can be more 
precisely captured by specific elements of the arrival 
time signatures; (iii) the FE approach improves the per-
formance of ML algorithms [29, 30, 34]; (iv) building 
on findings of Wangon et  al. [37] and Jiang et  al. [38], 
which demonstrated that calendar variables are more 
predictive than meteorological variables for forecast-
ing ED arrivals, we adopt a FE approach that generates 
new variables from time-series timestamps. Specifi-
cally, day-of-the-week patterns are frequently retained 
as critical predictors due to their strong association 
with patient arrival volumes. For instance, multiple 
studies [16, 20] and [21] have shown that Mondays 
often experience higher arrival rates, underscoring the 
significance of such temporal variables in improving 
predictive accuracy. This approach not only aligns with 
previous research but also enhances the model’s ability 
to capture relevant temporal patterns in ED demand; 
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(v) the presence of weekly cycles and annual seasonal-
ity in patient arrival time series is widely documented 
in the literature. Including variables created through 
FE based on temporal patterns allows these cyclical 
patterns to be captured, which is essential for more 

accurate predictive models. The FE predictor variables 
used are presented in Table 3.

To assess the impact of FE on the performance of ML 
prediction algorithms, the predictors of interest con-
tained in Tables 2  and 3 were selected based on the RF 
algorithm, which includes distinct subsets of predictor 

Table 2 Predictors and outcome variable

Feature type Variable name Description Variable type

Calendar data Day of the week Day of week in which the patient arrived at the ED. The 
categorical variable was deployed into seven dummy vari-
ables, each indicating a day of the week

Binary

Month of the year Month of the year in which the patient arrived at the ED. 
The categorical variable was deployed into twelve dummy 
variables, each indicating a month of the year

Binary

Meteorological data Minimum daily temperature Minimum temperature (in Celsius) of the arrival day Continuous

Mean daily temperature Mean temperature (in Celsius) of the arrival day Continuous

Maximum daily temperature Maximum temperature (in Celsius) of the arrival day Continuous

Daily patient arrivals at the ED Arrivals Total number of daily patient arrivals at the ED Discrete

Table 3 Feature engineered predictors and their description

Calendar feature name Description Calendar feature type

date_index.num Time is converted into a numerical value in seconds from a fixed base date set at 2014–01-01 
00:00:00 = 0, where 2014–01–02 corresponds to 86,400 s, 2014–01–03 = 172,800, and so on. The 
variable represents the number of seconds elapsed from 2014–01-01 to 2016–01–31

Numeric

date_half The variable indicates whether the date falls in the first or second half of the year (e.g., 2014–01-
01 = 1, 2014–07-01 = 2)

Categorical [1 or 2]

date_quarter It represents the quarterly component of the index. The year is divided into four quarters, each 
including three consecutive months. The variable indicates to which quarter of the year a specific 
date belongs (e.g., January 15 = 1; April 28 = 2), enabling data analysis based on quarterly patterns 
or trends

Categorical [1 to 4]

date_mday The variable indicates the day of the month associated with a particular date (e.g., January 15 = 15) Categorical
[1 to 31]

date_qday The variable represents the day of the quarter, ranging from 1 to 92 for a given date, with each 
quarter including from 90 to 92 days (e.g., June 30 = 91, as it is the 91st day of the second quarter; 
September 30 = 92, as it is the 92nd day of the third quarter)

Categorical
[1 to 92]

date_yday The variable represents the day of the year, ranging from 1 to 365, for a given date (e.g., March 
31 is the 90th day of the year), enabling analysis and grouping of data based on annual patterns 
or trends

Categorical [1 to 365]

date_mweek The variable represents the week of the month, ranging from 1 to 5, for a given date (e.g., January 
7 = 1; January 15 = 3)

Categorical
[1 to 5]

date_week The variable represents the week number of the year (considering the first week starts on the first 
Sunday). Thus, in a year where January 1st falls on a Tuesday, this week is designated as week 53 
of the previous year. Week 1, in turn, begins on January 6th

Categorical
[1 to 53]

date_week2 The variable is a binary indicator representing the biweekly frequency module. The term “module” 
refers to the number that represents two possible states in each two-week cycle, taking values of 1 
or 0 (e.g., January 7 = 1; January 14 = 0; January 15 = 1)

Binary [1 or 0]

date_week3 The variable represents the three-week frequency module. The variable can take on values of 1, 2, 
or 0 (e.g., January 7 = 1; January 14 = 2; January 15 = 0; and January 22 = 1)

Categorical
[0 to 2]

date_week4 The variable represents the quadriweekly frequency module, with values ranging from 0 to 3 (e.g., 
January 7 = 1; January 14 = 2; January 15 = 3; January 22 = 0; and January 29 = 1)

Categorical
[0 to 3]

date_mday7 The variable is used to order each weekday occurrence within a month, starting from 1 (e.g., 
the first Saturday of the month will have mday7 = 1, the second mday7 = 2, and so on; the same 
applies to other weekdays)

Categorical
[1 to 5]
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variables for each ED. By conducting variable selection, 
we can analyze the effect of FE on the six predictive 
models. The selected subsets of predictors give the most 
important predictors within each dataset.

Thirty-four candidate predictor variables were used, 
including FE variables. A variable selection step based on 
RF was performed to identify the most important vari-
ables, considering that some of the FE variables may not 
result significant in describing the dependent variable 
(number of patients).

Proposed method
Figure 1 displays the flowchart of the proposed method, 
with steps detailed in the following subsections.

Step 1
In the first step, the 11 datasets are divided into training 
and testing sets, considering the temporal structure of 
each dataset. Two test sets are generated for each dataset, 
containing 7 and 45 observations in each cross-validation 
fold. The test sets are created in a sliding manner, thus 
respecting the temporal order of the 5 folds of time-series 
split cross-validation (TSCV) used in all ML algorithms. 
This split of training and testing is repeated several times 
for the 7 and 45-day test sets, corresponding to approxi-
mately 97%/3% and 80%/20% splits. The 7-day test hori-
zon was chosen as it has been widely used in previous 
studies (see Table  1), facilitating performance compari-
son with existing research in the field. The 45-day hori-
zon corresponds to an 80% training and 20% testing data 
split, as recommended by Hyndman and Athanasopoulos 
[63].

Step 2
In step 2, prior to training the ML algorithms, the data-
sets are first pre-processed following the stages below:

Stage 1: Feature engineering [30, 64] involves the cre-
ation of additional variables related to the calendar 
and derived from the patient’s visit date to the ED, 
corresponding to the time series signature [65]. Fea-
ture-engineered variables were created with the aim 
of enhancing the performance of ML algorithms, as 
recommended by Verdonck et al. [30]. The complete 
set of predictors considered in the analysis consists 
of the feature-engineered variables (Table 3) and the 
original variables (Table 2).

 The FE variables were created using the timetk 
package [65] in R, utilizing the step_timeseries_sig-
nature() function. The function automatically gener-

ates a set of variables based on the information in the 
date column regarding the number of patients arriv-
als, and is used to create a "time series signature," 
which decomposes a temporal variable (such as dates 
or timestamps) into several derived variables that 
represent different components of the date.
A step-by-step description of the function’s process 
is as follows: (i) A temporal data column is provided 
as input to the function, which can be in either Date 
or POSIXct format (date and time). The column must 
be specified within the data frame to which the trans-
formation will be applied. (ii) the function decom-
poses the time variable into several derived variables, 
including various components of the timestamp, 
such as year, month, day of the month (mday), day 
of the year (yday), week of the year (week), quar-
ter, and others. (iii) the variables generated are then 
added to the data frame as additional columns, each 
representing a specific temporal feature. This allows 
the original data frame to contain all the derived time 
characteristics, which can then be used in ML mod-
els. For more details, readers can refer to [66, 67].
Stage 2: Min–max normalization of continuous pre-
dictors. The stability and prediction performance of 
ML algorithms depends on the quality of input data 
[68]. Observations of all continuous predictor vari-
ables (except for dummy variables) were rewritten in 
the [0,1] interval to eliminate scale effects, using the 
expression:

where x and xnorm are the observed and normalized 
observations, and xmax and xmin are the variable’s 
maximum and minimum observed values.
Stage 3: Variable selection plays a key role in ML 
workflows, contributing to faster training, increased 
accuracy, and easier analysis of the modeled phe-
nomenon’s mechanisms [69]. The use of ML algo-
rithms is often criticized due to the difficulty in vis-
ualizing the impact of predictors on the outcome of 
interest [70], which is intensified in the case of a large 
number of predictors. To assess the importance of 
variables, a variable selection procedure based on an 
RF was adopted [71].

The complete set of predictors from the 11 analyzed 
datasets was submitted to the RF variable selection 
method. Two approaches are commonly used to assess 
the importance of a variable in the method: permutation 
importance and impurity-based importance [72]. Our 
study adopted the permutation importance approach, 
and the selection was conducted in four steps: (i) train 
an RF model using the complete dataset; (ii) employ the 

(1)xnorm = (x − xmin)/(xmax − xmin)
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Fig. 1 Flowchart of methodological steps
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permutation importance method to calculate importance 
scores for each variable; (iii) rank variables based on their 
importance scores and organize them in descending 
order of importance; and (iv) establish a cutoff thresh-
old for selecting a subset of top-performing predictor 
variables to be used as a reduced dataset in subsequent 
analyses.

The permutation importance method begins by creat-
ing a prediction model using the complete dataset and 
recording its accuracy. Subsequently, one of the variables 
in the dataset is chosen, and its values are randomly shuf-
fled while the other variables remain unchanged. This 
process eliminates any existing relationship between the 
dependent variable and the shuffled variable, and that 
will be reflected in the model accuracy if the original rela-
tionship is significant [73]. The next step involves record-
ing the difference in accuracy between the initial model 
and the model with the shuffled variable, which becomes 
the variable’s importance score. The larger the score, the 
more important the variable is in the prediction [74]. 
After shuffling for all 34 predictor variables in the data-
sets, the obtained scores are arranged in descending 
order, and only variables with scores above the threshold 
value are retained in the reduced datasets.

The RF variable selection method was chosen for two 
reasons: (i) Bommert et al. [72] conducted an analysis of 
22 variable selection methods on 16 high-dimensional 
datasets across various domains, concluding that RF dis-
played the highest accuracy compared to other methods; 
and (ii) the technique has not been adopted in previous 
studies on predicting patient arrivals in EDs. It is impor-
tant to note that the GLMNET regressor has a variable 
selection step imbedded in the model, which was deac-
tivated. Thus, RF variable selection was employed in 
all algorithms, enabling a direct comparison of their 
performances.

Step 3
Once the ideal subset of input variables is defined, it is 
necessary to refine ML methods by optimizing their 
hyperparameters. To achieve that, a grid search [31] was 
employed. The method involves defining ranges of candi-
date values for the tuning parameters [75] and evaluating 
combinations of values that result in models that better 
fit the data. RMSE is the most commonly used metric for 
this purpose [31, 75]; see Eq. (5).

In our application, we conducted a grid search with 
fivefold cross-validation for hyperparameter optimiza-
tion of all tested algorithms, as recommended by Kuhn 
and Johnson [31]. We used the "tune" package [76] in 
conjunction with the tidymodels framework [77] to com-
pute the best parameter combinations across 25 candi-
date models for each ML algorithm. The optimal tuning 

parameters yielded the lowest RMSE, calculated using 
the training portion of the datasets. Extensive reports 
of the grid search are available upon request from the 
authors.

Step 4
According to Hyndman and Athanasopoulos [63] and 
Kuhn and Johnson [64], the most suitable method for 
assessing the performance of modeling datasets with 
temporal dependence is the TSCV. This type of valida-
tion captures the effects of trends, seasonality, and other 
aspects that may be present in time series [63, 64]. Unlike 
classical cross-validation techniques such as k-fold, 
which assume independence and identical distribution 
of observations, TSCV avoids random splitting between 
training and test sets, respecting the temporal sequence 
of the data [63, 64]. TSCV involves the following stages:

1. Split the Dataset: The data is initially divided into 
training and test subsets, considering their temporal 
sequence. Older observations are used for training, 
while more recent observations are allocated for test-
ing [63, 64].

2. Define a Moving Window: A fixed-size moving win-
dow is defined to create subsequent folds; it dictates 
the extent of the training and test data in each itera-
tion [63]. In our study, 7 and 45-day windows were 
tested.

3. Iterate: At each iteration, the moving window is 
shifted forward along the time series, i.e., the sec-
ond resampling uses the test set from the initial split 
(referred to as skip 1) as part of the training set. Con-
sequently, the size of the training sets in each fold 
is not the same since they grow cumulatively as the 
moving window progresses [64].

4. Evaluate performance: After five iterations, perfor-
mance is assessed by calculating the average of the 
error metric values for the five test sets.

Figure 2 illustrates the stages above for the 45-day mov-
ing window. Four recent studies ( [20, 40, 50, 78]) also 
used TSCV when predicting patient arrivals.

Overview of selected machine learning algorithms 
and performance metrics
In this section, we justify the choice of ML algorithms 
tested in our comparative analysis. In Appendix Table A2, 
algorithms are grouped by similarity and summarized, 
with primary references provided for readers to access 
detailed information.

XGBoost is a Gradient Boosting (GB) algorithm that 
builds trees iteratively to predict residuals and combines 
them for final predictions [79]. It efficiently handles large 
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datasets by adding weak learners and transforming them 
into a strong model [79]. LightGBM is a GB variant that 
uses a histogram-based and leaf-wise approach to opti-
mize tree construction [80]. LightGBM speeds up train-
ing and reduces memory usage with techniques such as 
Gradient-based One-Side Sampling (GOSS) and Exclu-
sive Feature Bundling (EFB). RF is an ensemble method 
that builds multiple decision trees on random data 
subsets, reducing overfitting and increasing accuracy. 
SVM-RBF solves regression problems by using a kernel 
function to maximize margins and minimize prediction 
errors [58]. The RBF kernel measures similarity between 
instances, and key parameters such as gamma  and C 
are optimized to improve predictive performance [58]. 
NNAR is a neural network model that uses lagged values 
of a time series as inputs, forming a model analogous to 
ARIMA [63]. NNAR has input, hidden, and output lay-
ers, with the number of hidden nodes determined by lag 
order, and parameters optimized [63]. GLMNET com-
bines linear regression with regularization (LASSO and 
Ridge) to handle high-dimensional data [81]. It uses the 
elastic-net penalty (α) and regularization parameter (�) 

to balance variable selection and shrinkage, with optimal 
values determined via cross-validation [81].

The selection of these algorithms was motivated by the 
following reasons: (i) XGBoost [40, 55], RF [7, 20], and 
GLMNET [20] are reported as presenting superior per-
formance in patient arrival prediction; (ii) to the best 
of our knowledge, LightGBM, SVM-RBF, and NNAR 
are being used for the first time in such context; (iii) 
XGBoost, LightGBM, and GLMNET are the fastest ML 
methods in terms of execution speed and computational 
efficiency [79–81]. Given that predictions were made on 
11 datasets, the computational time of the algorithms 
becomes a crucial factor; and (iv) the use of the three 
decision tree-based algorithms (XGBoost, LightGBM, 
and RF) in the same study is justified by differences in 
their tree construction strategies (e.g., XGBoost adopts a 
level-wise strategy while LightGBM uses a leaf-wise strat-
egy [80]) and distinct approaches to handling overfitting 
(e.g., XGBoost employs Gradient Boosting to mitigate 
overfitting, whereas LightGBM utilizes GOSS to address 
the issue), as explained in Table A2.

The performance of the models presented in Table A3 
in predicting ED arrivals in horizons of 7 and 45  days 

Fig. 2 Example of a TSCV implementation on a generic dataset considering a 45-day moving window
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was determined by analyzing four metrics: (i) MAPE in 
Eq.  (2); (ii) Symmetric Mean Absolute Percentage Error 
(sMAPE) in Eq.  (3); (iii) Mean Absolute Scaled Error 
(MASE) in Eq. (4); and (iv) RMSE in Eq. (5).

In Sect. " Background", we demonstrated that the most 
commonly used metrics for evaluating patient arrival 
predictions are MAPE and RMSE. Both metrics enable 
direct comparison since they are scale-independent, 
allowing for the assessment of predictions across differ-
ent scenarios [36, 78]. MAPE presents results in percent-
age form, which is more easily interpretable [59]. sMAPE 
also provides results in percentage form, being consid-
ered a suitable choice in time series with zero entries 
[82], which can occur when there are no patient arriv-
als on certain days. According to Hyndman and Koehler 
[82], MASE is a superior metric for assessing forecasting 
model accuracy since it is less sensitive to outliers, less 
variable in small samples, scale-independent, easy to 
interpret, and can be used to compare the accuracy of 
various time series [82]. MASE values smaller than 1 (the 
closer to 0, the better) indicate that the model’s forecast is 
better than the Naive model [82]. RMSE is a measure that 
represents the squared differences between predicted 
and actual values. A RMSE value close to zero indicates 
a better model fit to the data, as it signifies smaller differ-
ences between predicted and actual values.

In all equations above, Y(t) denotes the observed value of 
the series at time t , Ŷ(t) denotes the predicted value of the 
series at time t , and T  is the total number of observations 
in the time series.

Results
Exploratory data analysis
Figure  3 displays the time series of daily patient arriv-
als in the analyzed datasets. Time series graphs allow 
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Fig. 3 Series of daily arrivals to EDs for selected hospitals in Australia, USA and the Netherlands
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observing data behavior over time, as indicated by [63]. 
Figure 3 reveals distinct arrival patterns and fluctuations. 
Most ED series exhibit periodic variations, indicating 
seasonality, high pointwise variability over the years, and 
nonlinear trends. Such characteristics justify the choice 
of ML models to describe patients’ arrival patterns, as 
they are more suitable to capture complex non-linear 
data behaviors [7].

Fig. 4 displays box plots stratifying patients’ daily arriv-
als by day of the week (top) and month of the year (bot-
tom) for each ED dataset. Mondays and Sundays are 
the busiest days, totaling 363,874 (15.02%) and 360,578 
(14.88%) of the arrivals, respectively. In opposition, 
Wednesdays had the lowest arrival numbers (333,242 
or 13.75%). Mondays displayed significant variation in 
arrivals across EDs, consistent with previous findings 
reported by [16, 20] and [21]. In general, patient arriv-
als peaked on Mondays, decreasing through the week, 
reaching the lowest point on Wednesdays, and starting 
to increase again on Fridays, reaching another peak on 
Sundays. Prior studies have also noted increased arrivals 
on Fridays [3, 6, 15]. Monthly analysis indicates August 
as the busiest month (213,936 arrivals or 8.83%), followed 
by March (211,986 arrivals or 8.75%); in opposition, 
November had the lowest number of arrivals (181,020 
or 7.47%). The strong seasonal pattern identified in the 
datasets across days of the week and months of the year 
indicates that the FE approach for extracting temporal 
features was appropriate for the analysis.

Forecasting performance
To assess performance, metrics were computed using 
eqns. (2) to (5) in each cross-validation resampling set. 
The average performance was analyzed across two test 
sets, with durations of 7 and 45 days. In Table 4 present 
the performance results for the algorithms tested. Results 
demonstrated that the application of FE contributed to 
enhancing the algorithms’ performance.

XGBoost achieved the best performance in five out of 
the eleven analyzed datasets, displaying MAPE values 
ranging from 5.08% to 21.37%, sMAPE values ranging 
from 4.96% to 7.22% and RMSE values from 7.03 to 24.14 
for a 7-day prediction horizon. XGBoost used different 
combinations of ten variables for each dataset, includ-
ing index.num, yday, week, half, quarter, mday, qday, 
minimum, mean, and maximum temperatures, day of the 
week (Monday, Tuesday, Friday, Saturday, and Sunday), 
and month of the year (August).

For the 45-day test sets, XGBoost and NNAR displayed 
the best performance across ten of the datasets, with 
MAPE values ranging from 5.08% to 19.41%, sMAPE 
values ranging from 5.11% to 6.16%, and RMSE from 
7.89 to 25.14. The variables used consisted of different 

combinations of the following predictors: index.num, 
yday, week, half, quarter, mday, qday, minimum, mean, 
and maximum temperatures, day of the week (Sunday, 
Monday, Wednesday, Thursday, and Friday), and month 
of the year (August and November). Table A3 allows vis-
ualizing algorithms that exhibited superior performance 
across all datasets and the most important predictors 
used in the forecasts.

Fig.  5 illustrates the comparisons of the fivefold 
cross-validation predictions and the fivefold average, 
represented by the vertical line in the graphs, for six algo-
rithms across two horizons.

Feature importance
Since the literature does not indicate a universal cutoff 
threshold value for feature selection, we tested different 
values (0.60, 0.70, 0.80, 0.90) across all datasets. The final 
choice of threshold considered two main criteria: (i) find-
ing the optimal trade-off between quantity of variables, 
model simplification, and model performance; and (ii) 
the authors’ expertise in modeling medical datasets.

During the testing phase, adopting a threshold value 
of 0.60 resulted in retaining a large number of predictor 
variables with importance scores below 10%, while the 
threshold of 0.90 retained only four candidate variables 
across all datasets, eliminating several with high impor-
tance scores and undermining model performance. A 
final threshold value of 0.70 was chosen as it provided the 
best balance between the number of variables retained 
and model performance.

Considering the different sets of variables retained 
in each dataset and the varying importance weights 
assigned to them by the ML prediction algorithms, we 
conclude that the most important variables in the ana-
lyzed datasets were index.num, yday, week, qday, quar-
ter, minimum, mean, and maximum temperatures, 
and dummy variables representing the day of the week 
(mainly Monday, Wednesday, Friday, and Sunday). The 
results of the permutation importance scores via RF for 
the top ML algorithms can be viewed in Fig. 6. Table A4 
summarizes the top 10 most important predictors across 
all datasets for the best ML algorithms in each dataset. 
The FE variables index.num, yday, and week displayed 
higher importance scores in the ML models for the 
majority of datasets analyzed. This result demonstrates 
that the FE approach can enhance the performance of 
ML in predicting daily patient arrivals in EDs.

Discussion
This study introduces some methodological innova-
tions for predicting patient arrivals using ML algo-
rithms, addressing certain limitations reported in the 
literature. First, we adopted a grid-search with fivefold 
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Fig. 4 Box plots of daily arrival volumes by EDs during the days of the week, stratified by month of the year
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Table 4 Results of average performance metrics using grid-search with fivefold cross-validation

ED ANTONIUSH-
OVE

ED ARMA

Methods Resampling MAPE sMAPE MASE RMSE Methods Resampling MAPE sMAPE MASE RMSE
7-day test set
 XGBoost Mean 19.15 18.45 0.89 8.13 XGBoost Mean 5.74 5.61 0.80 11.72

 LightGBM 22.89 20.21 1.06 9.29 LightGBM 5.90 5.78 0.85 11.54

 RF 23.76 20.42 1.11 9.68 RF 5.84 5.70 0.82 11.96

 SVM-RBF 20.59 18.49 0.93 8.45 SVM-RBF 5.52 5.40 0.78 11.69

 NNAR 19.45 17.87 0.90 8.10 NNAR 6.01 5.91 0.85 12.05

 GLMNET 20.18 18.15 0.93 8.26 GLMNET 5.48 5.35 0.77 11.44

45-day test set
 XGBoost Mean 16.29 15.95 0.79 7.89 XGBoost Mean 5.90 5.89 0.73 12.62

 LightGBM 17.40 15.92 0.79 7.95 LightGBM 6.05 6.00 0.74 12.74

 RF 21.04 18.33 0.93 9.06 RF 6.08 6.04 0.74 12.60

 SVM-RBF 18.35 16.49 0.82 8.26 SVM-RBF 5.97 5.94 0.73 12.70

 NNAR 17.83 16.22 0.81 8.04 NNAR 6.25 6.18 0.76 13.00

 GLMNET 18.47 16.56 0.83 8.24 GLMNET 5.90 5.90 0.73 12.64

ED BRONOVO ED DAVIS
Methods Resampling MAPE sMAPE MASE RMSE Methods Resampling MAPE sMAPE MASE RMSE
7-day test set
 XGBoost Mean 14.10 13.37 0.63 8.49 XGBoost Mean 9.90 9.90 0.90 24.14

 LightGBM 15.50 14.40 0.69 8.91 LightGBM 10.91 10.75 0.96 27.05

 RF 15.19 14.71 0.69 8.97 RF 10.99 11.17 0.98 27.87

 SVM-RBF 14.01 13.57 0.63 8.53 SVM-RBF 10.31 10.17 0.90 25.36

 NNAR 13.64 13.11 0.61 8.28 NNAR 10.12 10.09 0.90 25.31

 GLMNET 14.10 13.64 0.63 8.38 GLMNET 10.46 10.30 0.91 25.79

45-day test set
 XGBoost Mean 13.22 12.74 0.76 8.54 XGBoost Mean 10.99 11.06 0.96 26.94

 LightGBM 13.25 12.76 0.76 8.57 LightGBM 10.88 10.76 0.93 26.24

 RF 13.15 12.81 0.76 8.60 RF 11.10 11.25 0.98 27.81

 SVM-RBF 12.75 12.68 0.75 8.56 SVM-RBF 10.51 10.37 0.91 25.77

 NNAR 12.85 12.45 0.74 8.37 NNAR 10.29 10.23 0.90 25.14

 GLMNET 12.61 12.58 0.75 8.56 GLMNET 10.57 10.41 0.92 26.01

ED JOON ED KEM
Methods Resampling MAPE sMAPE MASE RMSE Methods Resampling MAPE sMAPE MASE RMSE
7-day test set
 XGBoost Mean 5.03 4.96 0.93 16.50 XGBoost Mean 21.37 19.60 0.50 7.03

 LightGBM 4.73 4.66 0.88 15.96 LightGBM 23.39 20.10 0.52 7.59

 RF 4.84 4.80 0.90 16.84 RF 24.41 20.70 0.52 7.62

 SVM-RBF 4.61 4.52 0.85 16.22 SVM-RBF 22.87 20.32 0.52 7.27

 NNAR 5.09 5.02 0.94 16.68 NNAR 21.62 18.98 0.48 7.10

 GLMNET 4.91 4.76 0.88 16.85 GLMNET 23.21 20.00 0.51 7.53

45-day test set
 XGBoost Mean 5.11 5.11 0.78 17.49 XGBoost Mean 19.41 17.68 0.51 7.15

 LightGBM 5.08 5.06 0.77 17.45 LightGBM 20.77 18.65 0.54 7.37

 RF 5.01 4.98 0.76 17.43 RF 20.20 18.43 0.53 7.40

 SVM-RBF 4.98 4.97 0.76 17.25 SVM-RBF 19.15 18.02 0.52 7.18

 NNAR 5.13 5.04 0.77 17.67 NNAR 18.92 17.42 0.50 6.92

 GLMNET 5.36 5.27 0.80 18.10 GLMNET 19.47 18.21 0.53 7.37

ED PM ED RG
Methods Resampling MAPE sMAPE MASE RMSE Methods Resampling MAPE sMAPE MASE RMSE
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cross-validation for hyperparameter optimization across 
all algorithms. Overfitting of the ML algorithms was 
avoided using the TSCV method, and the results 

obtained are generalizable because we used datasets 
from eleven EDs in different countries. As of the lit-
erature review, none of the studies listed in Table 1 had 

Table 4 (continued)

7-day test set
 XGBoost Mean 9.72 9.54 0.71 18.61 XGBoost Mean 7.21 7.22 0.81 12.96

 LightGBM 10.50 10.17 0.76 20.01 LightGBM 6.81 6.79 0.74 12.87

 RF 9.89 9.68 0.71 18.66 RF 6.55 6.51 0.71 11.93

 SVM-RBF 11.22 10.44 0.77 20.77 SVM-RBF 7.37 7.35 0.81 13.67

 NNAR 9.58 9.20 0.67 18.32 NNAR 7.55 7.44 0.83 13.66

 GLMNET 11.94 11.01 0.81 22.01 GLMNET 7.83 7.65 0.86 14.05

45-day test set
 XGBoost Mean 8.67 8.58 0.87 18.68 XGBoost Mean 6.23 6.16 0.69 11.42

 LightGBM 8.85 8.63 0.87 18.85 LightGBM 6.31 6.17 0.69 11.54

 RF 8.83 8.63 0.87 18.83 RF 6.28 6.15 0.69 11.47

 SVM-RBF 9.08 8.91 0.90 19.64 SVM-RBF 6.77 6.65 0.75 12.07

 NNAR 9.02 8.96 0.91 19.85 NNAR 6.77 6.64 0.75 12.15

 GLMNET 9.73 9.54 0.96 21.06 GLMNET 6.72 6.63 0.75 12.03

ED RPH ED SCG
Methods Resampling MAPE sMAPE MASE RMSE Methods Resampling MAPE sMAPE MASE RMSE
7-day test set
 XGBoost Mean 5.90 5.96 0.94 14.89 XGBoost Mean 5.08 5.08 0.85 11.93

 LightGBM 6.24 6.37 0.99 15.75 LightGBM 5.35 5.33 0.94 12.17

 RF 6.54 6.49 1.03 15.72 RF 5.25 5.24 0.90 11.96

 SVM-RBF 6.21 6.28 0.98 15.45 SVM-RBF 5.22 5.23 0.87 12.12

 NNAR 6.37 6.43 1.00 15.63 NNAR 5.21 5.19 0.90 11.73

 GLMNET 6.79 6.97 1.07 16.86 GLMNET 5.85 5.72 0.99 12.75

45-day test set
 XGBoost Mean 6.04 5.96 0.84 14.57 XGBoost Mean 5.64 5.60 0.82 12.61

 LightGBM 6.06 5.98 0.84 14.67 LightGBM 5.72 5.68 0.82 12.71

 RF 6.01 5.96 0.84 14.44 RF 5.69 5.60 0.81 12.56

 SVM-RBF 5.71 5.74 0.81 14.37 SVM-RBF 5.69 5.60 0.81 12.56

 NNAR 5.85 5.86 0.83 14.25 NNAR 6.06 5.89 0.85 13.37

 GLMNET 6.63 6.85 0.98 16.61 GLMNET 6.35 6.13 0.88 13.71

ED WESTEINDE
Methods Resampling MAPE sMAPE MASE RMSE
7-day test set
 XGBoost Mean 8.49 8.56 0.79 14.01

 LightGBM 8.47 8.43 0.78 14.00

 RF 8.74 8.75 0.81 14.18

 SVM-RBF 8.18 8.20 0.76 13.71

 NNAR 8.21 8.29 0.77 13.88

 GLMNET 8.27 8.39 0.78 14.01

45-day test set
 XGBoost Mean 7.12 7.15 0.81 12.57

 LightGBM 7.30 7.29 0.83 12.77

 RF 7.62 7.64 0.87 13.27

 SVM-RBF 7.44 7.44 0.85 12.94

 NNAR 7.38 7.31 0.83 13.09

 GLMNET 7.55 7.53 0.86 13.16
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Fig. 5 Illustrates the comparison of the fivefold cross-validation prediction and the fivefold average represented by the vertical line in the graphs 
for six algorithms at two horizons. Note: The graphs present the performance of resampling predictions using a variable selection step for the 7-day 
and 45-day test sets in each ED
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Fig. 6 Features selection using a RF permutation importance score. Notes: The figure displays bar charts of the top 10 predictors for patient arrivals, 
using the 11 datasets for the best models of ML
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used grid-search for hyperparameter tuning. Second, we 
adopted an FE approach to improve algorithm perfor-
mance, which is new in the ED patient arrival prediction 
literature. Third, we incorporated a feature selection step 
based on RFs. These methodological innovations enabled 
more precise and reliable results in patient arrival predic-
tion. Our approach stands out compared to similar works 
in terms of prediction performance.

Sudarshan et al. [7] compared three ML algorithms in 
forecasting daily arrivals for a 7-day horizon. The LSTM 
algorithm, incorporating six meteorological and seven 
calendar variables, achieved average MAPEs of 9.31% 
and 8.91%. Xu [18] employed six ML and hybrid methods 
to predict daily arrivals for a 7-day horizon. The methods 
incorporated variables such as day of the week, month of 
the year, holidays, school vacations, and temperatures. 
The ARIMA-LR with smoothing achieved MAPEs rang-
ing from 6.1% to 12.9% and RMSEs from 5.33 to 147.

Vollmer et al. [20] compared the performance of eight 
statistical and ML models in forecasting daily arrivals 
considering 1 to 7-day horizons. They used variables such 
as day of the week, month of the year, public holidays, 
school vacations, temperatures, and precipitation. The 
GLMNET model achieved the best performance, with 
MAPE values of 6.8% and 8.6%. Yousefi et al. [21], in fore-
casting daily arrivals using the LSTM model for horizons 
of 1 to 7  days, incorporated predictors such as football 
game events, weekends, and holidays, reporting an aver-
age MAPE of 5.55%.

Pekel et al. [39] compared three hybrid ML algorithms 
in forecasting daily arrivals, using variables such as 
month of the year, day of the week, holidays, and maxi-
mum temperature. The PSO-ANN model achieved the 
best performance, with MAPE values of 6% and RMSE 
of 53.29. Zhang et  al. [41] compared nine ML mod-
els in forecasting daily arrivals for a 90-day horizon, 
incorporating seven calendar variables and eight mete-
orological variables. The SVR model displayed the best 
performance, with a MAPE of 8.81% and RMSE of 26.84.

In forecasting daily arrivals for a 53-day horizon, Zhao 
et  al. [49] compared eight ML and statistical methods, 
testing variables such as day of the week, temperature, 
and relative humidity. The DLSTM algorithm was the 
best-performing, with a MAPE of 5.67% and RMSE of 
25.29. Petsis [40] produced daily arrival forecasts for 1 
and 2  days ahead, incorporating nine calendar and five 
meteorological variables using XGBoost. The obtained 
results showed MAPEs of 6.5% and 6.91%, along with 
RMSE values of 22.96 and 23.9. Finally, Rocha and Rod-
rigues [5] compared ten ML algorithms and hybrid meth-
ods in forecasting daily arrivals using calendar variables 
such as year, month of the year, day of the week, time of 
day, and holidays. The RNN-1L model displayed the best 

performance, with RMSE values ranging from 4.8 to 26 
and sMAPE values from 4.3% to 21.3%.

Our study compared six ML algorithms using the FE 
approach in forecasting daily arrivals using datasets 
from eleven EDs for horizons of 7 and 45 days, display-
ing performance improvements compared to previous 
studies. Table  5 provides a horizon-based comparison 
between our study and the best-performing methods in 
the literature.

We incorporated the FE approach into the ML work-
flow to predict daily patient arrivals in EDs, which we 
believe represents a significant contribution to the 
research field. The results obtained across eleven EDs 
indicate that FE variables were informative in forecast-
ing daily patient arrivals. Studies on ML for predicting 
patient arrivals typically rely solely on meteorological 
variables and traditional calendar variables, such as day 
of the week and month of the year [5, 7, 18, 20, 21, 39–
41, 49]. The performance of the prediction algorithms 
was positively impacted by the inclusion of FE variables, 
especially index.num, yday, week, and qday. Predicting 
patient arrivals in EDs is not a new research topic. How-
ever, this is the first study that systematically investigates 
whether FE variables are relevant predictors for daily 
patient arrival forecasts.

The scope of this study, encompassing 11 different 
EDs, allowed us to assess the importance of using FE 
to improve the generalizability of our results. Verdonck 
et al. [30] recommended the use of FE in ML-based anal-
ysis workflows to enhance algorithm performance. The 
FE approach employed in this study created a set of new 
predictor variables based on arrival timestamps. A recent 
systematic review on ED arrival forecasting [36] suggests, 
for future studies, that exploring new variables with the 
potential to become significant and reliable predictors is 
an underexplored area requiring further research. Our 
study addresses this demand.

Specifically in the EDs of Antoniushove, ARMA, Davis, 
Joon, PM, RG, RPH, and Westeinde hospitals, it was 
observed that the FE variables index.num, yday and week 
displayed high levels of importance (Fig.  6), surpassing 
those attributed to meteorological variables, which are 
typically considered informative in predicting patient 
arrivals in EDs, e.g., [3, 6, 7, 41, 42, 46].

The systematic review by Wangon et al. [37] concluded 
that calendar variables hold greater importance than 
meteorological variables in predicting patient arriv-
als in EDs, aligning with our findings. Another system-
atic review by Jiang et al. [38] supported this conclusion, 
indicating that traditional calendar variables are more 
frequently used compared to other types of predictor 
variables. Our study also demonstrated the importance 
of predictors associated with temperatures and days of 
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Table 5 Comparison of the forecasting performance achieved with related works stratified by forecasting horizon

ANN Artificial Neural Networks, ARIMA Autoregressive Integrated Moving Average, ARIMAX Autoregressive Integrated Moving Average with Explanatory Variable, 
ARIMA-LR ARIMA-Linear regression, CNN Convolutional Neural Networks, DBN Deep Belief Network, EEMD-ANN Artificial Neural Networks with Ensemble Empirical 
Mode decomposition, XGBoost Extreme Gradient Boosting, RLS-FS Floating Search with Recursive Least Squares, FTS Fuzzy Time Series, CNN-GRU  Gated recurrent 
unit with convolutional neural networks, GA-ANN Genetic Algorithm-based ANN, GLMNET Generalized Linear Models via Coordinate Descent, GLM generalized 
linear model, GBM Gradient Boosting Machines, HW Holt-Winters, KNN k-nearest neighbours, LM Linear model, LSTM Long Short-Term Memory, MLR Multiple Linear 
Regression, MSARIMA Multivariate Autoregressive Integrated Moving Average, NN Neural Network, NNAR Neural Network Autoregression, PSO-ANN Particle Swarm 
Optimization algorithm-based ANN, RF Random Forest, RNN Recurrent Neural Networks, RBM Restricted Boltzmann machines, SARIMA Seasonal Autoregressive 
Integrated Moving Average, SARIMAX Seasonal Autoregressive Integrated Moving Average with external variables, SS Simple Seasonal Exponential Smoothing, 
RLS-SA Simulated Annealing with Recursive Least Squares, SVM-RBF Support Vector Machine with Radial Basis Function, SVR Support Vector Regression, VAR Vector 
Autoregression Model

Forecasting Horizon Reference and year Method(s) used MAPE(%) RMSE

3 up to 7 days ahead Marcilio et al. [42] 2013 GLM and GEE 4,5–9,9 not applied

Xu [18] 2016 ARIMA-LR (smoothing), ARIMA-LR and GLM 6,8–9,6 70,5–104

Calegari et al. [46] 2016 SARIMA, SS and SMHW 10,67–12,01 not applied

Asheim et al. [48] 2019 Poisson time-series regression model 31–38 not applied

Jilani et al. [15] 2019 NN e FTS 3.03–7,42 6,16–16,55

Whitt et al. [3] 2019 SARIMAX 8,4–10,59 not applied

Zhang et al. [35] 2019 ARIMA, SVR and ARIMA-SVR 7,02–7,36 19,20–20,34

Choudhury and Urena [1] 2020 ARIMA, HW and NN not applied 1,55–27,86

Yousefi et al. [21] 2020 LSTM 5,59–6,31 not applied

Erkamp et al. [6] 2021 MLR 8.68–12.20 not applied

Rocha and Rodrigues [5] 2021 RNN, XGBoost and RNN-XGBoost not applied 4,7–4,9

Vollmer et al. [20] 2021 GLMNET, LM and GBM 6,7–8,6 not applied

Sudarshan et al. [7] 2021 RF, LSTM and CNN 8,91–10,69 not applied

Cheng et al. [61] 2021 SARIMAX, HW and VAR 5–15,3 not applied

Murtas et al. [83] 2022 ARIMA 6,6–11,2 not applied

Petsis et al. [40] 2022 XGBoost 6,5–6,91 22,96–23,9

Tuominen et al. [54] 2022 ARIMAX, RLS-FS and RLS-SA 6,6–6,9 not applied

Tello et al. [57] 2022 ARIMA and SVR 3,34–5,17 14,10–20,57

Zhang et al. [41] 2022 SVR, RF and KNN 8,81–9,63 26,84–30,23

Current study 7-day test set ED ARMA GLMNET and SVM-RBF 5,48–5,52 11,44–11,69

ED JOON SVM-RBF and LightGBM 4,61–4.73 15,95–16,22

ED RG RF and LightGBM 6,55–6,81 11,93–12,87

ED RPH XGBoost and SVM-RBF 5,90–6,21 14,89–15,45

ED SCG XGBoost and NNAR 5,08–5,21 11,73–11,93

8 up to 45 days ahead Marcilio et al. [42] 2013 GLM and GEE 8,7–12,8 not applied

Bergs et al. [45] 2014 ETS 2,63–4,76 not applied

Calegari et al. [46] 2016 SARIMA, SS and SMHW 11,35–12,29 not applied

Juang [19] 2017 ARIMA 8,91 not applied

Carvalho-Silva et al. [23] 2018 ARIMA 5,22–9,29 not applied

Jilani et al. [15] 2019 NN e FTS 2,01–2,81 57,30–167,89

Khaldi et al. [27] 2019 EEMD-ANN, DWT-ANN and ANN not applied 52,86–149,23

Vollmer et al. [20] 2021 GLMNET, LM and GBM 6,8–8,9 not applied

Pekel et al. [39] 2021 PSO-ANN, Bayesian ANN and GA-ANN 6–8,8 53.29–83.85

Tuominen et al. [54] 2022 ARIMAX, RLS-FS and RLS-SA 7,4–7,8 not applied

Susnjak et al. [78] 2023 Voting regressor 8,9–12,8 10,60–15,9

Gafni-Pappas et al. [50] 2023 RF and XGBoost not applied 18,94–18,96

Current study 45-day test set ED ARMA XGBoost and GLMNET 5,90–5,90 12,62–12,64

ED JOON SVM-RBF and RF 4.98–5.01 17,25–17,43

ED RG XGBoost and RF 6,23–6,28 11,42–11,47

ED RPH SVM-RBF and NNAR 5,71–5,85 14,25–14,37

ED SCG XGBoost and RF 5,64–5,69 12,61–12,56
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the week, with results consistent with other similar stud-
ies, e.g., [41]–[43] for temperatures, and [3, 6, 7, 47] for 
days of the week.

Notably, both NNAR and XGBoost achieved bet-
ter forecasting results. In addition to the use of feature-
engineered variables, there are reasons related to model 
structure that justify their better performance. NNAR 
is effective at capturing nonlinear and complex pat-
terns in time series, as it combines the flexibility of neu-
ral networks with an autoregressive approach, allowing 
the model to learn from past dependencies in the data 
to make more accurate predictions [63]. This ability to 
model nonlinear complexities is particularly advanta-
geous in-patient arrival forecasting, where the volume of 
visits can be influenced by a combination of seasonal fac-
tors, such as weather variations, holidays, and epidemic 
events. Nonlinearities, if present, are also more easily 
captured by the large number of feature-engineered vari-
ables derived from arrival timestamps.

On the other hand, the XGBoost algorithm, based on 
decision-trees, offers several advantages that are par-
ticularly valuable in patient arrival forecasting, namely: 
(i) ability to avoid overfitting, which is essential in emer-
gency demand forecasting where data variability can be 
significant, (ii) capacity to generalize results with large 
volumes of data, and (iii) iterative learning mechanism 
that corrects errors from previous decision trees by 
adjusting the residuals. These characteristics allows the 
model to efficiently learn from the data, adapting to dif-
ferent patient arrival patterns, such as seasonal variations 
or demand peaks.

Managerial implications and practical implementation
The creation of calendar features through FE has proven 
highly effective in enhancing the predictive performance 
of ML models, particularly in forecasting patient arriv-
als across multiple EDs in three countries. This approach 
demonstrates that timestamps associated with time series 
data capture fundamental seasonal patterns and trends 
essential for accurate forecasting. Temporal components 
such as the day of the month and week of the year enable 
models to recognize recurring behaviors and underlying 
dynamics of patient flow, which are key for predicting 
daily patient volumes.

Incorporating FE variables into ML models allows 
for better identification of these recurring patterns, 
thereby improving the accuracy of predictions. Such 
enhanced performance has significant practical impli-
cations for ED management. Accurate forecasts enable 
better staffing decisions, ensuring adequate healthcare 
provider availability, especially during peak periods 

such as weekends and Mondays. Additionally, under-
standing temporal patterns aids in optimizing sched-
uling strategies, reducing wait times, and improving 
patient care. Furthermore, precise predictions facili-
tate efficient management of limited resources, such 
as physical space and medical supplies, by allowing for 
proactive decision-making and reducing pressure on 
the healthcare system.

Consider two hypothetical ED scenarios to illustrate 
the impact of accurate predictions. The first scenario 
involves staff allocation. With accurate forecasts predict-
ing increased patient volume during weekends or holi-
days, emergency managers can adjust work schedules or 
hire additional staff, thereby avoiding overload and main-
taining care quality.

The second scenario focuses on bed and equipment 
management. If forecasts indicate a significant increase 
in patient arrivals, hospitals can proactively manage 
resources by adjusting internal logistics and prioritiz-
ing discharges or transfers. Inaccurate predictions could 
lead to bed shortages, resulting in patients being placed 
on stretchers in hallways and increasing health risks. 
Advance knowledge of demand patterns also enables 
hospitals to redirect excess patients to other facilities 
within public health networks.

Hospitals can implement automated systems that lever-
age FE data directly in the decision-making process. For 
example, integrating predictions from ML models into 
hospital management software could trigger automatic 
alerts recommending staff scheduling adjustments based 
on predicted arrivals. Such systems are particularly valu-
able in urban centers with variable demand. Additionally, 
accurate predictions can help reduce operational costs 
by optimizing the management of supplies and medica-
tions, such as anticipating and adjusting stock levels for 
seasonal demands.

The main cost–benefit aspects of implementing ML 
models for predicting patient arrivals in EDs are: (i) 
reduction in operational costs from more accurate pre-
dictions that enable staffing adjustments, such as lower-
ing overtime and temporary hire costs; (ii) reduction in 
emergency purchasing costs through better demand pre-
dictions that optimize stock management, avoiding waste 
or shortages during critical times; (iii) improved man-
agement of bed occupancy and equipment use, prevent-
ing overcrowding and improving patient flow, thereby 
reducing emergency care costs; and (iv) integration of 
ML models into ED management systems, enabling 
automated alerts for real-time decisions, optimizing 
responses to demand fluctuations and alleviating over-
load during peak periods. These benefits are particularly 
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relevant in resource-limited settings, where accurate 
predictions help prevent unnecessary expenses, improve 
resource allocation, and support the healthcare system’s 
sustainability while ensuring quality care for all patients.

Conclusion
In this paper, we compared the performance of six ML 
algorithms across two forecast horizons for predicting 
daily arrivals in EDs. We used both traditional meteor-
ological and calendar predictors alongside feature-engi-
neered variables. The algorithms were optimized using 
hyperparameter tuning via fivefold cross-validated 
grid-search. Variable selection was conducted using 
a random-forest method, identifying key predictors 
such as index.num, yday, week, qday, minimum, mean, 
and maximum temperatures, and the day of the week. 
Performance evaluation employed four error metrics 
within a fivefold cross-validation framework.

Our results surpass many existing studies in the lit-
erature, demonstrating superior predictive accuracy 
crucial for effective resource management in EDs, 
reducing patient waiting times and lengths of stay. 
Notably, XGBoost consistently outperformed other 
models across all forecast horizons, with FE signifi-
cantly enhancing the predictive capabilities of all ML 
algorithms.

Unlike typical studies on ED patient arrival predic-
tion, our findings are robust and can be readily applied 
and replicated in other ED settings. We have provided 
comprehensive R code for all methodological steps and 
used publicly accessible datasets, facilitating easy adap-
tation and extension with additional predictor variables 
as needed.

This study presents some limitations. The first is asso-
ciated with the databases analyzed. The advantages of 
including additional informative predictor variables, 
such as wind speed, air quality, precipitation, holidays, 
and special or epidemic events, in improving predic-
tion quality were not explored. Such variables could be 
valuable for enhancing ML performance and represent 
a promising direction for future research. Future stud-
ies could also apply FE to other variables, such as mete-
orological data, to assess potential performance gains. 
Other limitations include the use of only one variable 
selection method, based on the RF technique via per-
mutation importance, which may introduce bias into 
the results. By relying on a single selection method, 
such as RF, the study may prioritize variables based on 
a specific criterion, potentially overlooking other rele-
vant variables that could be identified using alternative 
selection methods. Additionally, the adoption of com-
putationally intensive ML algorithms, such as SVM-
RBF and NNAR, with hyperparameter tuning, may 

pose challenges in hospital settings with limited com-
putational resources. These algorithms require high 
processing power, which may hinder their implementa-
tion in hospitals with constrained infrastructure.

Reproducibility
The R code for replicating all the results obtained in 
this study is available in the GitHub repository (https:// 
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