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Abstract 

Background and aims  Low birth weight (LBW), known as the condition of a newborn weighing less than 2500 g, 
is a growing concern in the United States (US). Previous studies have identified several contributing factors, but many 
have analyzed these variables in isolation, limiting their ability to capture the combined influence of multiple factors. 
Moreover, past research has predominantly focused on maternal health, demographics, and socioeconomic condi-
tions, often neglecting paternal factors such as age, educational level, and ethnicity. Additionally, most studies have 
utilized localized datasets, which may not reflect the diversity of the US population. To address these gaps, this study 
leverages machine learning to analyze the 2022 Centers for Disease Control and Prevention’s National Natality Dataset, 
identifying the most significant factors contributing to LBW across the US.

Methods  We combined anthropometric, socioeconomic, maternal, and paternal factors to train logistic regression, 
random forest, XGBoost, conditional inference tree, and attention mechanism models to predict LBW and normal 
birth weight (NBW) outcomes. These models were interpreted using odds ratio analysis, feature importance, partial 
dependence plots (PDP), and Shapley Additive Explanations (SHAP) to identify the factors most strongly associated 
with LBW.

Results  Across all five models, the most consistently associated factors with birth weight were maternal height, 
pre-pregnancy weight, weight gain during pregnancy, and parental ethnicity. Other pregnancy-related factors, such 
as prenatal visits and avoiding smoking, also significantly influenced birth weight.

Conclusion  The relevance of maternal anthropometric factors, pregnancy weight gain, and parental ethnicity 
can help explain the current differences in LBW and NBW rates among various ethnic groups in the US. Ethnicities 
with shorter average statures, such as Asians and Hispanics, are more likely to have newborns below the World Health 
Organization’s 2500-gram threshold. Additionally, ethnic groups with historical challenges in accessing nutrition 
and perinatal care face a higher risk of delivering LBW infants.
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Background
The birth weight of a newborn is a crucial determinant 
of their survival chances because, according to the World 
Health Organization (WHO), a newborn weighing less 
than 2500 grams is at increased risk of dying in the first 
28 days of life [1]. Moreover, low birth weight (LBW) is 
associated with morbidity because those who survive 
may experience long-term physiological, neuropsychi-
atric, cognitive, and social challenges that persist into 
adulthood [2].

LBW is currently a public health issue in the United 
States (US), which reports more cases than any other 
Western European country [3]. Recent data show a 1% 
increase in LBW from 8.52% in 2021 to 8.60% in 2022, 
with a rise of 20% since 1980 [4]. As of 2022, 8.6% of the 
US newborns were born with LBW, with Black newborns 
experiencing the highest LBW rate (14.0%), followed by 
Asian/Pacific Islanders (9.0%), American Indian/Alaska 
Natives (8.3%), and Whites (7.2%). Surprisingly, the like-
lihood of LBW births among Black newborns was dou-
ble that of White newborns [5]. These ethnic differences 
were also reported by Paige et al. [6] after analyzing LBW 
incidents in more than 113,760 singleton live births in 
King County, Washington, from 2008 to 2012. The results 
showed that women from certain ethnic groups who 
were born outside of the US had a lower chance of having 
an LBW newborn than females who were born in the US, 
even after adjusting for common pregnancy complica-
tions. The lowest rates of LBW were found in White, Chi-
nese, and Korean women. On the other hand, the highest 
rates of LBW were found in Filipino, Asian Indian, and 
non-Hispanic Black women (6.8–7.6%).

According to Morisaki et al. [7], the disparities in birth 
weight between ethnicities are not attributable to tra-
ditional factors like maternal age, socioeconomic sta-
tus, and behavioral characteristics (e.g., smoking) but to 
maternal anthropometric factors. They reached this con-
clusion after reviewing singleton US live births between 
2009 and 2012, finding that height, BMI, and specific 
pregnancy-related factors such as gestational weight gain 
and preterm birth rates were the most significant factors 
influencing LBW. Given the strong association between 
maternal body composition, including height, and birth 
weight [8], previous studies have suggested the need for 
alternative methods to identify LBW, as the 2500 g cut-
off may not be appropriate for newborns of non-Euro-
pean descent [9].

Similar studies in other countries have also reported an 
association between maternal physical, socioeconomic, 
and health factors and LBW newborns. Sharma et  al. 
[10], after reviewing 193 neonates in Chandigarh, India 
reported that a LBW prevalence of 23.8%, with higher 
rates observed among newborns whose mothers were 

under 20 (50.0%), poorly educated mothers (32.6%), and 
mothers with a pre-pregnancy weight less than 45 kg 
(50.0%).

Other factors contributing to LBW include health con-
cerns, inadequate prenatal care, lower socioeconomic 
status, and limited education [11]. These factors nega-
tively impact both the physical and mental health of the 
mother during pregnancy. The sex of the newborn is 
also an LBW contributor due to the inherent biological 
differences in growth patterns between male and female 
fetuses. According to Broere-Brown [12], there are dif-
ferences in the weight and other biometrics of male and 
female fetuses, which leads to different body propor-
tions. Male newborns generally weigh more, are longer, 
and have larger head circumferences than their female 
counterparts.

These previous studies have identified some relevant 
factors influencing LBW, such as maternal age, educa-
tion, socioeconomic status, and ethnicity [4, 5, 10, 11]. 
Also, one study has mentioned the strong influence of 
maternal anthropometric factors on birth weight out-
comes [7]. However, although these studies have outlined 
factors shaping birth weight, they have not evaluated the 
extent to which these factors intersect to create a paren-
tal profile associated with a higher risk of having LBW 
newborns. Furthermore, their focus has primarily been 
on maternal health, demographics, and socioeconomic 
factors, often overlooking potential paternal influences 
such as the father’s age, education level, and ethnicity. 
Additionally, most of the previous research has been 
restricted to specific local populations in the US, neglect-
ing the diversity across the US population. Therefore, 
there is a need for a more comprehensive analysis that 
incorporates various factors, including paternal predic-
tors, to identify the most significant contributors to LBW 
across all 50 US states.

One way to correlate different factors to identify those 
more associated with LBW is to leverage machine learn-
ing (ML) and deep learning (DL) predictive models. 
Unlike traditional statistical methods and statistical 
hypothesis tests, which cannot accommodate interac-
tions among many variables simultaneously, are limited 
in their ability to handle collinearity, and require a priori 
hypotheses about how variables relate with one another 
[13–17], ML and DL models can handle multiple corre-
lated predictors simultaneously, yielding highly interpret-
able outcomes [18, 19]. In this way, ML and DL models 
can provide a practical approach to operationalize iden-
tifying population subgroups with a high proportion of 
LBW.

This study presents an approach based on ML and DL 
models to correlate multiple factors, including anthropo-
metric, socioeconomic, and demographic factors from 
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both mothers and fathers, to predict LBW in a national 
US newborn dataset provided by the Centers for Disease 
Control and Prevention (CDC) [20]. To that aim, we use 
a range of predictive models, including logistic regres-
sion, random forest, XGBoost, conditional inference tree 
and attention mechanism layers, to determine which 
factors most significantly influence LBW. Furthermore, 
for explaining our models and to enhance interpretabil-
ity, we apply Shapley additive explanations (SHAP) and 
partial dependence plots (PDP) to the outputs of these 
predictive models, allowing us to identify both direct 
and inverse relationships between the factors and birth 
weight.

Methods
Data source
For this study, we used the 2022 National Natality Data-
set, a publicly available file, provided by the Centers for 
Disease Control and Prevention (CDC) [20, 21]. The 
dataset comprises information for 3,675,606 birth reg-
istrations that occurred in the US in 2022. For each 
newborn, 227 features are provided, including mater-
nal anthropometric (height and weight), parental demo-
graphics (parent’s race and education), birth weight, etc. 
The data was collected from the delivery admission form 
filled out by the mothers, as well as from the medical 
records collected before and during delivery, such as the 
first prenatal care visit date, pregnancy risk factors, and 
delivery mode.

Predictor variables
The 2022 National Natality Dataset provides 227 features 
describing births that occurred in the US, from both resi-
dents and non-residents. To reduce collinearity between 
the predictors, as well as reduce the computational cost 
of building the predictor models, we selected 20 vari-
ables out of a total of 227. Our selection was based on 
previous studies suggesting significant factors influenc-
ing birth weight [5, 8, 11, 22, 23]. These variables fall into 
anthropometric, maternal, paternal, socioeconomic, and 
ethnicity.

Anthropometric variables generally reflect an indi-
vidual’s physical and biological development through 
body measurements like height, weight, and body mass 
index (BMI) [24]. These measurements provide infor-
mation about the mother’s nutrition and health, which 
are important indicators of the newborn’s health. The 
BMI identifies pregnancy complications caused by being 
underweight or overweight, which may impact the birth 
weight [25]. Maternal height and pre-pregnancy weight 
significantly influence fetal growth together. Taller moth-
ers experience accelerated fetal growth in the first and 
second trimesters, likely due to genetic factors, whereas 

maternal weight status increasingly influences intrauter-
ine growth in the third trimester [26]. Overall, taller and 
heavier mothers tend to give birth to larger newborns.

Parental factors, particularly the mother’s age, play a 
critical role in determining birth outcomes. Younger and 
older mothers often face increased complications, such 
as preterm birth and LBW, due to their age [27]. Simi-
larly, older fathers’ age is associated with greater genetic 
abnormalities in offspring. In comparison to fathers aged 
20 to 34, those older than 34 years have a 90% higher 
chance of having an LBW newborn, and teenage fathers 
have a 20% lower chance [28]. On another note, mater-
nal smoking during pregnancy affects fetal development 
by shortening the gestation period and reducing fetal 
growth, leading to LBW [29].

Pregnancy history, including previous live births, still-
births, or neonatal deaths, also provides insight into 
potential risks. Mothers who have had two or more suc-
cessful pregnancies tend to have more newborns with 
normal birth weight, compared to nulliparous women 
[30–32]. In contrast, a history of previous fetal loss has 
been linked to a higher occurrence of abnormalities in 
pregnancies [33]. This kind of occurrence can physically 
and mentally affect a mother [34, 35]; as a result, the out-
comes are adverse.

Parental education levels significantly influence birth 
outcomes by affecting access to resources and health lit-
eracy [11, 22, 23]. Mothers and fathers with more educa-
tion tend to get better prenatal care and make healthier 
lifestyle choices, leading to more favorable birth out-
comes. Prenatal care and the frequency of prenatal vis-
its are critical [36], as they ensure timely monitoring and 
intervention, which are essential for identifying and miti-
gating risks during pregnancy.

Various studies indicate that birth outcomes are not 
consistent across different ethnicities [5, 37, 38]. Moreo-
ver, the origin of the parents can affect the health of the 
fetus. Lebron et  al. [39] investigate the significant influ-
ence of a mother’s origin on healthcare access, edu-
cational opportunities, and economic stability among 
Hispanic subgroups. These factors are all related to soci-
oeconomic status and have an impact on mothers and 
newborn health outcomes, such as breastfeeding, birth 
weight, and newborn mortality. This study also describes 
how sociopolitical factors, particularly immigrant poli-
cies, directly and indirectly affect these health outcomes 
through stress, limited healthcare access, and other 
mechanisms.

Outcome variable
We aim to analyze the factors that influence newborns 
birth weight. As such, we used the birth weight (DBWT) 
column to determine the outcome variable. As 2500 
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grams is the WHO’s established cut-off for LBW, we 
divided the birth records into two classes. Newborns 
with a birth weight lower than 2500 grams were labeled 
as “Low Birth Weight” (LBW), and those whose birth 
weight was higher than 2500 grams were labeled as “Nor-
mal Birth Weight” (NBW).

Data filtering
In this study, we focused exclusively on newborns with a 
gestational age of at least 37 weeks (i.e., COMBGEST ≤ 
37) due to the strong correlation between preterm births 
and low birth weight (LBW) [40–43]. Newborns born 
before 37 weeks typically have a birth weight below 2500 
grams, and including them could skew our analysis. We 
also excluded non-singleton records, as indicated by the 
column ‘DPLURAL’, to prevent confounding factors asso-
ciated with multiple pregnancies. Records from parents 
identified as mixed race were excluded to avoid ambi-
guity in the interpretation of results among ethnicities. 

Furthermore, we only included infants reported to be 
alive at the time of the report to avoid bias in our pre-
dictions due to medical complications. To assess fetal 
well-being against the predictor variables, we removed 
any birth records lacking an APGAR score at 5 minutes. 
Finally, records with unknown values for the selected 
predictor and outcome variables were also excluded.

Figure 1 shows the data filtering process. Initially, our 
dataset included 3,675,606 newborn newborns. After 
filtering out instances based on gestational age, plural-
ity records, mixed races, infant living at the time of the 
report, and unknown values, the final dataset contained 
2,303,722 instances.

Distribution of the predictor variables
Tables  1 and 2 show the distribution of the 20 predic-
tor variables, separated into numerical and categorical 
variables, respectively. For the numerical variables, the 
mean and standard deviation are provided, while for the 

Fig. 1  Data filtering process
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categorical variables, the number of samples and the rela-
tive frequency for each category are displayed. The differ-
ent subgroups that six parental ethnicities encompassed 
are displayed in Table 3.

Data preparation
Training and test sets
The final dataset containing 2,303,722 instances was split 
into training and testing sets. The training set comprised 
80% of the data, and the test set comprised 20% of the 
data. Although our major goal was to combine paren-
tal factors to identify those most associated with birth 
weight outcomes, we used the test set to evaluate the 
generalization capacity. In detail, given that the test set 
was not used to fit the predictive models, assessing the 
models on these independent samples provided a reliable 
means of evaluating the identified patterns.

To tune the hyperparameters of the machine learning 
models, we further split the training set into two sets: 
training and validation. Each hyperparameter configura-
tion was used to train the model, and the validation set 
was used for performance evaluation. The hyperparam-
eters with the highest performance were selected to train 
the final model, which was then evaluated in the inde-
pendent, held-out test data.

To train and evaluate the performance of the predic-
tive models, NBW was labeled ‘1’, while LBW was labeled 
as ‘0’. As the dataset was imbalanced, with LBW being 
the minority class, the models were trained to prioritize 
the accurate prediction of LBW. This focus was driven 
by the fact that LBW is a critical health condition that 
requires proper identification. Consequently, our models 
were optimized to minimize false negatives (newborns 

predicted as NBW when they were actually LBW) over 
false positives (newborns predicted as LBW when they 
were actually NBW).

Data preprocessing
The predictor variables were separated into numerical 
and categorical variables. The categorical variables were 
converted into dummy variables using one hot encod-
ing. The numerical variables were scaled using min-max 
normalization.

Resampling
Because the number of LBW cases in the training set 
were only around 3%, the training set was imbalanced. To 
address this issue, we employed Random Over Sampling 
(ROS) to ensure a more balanced distribution of classes 
on the training set.

Predictive models
We used logistic regression, random forest, XGBoost, 
conditional inference tree, and attention mechanisms to 
predict the two birth weight classes. These models used 
different non-linear relationships between the predictor 
variables to classify between LBW and NBW newborns. 
Together, these five models offer a robust approach for 
identifying relevant predictors of birth weight, highlight-
ing those that consistently emerged as significant across 
all predictive methods.

Logistic regression converted the combination of pre-
dictors variables into probabilities using the sigmoid 
function, thus indicating which combinations had higher 
odds to belong to the NBW class. To train logistic regres-
sion, we used the majority category on the categorical 

Table 1  Description of the 14 numerical predictor variables selected for predicting normal birth weight against low birth weight. For 
each variable, the mean and standard deviation (SD) is provided

Category Variable Description Mean ± SD

Anthropometric M_Ht_In Maternal height (inches) 64.2 (2.8)

BMI Body Mass Index 27.5 (6.7)

PWgt_R Pre-pregnancy weight (pounds) 161.4 (41.4)

Paternal Factor FAGECOMB Parental age (years) 32.0 (6.6)

Maternal Factor MAGER Maternal age (years) 29.8 (5.5)

WTGAIN Weight gain (pounds) 29.3 (14.7)

CIG_0 Daily cigarettes before pregnancy 0.5 (3.1)

CIG_1 Daily cigarettes during 1st trimester 0.3 (2.3)

CIG_2 Daily cigarettes during 2nd trimester 0.2 (1.9)

CIG_3 Daily cigarettes during 3rd trimester 0.2 (1.8)

Previous Pregnancies PRIORLIVE Prior births now living (count) 1.1 (1.2)

PRIORDEAD Prior births now dead (count) 0.0 (0.2)

Prenatal care PREVIS_REC Number of prenatal visits (count) 6.9 (1.8)

PRECARE5 Month prenatal care began 2.8 (1.4)
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variables as a reference (see Table  2). Thus, for both 
maternal and paternal ethnicity, the reference category 
was White; for newborn sex, the reference was male; for 

maternal education level, the reference was a Bachelor’s 
degree; for paternal education, the reference was a high 

Table 2  Description of the 6 categorical predictor variables selected for predicting normal birth weight against low birth weight. For 
each variable, the number of categories

Category Variable Description Number (percent)

Ethnicity MRACE15 Maternal ethnicity White 1,357,994 (59.0)

Hispanic 491,418 (21.3)

Black 267,922 (11.6)

Asian 167,357 (7.3)

Indigenous 13,677 (0.6)

Pacific Islanders 5,354 (0.2)

FRACE15 Paternal ethnicity White 1,356,042 (58.9)

Hispanic 457,292 (19.9)

Black 319,525 (13.9)

Asian 151,372 (6.6)

Indigenous 13,534 (0.6)

Pacific Islanders 5,957 (0.3)

Newborn sex SEX Newborn’s sex Male 1,173,414 (50.9)

Female 1,130,308 (49.1)

Socioeconomic MEDUC Maternal education level 8th grade or less 51,656 (2.2)

9th through 12th grade with no diploma 124,089 (5.3)

High school graduate or GED completed 530,308 (23.0)

Some college credit, but not a degree 401,453 (17.4)

Associate degree (AA, AS) 209,008 (9.1)

Bachelor’s degree (BA, AB, BS) 60,3961 (26.2)

Master’s degree (MA, MS, MEng, MEd, MSW, MBA) 295,846 (12.8)

Doctorate (PhD, EdD) or Professional Degree (MD, DDS, DVM, LLB, JD) 87,401 (3.8)

FEDUC Paternal education level 8th grade or less 62,893 (2.7)

9th through 12th grade with no diploma 155,774 (6.8)

High school graduate or GED completed 683,298 (29.7)

Some college credit, but not a degree 404,908 (17.6)

Associate degree (AA, AS) 174,720 (7.6)

Bachelor’s degree (BA, AB, BS) 527,983 (22.9)

Master’s degree (MA, MS, MEng, MEd, MSW, MBA) 204,495 (8.9)

Doctorate (PhD, EdD) or Professional Degree (MD, DDS, DVM, LLB, JD) 89,651 (3.89)

MBSTATE_REC Maternal origin US born 1,819,958 (79.0)

born outside 483,764 (21.0)

Table 3  Detailed breakdown of ethnic categories of parents

Ethnicity of parents Categories

White

Black

Asian Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, Other Asian

Hispanic Mexican, Puerto Rican, Cuban, Central or South American, Dominican, 
Other and unknown Hispanic

Indigeneous American Indian and Alaska Native

Pacific Islander Native Hawaiian and Other Pacific Islander
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school graduate; and for maternal origin, the reference 
was US-born.

Random forest (RF) and XGBoost built multiple deci-
sion trees to identify rules more associated with LBW 
and NBW. Each tree was built by using a subset of train-
ing data and a subset of the predictors variables that 
were selected randomly. The difference between RF and 
XGBoost is the way the individual trees were combined. 
RF used a bagging strategy, in which the trees are trained 
independently. In contrast, XGBoost used a boosting 
strategy, in which trees were trained sequentially aiming 
that each new tree corrected the mistakes made by the 
previous ones.

The conditional inference tree (CIT) built a tree relat-
ing the predictors based on their capacity to separate 
samples in two groups that were statistically significantly 
different [44]. To that aim, the CIT evaluated multiple 
hypothesis tests with Bonferroni correction to find the 
predictor variable that produces the lowest pvalue to dis-
criminate between LBW and NBW cases.

The attention layer mechanism is a deep learning 
model that identifies the variables that a model focuses 
on the most when making predictions [45]. This was 
achieved using three matrices, query (Q), key (K), and 
value (V), which were correlated to assign an attention 
weight to each input feature as follows:

where dk was the dimension of the keys, and the softmax 
function ensured that the attention weights sum to 1, 
normalizing the attention weights. The attention weight 
highlighted the importance of different input features 
relative to discriminating between LBW and NBW cases.

Evaluation performance
To evaluate the performance of the models, six different 
metrics were computed. The first two corresponded to 
the individual recall for each class. The remaining four 
corresponded to the average (macro) of the individual 
class metric for recall, precision, F1-score, receiver oper-
ating characteristic area under the curve (ROC AUC), 
and the precision-recall area under the curve (ROC PR).

Data analysis and interpretation
After training the predictive models, we applied various 
post-processing methodologies to identify the variables 
that consistently emerged as significant across all pre-
dictive methods. Table 4 shows the different methodolo-
gies used to interpret the models. These interpretation 
methods allowed us to identify the common factors that 

Attention(Q,K ,V ) = softmax
QKT

dk
V

consistently emerged as relevant across all analyses in 
distinguishing between NBW and LBW cases.

Odds‑ratio analysis
For logistic regression, we performed odds-ratio analysis 
to determine which variables significantly correlated with 
birth weight outcomes, thus identifying those that were 
strongly associated with LBW.

Feature importance
For the ensemble models, we conducted a feature impor-
tance analysis to identify the most influential factors 
contributing to the predictions. The ensemble models 
computed importance scores by weighting, summing, 
and averaging attribute data across all decision trees, 
identifying the factors that were most sensitive and criti-
cal for prediction performance.

Attention weights
Similarly, for the attention mechanism, we visualized the 
attention scores assigned to each predictor after training 
the model. Higher attention scores indicated that a par-
ticular feature was more relevant for the prediction task.

Conditional inference tree
We visualized the branches of the CIT, with each branch 
representing a classification rule that offers insights into 
how different predictor variables are combined to classify 
NBW and LBW cases. By analyzing these branches, we 
identified parental profiles associated with the lowest and 
highest proportions of LBW newborns.

Partial dependence plots
To visualize the marginal impact of a single feature on 
LBW and NBW cases, we implemented Partial Depend-
ence Plots (PDP) [46] using the logistic regression model. 
PDPs illustrate how a feature influences the predicted 
outcome by displaying the average prediction while hold-
ing other features constant. Unlike feature importance 
techniques, PDPs can reveal both the direction and 

Table 4  Interpretability methodologies to post-process trained 
predictive models

Technique Models

Odd Ratio Analysis LR

Feature Importance RF, XGBoost

Attention Weights Attention Layer

Partial Dependence Plot (PDP) LR

Conditional Inference Tree CIT

SHAP Values LR, RF, XGBoost
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nature of the relationship between a feature and the pre-
diction outcome.

Shapley additive exPlanations
We employed Shapley Additive Explanations (SHAP) to 
analyze the predictive rules of logistic regression, RF, and 
XGBoost further. SHAP analysis quantified the contri-
bution of each feature to individual predictions, offering 
a detailed understanding of the models’ behavior. Spe-
cifically, the SHAP analysis generated visualizations that 
illustrate the contribution of each feature to the predic-
tions. The summary plots displayed each variable verti-
cally, with the x-axis representing the range of SHAP 
values. Positive values on the x-axis indicated a higher 
likelihood of the predicted outcome, while negative val-
ues suggested a lower likelihood. For a specific feature, 
red points on the right indicated a positive contribution 
to the likelihood of achieving NBW, whereas blue points 
on the left indicated a negative impact, reducing the 
likelihood of NBW. When a feature exhibited a signifi-
cant contrast between red and blue across both positive 
and negative SHAP values, it suggested that the feature’s 
effect on the prediction varied considerably across its 
range.

Result
Model evaluation on the testing set
Table  5 shows the performance on the held-out, inde-
pendent test samples. All the models achieved an accu-
racy greater than 64%, with XGBoost showing the highest 
performance. Overall, the predictive models performed 
better for predicting NBW than LBW. The macro preci-
sion, F1-score, and PR AUC were the lowest metrics due 
to the high imbalance between NBW and LBW classes, as 
well as the fact that the models were trained to prioritize 
the prediction of LBW cases. Consequently, the models 
obtained a false positive rate for the LBW class around 
34%, which, given the high ratio between LBW and NBW 

samples (1:30), resulted in a low precision for the LBW 
class. Nevertheless, the average ROC AUC across the 
models was nearly 70%, indicating that the models were 
able to effectively distinguish between LBW and NBW 
cases [47].

Odds ratio analysis
Table  6 shows significant factors ( p value < 0.05 ) 
obtained by the logistic regression for predicting NBW 
(class labeled as ‘1’) and LBW (class labeled as ‘0’). Mater-
nal anthropometrics showed a strong association with 
the odds of having NBW newborns. Specifically, taller 
mothers and those with higher pre-pregnancy weight had 
higher odds of delivering NBW newborns. In addition 
to anthropometric factors, the chronological age of both 
the mother and father showed a negative association 
with NBW, as the odds of delivering an NBW newborn 
decreased with increasing parental age.

The logistic regression analysis showed that parental 
ethnicity correlated with birth weight outcomes. Par-
ents who identified as Black or Asian had higher odds of 
having LBW offspring than their White counterparts. In 
contrast, Hispanic mothers were more likely to have new-
borns with NBW compared to White mothers. Interest-
ingly, mothers who were born outside the US were more 
associated with NBW newborns than US-born mothers.

Actions taken during pregnancy and previous preg-
nancy history significantly influenced the odds of deliv-
ering NBW infants. For instance, gaining adequate 
weight during pregnancy and attending prenatal visits 
were positively associated with having NBW newborns. 
Conversely, smoking habits during pregnancy negatively 
impacted the odds of NBW, particularly in the first tri-
mester, where an increase of one unit in daily cigarette 
consumption decreased the odds of delivering an NBW 
newborn by 76%. Additionally, the number of previ-
ous living births emerged as a critical indicator of NBW 
outcomes, suggesting that mothers with a history of 

Table 5  Performance of the predictive models for classifying low-birth weight (LBW) and normal-birth weight (NBW). Individual 
recall for each class is presented, along with macro accuracy, recall, macro precision, macro F1-score, macro area under the receiver 
operating characteristic curve (ROC AUC), and macro area under the precision-recall curve (PR AUC)

Model LBW recall ( %) NBW recall ( %) Accuracy (%) Macro recall ( %) Macro 
precision 
( %)

Macro 
F1-score 
( %)

Macro ROC 
AUC ( %)

Macro 
PR AUC 
( %)

LR 64.0 66.0 66.0 65.0 52.0 44.0 70.4 52.9

RF 62.0 66.0 66.0 64.0 52.0 44.0 69.5 52.7

XGBoost 66.0 68.0 68.3 67.0 52.0 46.0 73.4 53.9

CIT 61.6 61.8 61.8 61.7 51.4 43.4 63.8 51.3

Attention Mechanism 64.0 66.0 66.3 65.0 52.0 45.0 70.5 52.9

Average 63.5 65.6 65.7 64.3 51.9 44.5 69.52 52.7
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successful pregnancies have a higher likelihood of deliv-
ering NBW newborns.

The educational levels of both mothers and fathers sig-
nificantly influenced the likelihood of a newborn having 
a NBW. Mothers with an education level of an associate 
degree or lower exhibited lower odds of delivering NBW 
newborns compared to those with a bachelor’s degree. 
Similarly, fathers who completed at least a bachelor’s 
degree had approximately 30% higher odds of having 

an NBW newborn than those who graduated from high 
school.

Ensemble models relevant features
Figures  2 and 3 illustrate the feature importance for 
the random forest and XGBoost models, respectively. 
For both ensemble models, weight gain during preg-
nancy emerged as the most important predictor of 
NBW and LBW cases. Additionally, pre-pregnancy 

Table 6  Odds ratios analysis for the logistic regression coefficients. All coefficients were significant at the significance level of 0.05. 
The top 10 significant features are the mothers who were born outside of us, Asian fathers, fathers with a bachelor’s degree, female 
newborns, Black mothers, month prenatal care began, number of prenatal care visits, number of previous living births, and weight gain

Category Variable Coefficient 95% CI Odds ratio P val

Anthropometric Maternal height 3.70 (3.45, 4.00) 41.40 < 0.001

Pre-preganncy weight 1.54 (1.16, 1.92) 4.66 < 0.001

Ethnicity (White as reference) Mother - Black −0.53 (−0.55, −0.51) 0.59 0.0

Father - Asian −0.53 (−0.55, −0.51) 0.59 < 0.001

Father - Black −0.29 (−0.31, −0.27) 0.75 < 0.001

Mother - Hispanic 0.13 (0.11, 0.15) 1.14 < 0.001

Mother - Asian −0.14 (−0.16, −0.11) 0.87 < 0.001

Mother - Indigenous −0.28 (−0.39, −0.17) 0.75 < 0.001

Father - Pacific Islander −0.11 (−0.17, −0.05) 0.90 < 0.001

Maternal Education (Bachelors degree as refer-
ence)

Mother - 9th through 12th grade 
with no diploma

−0.40 (−0.42, −0.38) 0.66 < 0.001

Mother - High school graduate or GED com-
pleted

−0.20 (−0.21, −0.18) 0.81 < 0.001

Mother - Some college credit, but not a degree −0.15 (−0.16, −0.13) 0.86 < 0.001

Mother - Associate degree −0.10 (−0.13, −0.09) 0.90 < 0.001

Mother - 8th grade or less −0.17 (−0.20, −0.13) 0.84 < 0.001

Mother - Master’s degree 0.05 (0.04, 0.07) 1.06 < 0.001

Paternal Education (High school graduate 
or GED completed as reference)

Father - Bachelor’s degree 0.34 (0.33, 0.36) 1.41 0.0

Father - Master’s degree 0.29 (0.27, 0.31) 1.33 < 0.001

Father - Some college credit, but not a degree 0.17 (0.16, 0.18) 1.18 < 0.001

Father - Doctorate or Professional Degree 0.33 (0.30, 0.35) 1.39 < 0.001

Father - Associate degree 0.18 (0.16, 0.20) 1.20 < 0.001

Father - 9th through 12th grade 
with no diploma

−0.06 (−0.08, −0.04) 0.93 < 0.001

Father - 8th grade or less 0.11 (0.08, 0.14) 1.12 < 0.001

Paternal age Paternal age −0.26 (−0.34, −0.17) 0.77 < 0.001

Maternal factors Weight gain 2.63 (2.60, 2.67) 13.93 0.0

Maternal age −0.38 (−0.43, −0.34) 0.68 < 0.001

Daily cigarettes before pregnancy −1.64 (−1.82, −1.45) 0.19 < 0.001

Daily cigarettes in the 1st trimester −1.39 (−1.78, −0.99) 0.24 < 0.001

Daily cigarettes in the 3rd trimester −1.20 (−1.74, −0.66) 0.30 < 0.001

Daily cigarettes in the 2nd trimester −1.23 (−1.86, −0.61) 0.29 < 0.001

Newborn sex (male as reference) Female (1: ‘yes’, 0: ‘no’) −0.21 (−0.21, −0.19) 0.81 0.0

Previous pregnancies previous living births 3.62 (3.54, 3.69) 37.29 0.0

Prenatal care Number of prenatal visits 1.03 (1.01, 1.06) 2.81 0.0

Month prenatal care started 0.60 (0.57, 0.63) 1.82 0.0

Mother origin (Born in the US as reference) Born Outside the US (1: ‘yes’, 0: ‘no’) 0.39 (0.39, 0.40) 1.48 0.0
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weight, maternal height, number of prenatal care vis-
its, and previous living births ranked among the top 
ten features in both models. The random forest and 
XGBoost also highlighted the significance of paternal 
factors in predicting birthweight outcomes, revealing 
that the father’s ethnicity (White or Black) and age 
were critical for classifying LBW and NBW. Notably, 
neither model included educational factors in their top 
ten rankings based on feature importance.

Attention mechanism layer
Figure 4 shows the attention scores assigned by the self-
attention mechanism to each variable. The bar chart 
ranks features according to their importance scores, with 
taller bars indicating greater significance for predicting 
birth weight. Among the features, the education level of 
parents exhibited the highest importance. Additionally, 
the number of prenatal care visits, the presence of Asian 
fathers, Black mothers, mothers born in the US., the 

Fig. 2  Feature importance for the random forest (RF) model. The top ten predictors identified as most relevant for birth weight predictions were 
weight gain (WTGAIN), Black parents, maternal height maternal height (M_Ht_in), pre-pregnancy weight (PWgt_R), number of previous living births 
(PRIORLIVE), White parents, number of prenatal care visits (PREVIS_REC), and female infants
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month prenatal care commenced, pre-pregnancy weight 
gain, maternal height, and weight gain during pregnancy 
were also among the features that received the highest 
attention weights.

Partial dependence plots
Figures 5, 6, 7, 8, 9, 10, 11, 12 and 13 show the PDP for 
nine parental factors based on the logistic regression 
output, namely: weight gain during pregnancy, maternal 
height, maternal pre-pregnancy weight, as well as paren-
tal ethnicity and education. In the plots, the x-axis repre-
sents the range of values for each feature, with numerical 

features grouped into bins and categorical features repre-
sented by individual categories. The distribution of fea-
ture values was also displayed along the x-axis. The y-axis 
shows the predicted change in the model output, with 
the leftmost value on the x-axis serving as the reference 
point. To aid interpretation, the PDP of the reference 
value was set to zero, highlighting relative changes across 
the feature values.

Figures 5, 6, 7 display maternal anthropometric factors 
effect on the chances of delivering an NBW newborn. Fig-
ure 5 shows a significant upward trend with weight gain 
during pregnancy, indicating that higher weight gains 

Fig. 3  Feature importance for the XGBoost model. The top ten predictors identified as most relevant for birth weight predictions were weight gain 
(WTGAIN), number of prenatal care visits (PREVIS_REC), number of previous living births (PRIORLIVE), pre-pregnancy weight (PWgt_R), BMI, month 
prenatal care began (PRECARE), parental age (MAGER and FAGECOMB), maternal height (M_Ht_in), BMI, mothers who were born in the US
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were strongly related to NBW outcomes. For maternal 
height, Fig. 6 indicates that mothers between 61 and 64 
inches (155−163 cm) had similar probabilities of deliver-
ing an NBW newborn, but these probabilities increased 
steadily for mothers taller than 64 inches, suggesting that 
taller mothers were more likely to deliver NBW new-
borns. In terms of pre-pregnancy weight (Fig.  7), there 
was an increasing trend, indicating that heavier mothers 
had more chances to deliver NBW newborns.

Figures  8 and 9 show the effect of parental age on 
the birth weight prediction. The trend for both parents 
was inverse, indicating that the older parents were, the 
lower the probability of having an NBW newborn was.

Figures 10 and 11 show the impact of parental ethnic-
ity on NBW outcomes. In general, White parents had 

a higher probability of having an NBW newborn than 
fathers from other ethnicities. Asian and Black par-
ents were those with the highest risk of having an LBW 
newborn. Among ethnicities, Hispanic mothers were 
the only group with a higher likelihood of delivering an 
NBW newborn compared to White mothers.

Figures 12 and 13 show the influence of parental edu-
cation on birth weight outcomes. Mothers with at least 
a bachelor’s degree were more likely to deliver a new-
born with normal birth weight (NBW) compared to 
those with only a high school diploma or some college 
credits. Regarding fathers, those who had completed at 
least an associate degree showed a significantly higher 
probability of having an NBW newborn.

Fig. 4  Feature importance from the attention mechanism layer, based on attention scores assigned to each predictor variable. As a reference, equal 
relevance for all predictors would result in a score of 1/46 = 2.2x10

−2 . Variables with scores higher than 2.2x10−2 contributed the most to the birth 
weight predictions
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Conditional inference tree
Figure 14 displays the conditional inference tree when its 
maximum height was constrained to three levels. Among 
the different predictor variables, the tree identified that 

the most critical variables to discriminate between NBW 
and LBW cases were maternal ethnicity, maternal height, 
and maternal weight gain.

Fig. 5  PDP for maternal weight gain during pregnancy

Fig. 6  PDP for maternal height
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Fig. 7  PDP for pre pregnancy weight

Fig. 8  PDP for maternal age

Fig. 9  PDP for paternal age
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Based on maternal ethnicity, the tree was split into 
two groups: one group included White, Hispanic, 
Pacific Islander, and Indigenous mothers, whereas the 
other one encompassed Black and Asian mothers. For 
the White, Hispanic, Pacific Islander, and Indigenous 
mothers, the node with the highest proportion of 
LBW cases corresponded to mothers smaller than 63 
inches who gained less than 28 lbs during pregnancy, 
and whose pre-pregnancy weight was lower than 131 
lbs (Node 5; 68.8%). For Black and Asian mothers, the 
node with the highest proportion of LBW cases was for 
mothers who gained less than 28 lbs (Node 9; 69.0%).

The node with the highest proportion of NBW new-
borns (Node 18; 73.6%) corresponded to White, His-
panic, Pacific Islander, and Indigenous mothers taller 
than 63 inches who gained more than 27 lbs and held a 
bachelor’s, Master’s, PhD, or professional degree.

SHAP analysis
Figures 15, 16, and 17 show the top 20 factors based on 
SHAP values for the logistic regression, random for-
est, and XGBoost models, respectively. The SHAP sum-
mary plots revealed consistent patterns across all models 
for predicting birth weight. Notably, weight gain during 

Fig. 10  PDP for maternal ethnicity (Mother - white as reference)

Fig. 11  PDP for paternal ethnicity (Father - white as reference)
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pregnancy emerged as the most influential predictor, 
with higher weight gain being strongly associated with 
delivering an NBW. Additionally, all SHAP analyses high-
lighted the positive relationship between maternal height 
(M_Ht_In), body mass index (BMI), pre-pregnancy 
weight (PWgt_R), and the likelihood of having an NBW 
newborn.

Parental factors, including ethnicity, age, and educa-
tion, played a pivotal role in birth weight predictions. 

In terms of ethnicity, Black, Hispanic, and Asian fathers 
were more frequently related to LBW predictions, 
whereas White parents and Hispanic mothers tended to 
correlate more with NBW predictions. Regarding age, 
the SHAP analyses indicated that the older the parents 
were, the higher the chances of having an LBW new-
born. Finally, mothers and fathers who had higher edu-
cation levels, such as master’s and bachelor’s degrees, 

Fig. 12  PDP for maternal education (Mother - bachelor’s degree as reference)

Fig. 13  PDP for paternal education (Father - high school graduate or GED completed as reference)
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were found to have a higher likelihood of giving birth to 
NBW infants.

Previous pregnancy history, particularly the number of 
living births (PRIORLIVE), was strongly associated with 
NBW predictions. Likewise, regular prenatal checkups 
(PREVIS_REC) were positively linked to NBW outcomes. 
Conversely, negative factors such as maternal smoking 
during pregnancy (CIG_0, CIG_1, CIG_2, and CIG_3) 
were associated with LBW predictions. Additionally, the 
sex of the newborn emerged as a significant factor, with 
male newborns (SEX_M) more likely to be predicted as 
NBW, while female newborns (SEX_F) were associated 
with higher rates of LBW.

Effect of maternal height, ethnicity and birth weight
To further explore the strong association between birth 
weight outcomes, maternal height, and ethnicity indi-
cated by the predictive models, we conducted a descrip-
tive analysis comparing birth weights ranging from 2200 
to 2550 g against newborn well-being, based on the 
APGAR 5 score, and average maternal height (Fig. 18).

For birth weights near the WHO’s LBW cutoff of 2500 
g, White and Black newborns exhibited higher rates of 
abnormal APGAR 5 scores (APGAR 5 < 6) compared to 
their Asian and Hispanic counterparts. Notably, within 
this birth weight range, White and Black mothers were, 
on average, taller than Asian and Hispanic mothers. 
This pattern suggests that the WHO’s LBW cutoff of 
2500 g may represent a greater risk for offspring of eth-
nic groups with taller average maternal heights, such as 

White and Black mothers, compared to infants born to 
shorter mothers, such as Asian or Hispanic mothers.

Discussion
Our findings indicate that there are critical parental fac-
tors that strongly influence birth weight outcomes on 
the US population. Across all the analyses, nutritional 
and maternal anthropometric factors, such as maternal 
height, weight gain during pregnancy, pre-pregnancy 
weight, and parental ethnicity, consistently emerged as 
critical determinants of newborn weight. These find-
ings align with previous research, which also reports that 
nutritional status and maternal anthropometrics are sig-
nificantly correlated with birth weight and length of the 
newborn [7, 48, 49].

The relationship between maternal height, weight gain 
during pregnancy, pre-pregnancy weight, and mater-
nal ethnicity helps explain why some women are more 
likely to deliver LBW newborns. For example, women 
of shorter stature and lower body mass are at greater 
risk of delivering a baby weighing less than 2500 g. Simi-
larly, women with a pre-pregnancy BMI below 24.9 are 
more likely to have an LBW newborn, as they are recom-
mended to gain between 11 to 18 kg during pregnancy to 
achieve an NBW outcome [50], which can be a challenge 
for some.

Our findings also emphasize the importance of 
adopting healthy habits during pregnancy to improve 
birth weight outcomes. It is important to ensure that 
mothers have access to perinatal care and follow proper 

Fig. 14  Conditional Inference Tree for detecting NBW and LBW newborns. For maternal education, the following abbreviation was used: ‘ ≤ 8th’, 
for 8th grade or less; ‘9th’, for 9th through 12th grade with no diploma; ‘HS’, for High school graduate or GED completed; ‘SC’, for some college credit, 
but not a degree; ‘AD’, for Associate degree (AA, AS); ‘Bs’, for Bachelor’s degree (BA, AB, BS); ‘MS’, for Master’s degree (MA, MS, MEng, MEd, MSW, MBA); 
‘PhD or PD’, for Doctorate (PhD, EdD) or Professional Degree (MD, DDS, DVM, LLB, JD)
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nutrition, which supports healthy weight gain, as these 
factors strongly contribute to the likelihood of deliver-
ing an NBW infant. Other habits, like smoking, should 
be avoided as it is a strong determinant of LBW. More-
over, pregnancy history needs to also be considered 
as mothers who have had several successful births are 
more likely to deliver an NBW newborn. Finally, paren-
tal age also matters, as both older mothers and fathers 
are at an increased risk of having an LBW infant.

One of the most intriguing relationships identified in 
our study is between maternal height, pre-preganncy 
weight, weight gain during pregnancy, ethnicity, and 
birth weight (Fig.  14). Given that maternal anthropo-
metric factors (height, weight, BMI) significantly influ-
ence birth weight [49], and that newborns from White 

parents have higher odds of having NBW (see Table 6), 
the WHO’s cut-off for defining LBW (2500 g) may be 
biased towards the Caucasian population. This bias 
is because, except for Black parents, White parents 
have higher average height than other ethnicities in 
the US [51–54]. This finding aligns with other studies 
that advocate for a review of the global WHO’s cut-off 
threshold for LBW [55], which was originally estab-
lished due to the higher risk of mortality for European-
descendent newborns weighing less than 2500 g [9]. 
Therefore, birth weights less than 2500 g for non-white 
newborns do not necessarily indicate a high-risk condi-
tion (see Fig.  18). It is essential also to consider other 
factors, such as intrauterine growth restriction, mater-
nal health history, and preterm birth [56, 57].

Fig. 15  Top 20 variables ranked by SHAP values for logistic regression
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The high difference between Black and White birth 
weights seems more related to socioeconomic factors 
than anthropometrics, as the average heights for both 
groups are similar (163 cm for females and 178 cm for 
males [51]). In the US, Black communities have his-
torically been concentrated in low-income areas due to 
social, economic, and cultural reasons. One contributing 
factor to this birth weight disparity is nutrition, as Black 
communities tend to have poorer diets with higher con-
sumption of salt and sugar [58]. Since nutrition is crucial 

during pregnancy, the lower birth weights in Black new-
borns compared to their White counterparts may result 
from this nutritional dissimilarity. Moreover, other socio-
economic factors, such as education and income, play an 
important role in predicting newborn weight outcomes. 
Bachelor’s graduate parents tend to have newborns with 
NBW more often than those with lower education levels. 
Higher years of education can make parents more aware 
of nutrition and lifestyle choices. Moreover, pregnant 
women with higher levels of education are more likely to 

Fig. 16  Top 20 variables ranked by SHAP values for random forest
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earn higher incomes [59], leading to less stressful preg-
nancies, better adherence to medical advice, and more 
regular prenatal checkups.

The identification of weight gain, maternal height, 
pre-pregnancy weight, and parental ethnicity as crucial 
factors influencing birth weight outcomes aligns with 
the findings of Marisaki et  al. [7], who emphasized that 
anthropometric factors are the major factor explaining 
LBW disparities among ethnicities. However, our study 
enhances this perspective by indirectly incorporating 

paternal anthropometrics, noting that paternal ethnic-
ity is correlated with paternal height [51]. Thus, our 
study provides a more comprehensive understanding of 
both maternal and paternal factors in predicting LBW 
outcomes, as paternal height also affects the newborn’s 
anthropometrics. Furthermore, we expand upon the 
work of Marisaki et  al. [7] by showing that when aver-
age heights are comparable between ethnicities, such as 
White and Black parents in the US, disparities in birth 
weight outcomes are predominantly attributed to other 

Fig. 17  Top 20 variables ranked by SHAP values for XGBoost



Page 21 of 24Dola and Valderrama ﻿BMC Medical Informatics and Decision Making          (2024) 24:367 	

factors, particularly access to adequate nutrition. This 
finding highlights the critical need to consider socio-
economic factors alongside anthropometric measures to 
fully comprehend LBW outcomes.

Strengths and limitations
This is the first study, as far as we know, to use predictive 
models to analyze various factors and identify the ones 
most strongly linked to LBW in a nationwide US dataset. 
Unlike prior studies, we also considered paternal factors 
in our analysis, demonstrating how parental ethnicity, 
age, and education level influence birth weight outcomes.

The generalization of our findings was evaluated on an 
independent test set (see Table  5), yielding an average 
accuracy of approximately 64% and a macro ROC AUC 
of nearly 70% for distinguishing between NBW and LBW 
newborns. This evaluation metric suitably supports the 
extension of our findings presented in this work. The lim-
itation for achieving a higher accuracy may be attributed 

to the highly imbalanced dataset, with LBW cases con-
stituting only about 3% of the training data. Nonethe-
less, our primary objective was to identify critical factors 
influencing birth weight outcomes rather than solely 
maximizing accuracy. The comprehensive dataset, which 
encompasses information from diverse populations 
across all 50 US states, supports the findings presented 
in this study.

We note that our analysis was confined to a single 
dataset collected in 2022. Our rationale was to iden-
tify the most relevant predictors using the most cur-
rent data available from the CDC, thereby reflecting 
the contemporary situation in the US. This scenario set 
our study as a cross-sectional analysis, which restricts 
our ability to conduct longitudinal studies that examine 
evolving trends between birth weight and parental pre-
dictors. Moreover, although recent research suggests 
that the COVID-19 pandemic did not significantly 
impact the dynamics of prenatal care visits in the US in 

Fig. 18  Birth weight compared to (a) newborn well-being, represented by the percentage of abnormal Apgar 5 scores, and (b) average maternal 
height, categorized by ethnic group
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2022 [60], we note that the pandemic may have affected 
access to perinatal care services for certain households. 
Future research could explore how the influence of the 
factors identified in this study has evolved over the past 
decade concerning birth weight outcomes in the US.

We also recognize that the dataset used in this study 
lacks factors that may be relevant to determining birth 
weight outcomes. For instance, key features such as 
income [61] and paternal factors like height and weight 
[62] were not included, which could have offered addi-
tional insights into the socioeconomic and anthro-
pometric influences on LBW. Future research should 
address these gaps by incorporating a broader range of 
datasets and variables to achieve a more comprehensive 
understanding of the determinants of LBW.

Finally, we note that our analysis identified factors 
influencing birth weight outcomes based on associa-
tions rather than causality. Although machine learning 
models can capture complex, nonlinear relationships 
among multiple predictors and the response variable, 
they do not establish cause-and-effect relationships. 
Therefore, our study does not imply causality. Instead, 
the machine learning models identified key anthropo-
metric, ethnic, educational, and pregnancy-related fac-
tors that are commonly associated with parents of LBW 
newborns.

Conclusion
This study analyzed various factors to determine which 
ones impact the birth weight of newborns in the US 
the most. To achieve that aim, we used machine learn-
ing and deep learning models to create predictive mod-
els based on 20 factors, including maternal, parental, 
socioeconomic, ethnicity, and neonatal factors. Our 
models showed that certain fixed factors, like maternal 
height and parents’ ethnicity, significantly influence birth 
weight. Taller and White parents are more likely to have 
NBW newborns. However, because White parents tend 
to be taller than parents from other ethnicities, this result 
should be interpreted with caution. Indeed, as reported 
by previous studies, the WHO’s cut-off for LBW may not 
be appropriate for non-White ethnicities. Additionally, 
our findings also indicate that pregnancy-related factors, 
such as nutrition, smoking habits, and access to perinatal 
care, are crucial for birth weight. Our findings emphasize 
the importance of proper nutrition, avoiding smoking, 
and accessing prenatal care. This is especially crucial for 
vulnerable communities in the US, such as Black commu-
nities, which are statistically significantly more associated 
with LBW newborns.
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