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Abstract
Objective  Most current wound size measurement devices or applications require manual wound tracing and 
reference markers. Chronic wound care usually relies on patients or caregivers who might have difficulties using these 
devices. Considering a more human-centered design, we propose an automatic wound size measurement system by 
combining three deep learning (DL) models and using fingernails as a reference.

Materials and methods  DL models (Mask R-CNN, Yolov5, U-net) were trained and tested using photographs of 
chronic wounds and fingernails. Nail width was obtained through using Mask R-CNN, Yolov5 to crop the wound from 
the background, and U-net to calculate the wound area. The system’s effectiveness and accuracy were evaluated with 
248 images, and users’ experience analysis was conducted with 30 participants.

Results  Individual model training achieved a 0.939 Pearson correlation coefficient (PCC) for nail-width measurement. 
Yolov5 had the highest mean average precision (0.822) with an Intersection-over-Union threshold of 0.5. U-net 
achieved a mean pixel accuracy of 0.9523. The proposed system recognized 100% of fingernails and 97.76% of 
wounds in the test datasets. PCCs for converting nail width to measured and default widths were 0.875 and 0.759, 
respectively. Most inexperienced caregivers consider convenience is the most important factor when using a size-
measuring tool. Our proposed system yielded 90% satisfaction in the convenience aspect as well as the overall 
evaluation.

Conclusion  The proposed system performs fast and easy-to-use wound size measurement with acceptable 
precision. Its novelty not only allows for conveniences and easy accessibility in homecare settings and for 
inexperienced caregivers; but also facilitates clinical treatments and documentation, and supports telemedicine.

Highlights
• Using fingernails forms the core of this novel wound measurement system.
• The system was trained and tested with thousands of clinical wound images.
• Combination of three deep learning models enables automatic measurement.
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Introduction
Management of chronic wounds such as pressure ulcers 
(PUs) or diabetic foot ulcers (DFUs) are challenging and 
burdensome to healthcare systems. The temporal change 
in wound size is a good predictor of the healing process 
and can help with treatment planning by physicians [1]. 
If the wound is unresponsive, the applied therapy should 
be reevaluated and adjusted [2]. Wound-size monitoring 
can enhance patient care quality, standardize the treat-
ment assessment, and facilitate efficient communication 
between medical professionals.

The most accurate and reliable parameter is surface 
area, which is widely used in clinical wound care. Wound 
areas have traditionally been estimated as rectangular 
areas with a length and width measured with a ruler, or 
as elliptical areas for better approximation. Alternatively, 
the wound contour is traced on a scaled transparent film, 
and the squares within the wound area are counted. This 
method is time-consuming but more accurate than other 
methods, thus becomes the gold standard for clinical and 
research purposes.

Recently, photographic wound assessment has gained 
popularity because it is cost-effective and requires only 
ubiquitous digital cameras and smartphones [1]. How-
ever, digital imaging requires manual tracing of the 
wound boundaries by graphics software and further 
calculation by a known length marker. To simplify this 
process, some researchers use machine learning (ML) or 
deep learning (DL) for wound and reference-marker seg-
mentation. The wound area is then automatically calcu-
lated by planimetry [3].

Although improved imaging processes and artificial 
intelligence (AI) have facilitated digital wound-area mea-
surements, they still require a reference marker. Espe-
cially in homecare settings, a ruler or other reference 
marker is not always available and can be difficult to fix 
on the peri-wound region while taking a photograph.

In this paper, we introduce a novel framework for 
wound-size measurement that addresses the limitations 
of existing methods by using fingernails as a reference. 
Inspired by the estimation of burn-wound areas using 
the palm area, our approach fundamentally differs from 
previous machine learning-based techniques that rely on 
external reference markers such as rulers or stickers. By 
leveraging fingernails—a handy and naturally ready fea-
ture—we eliminate the need for additional markers, mak-
ing the system device-independent and more convenient 
for home use with a smartphone.

Our contributions are: (1) We propose the first wound-
size measurement tool that does not require any extra 
reference markers or specific hardware, setting it apart 
from traditional methods that involve some level of 
manual calibration. (2) We integrate three deep learn-
ing models to fully automate the measurement pro-
cess, reducing user effort and enhancing ease of use. (3) 
Experimental results demonstrate the potential of our 
system for facilitating remote wound treatment follow-
up, enabling reliable wound monitoring at home. These 
contributions collectively establish the novelty of our 
approach and its advantages over existing wound mea-
surement techniques.

Methodology
Proposed methods and materials
Our image wound-size measuring framework uses a fin-
gernail as a reference object. It consists of three tasks: 
nail key-points localization (NKL), wound localiza-
tion (WL), and wound segmentation (WS). These tasks 
are performed by Mask R-CNN, Yolov5, and U-net 
DL models, respectively. The Mask R-CNN is a robust 
model designed for segmentation and can be extended 
for key-point detection [4, 5]. In wound size measure-
ment, key-point detection can be crucial for marking 
specific landmarks on the wound. Compared to simpler 
object detection models like YOLO or Faster R-CNN, 
Mask R-CNN provides finer granularity at the pixel level. 
YOLOv5 is a popular model for object detection and 
excels in localization tasks due to its speed and accuracy 
[6, 7]. In this wound size measurement, localizing the 
wound area within an image is a critical first step. U-Net 
is a widely used architecture for semantic segmentation 
tasks [8–10]. The major benefit of using U-Net is pixel-
level segmentation, making it perfect for delineating the 
wound boundaries with high precision. U-Net performs 
well even with relatively small medical datasets, which is 
often the case in wound measurement studies. U-Net’s 
architecture, with its contracting and expanding paths, 
helps retain fine details of the wound’s boundary, facili-
tating accurate wound area measurement.

In the NKL task, the Mask R-CNN model localizes the 
leftmost and rightmost points of the nail in each image. 
The Euclidean distance between these points is com-
puted in pixels, and the real size of the user’s nail (in 
centimeters) is entered into the system. By comparing 
the results, the area in square centimeters (cm2) for each 
pixel on the image is determined. The WL task utilizes 

• This system provided a fast and convenient measurement of the wound area.
• Inexperienced caregivers can easily use the system in homecare settings.

Keywords  Wound size measurement, Deep learning, Wound detection, Wound segmentation, Fingernail key points 
detection
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the Yolov5 model to localize the wound on the input 
image. The wound, along with the surrounding skin or 
background, is cropped and padded to a size of 512 × 512 
for the subsequent WS task which used the U-net model. 
It assigns each pixel on the image to either the wound 
or background class. The number of pixels belonging to 
the wound class is combined with the pixel area (in cm2) 
determined in the NKL task. This provides the wound 
size in cm2 as the final output. The overall system work-
flow is illustrated in Fig. 1 including 3 phases: preprocess-
ing, model training, and wound size measurement. The 
details of these phases were described in Additional file1.

Clinical wound images of PUs and DFUs were retrieved 
from the digital database of the Plastic Surgery Depart-
ment at the Far Eastern Memorial Hospital (FEMH), and 
the nail images were derived from volunteers. The study 
was approved by the Research Ethics Review Commit-
tee of FEMH (protocol code 110295-E, date of approval: 
2020/11/25). The wounds were annotated by a plastic 
surgeon.

Experiments were conducted on four datasets: “Nail 
with key-point”, “Wound with the bounding box”, 
“Wound with mask”, and “Wound with nail” (Table  1). 
The “Nail with key-point” dataset consists of 135 images 
with 1 to 10 fingernails in each image. Each nail is anno-
tated with the leftmost and rightmost key-points. This 
dataset was used to train the Mask R-CNN DL model for 
the NKL task. The “Wound with the bounding box” data-
set contains 732 PU and DFU wound images with anno-
tated bounding boxes. The “Wound with mask” dataset 
includes 721 wound images with labeled masks for the 
WS task. The “Wound with nail” dataset was collected 
for the final evaluation of the wound-size measuring 
task. It consists of 88 PUs and 160 DFUs (248 images in 
total) with wounds, fingernails, and a reference ruler. The 
ImageJ software (NIH) was used to calculate the wound 
area and nail width, providing a gold standard for evalu-
ating the wound size measurement outcomes. In all, the 
first three datasets were used for training and evaluating 
individual DL models for each task, while the final data-
set was used to evaluate the combined performance of all 
tasks in the proposed system.

User experience analysis and evaluation
To evaluate the efficiency and effectiveness of the pro-
posed system from the users’ perspective, we built an 
internet platform with a trial version of our system 
(http://140.138.148.125:8345/ - demo username: doctor, 
demo password: doctor) (Fig. 2). Some clinical users were 
enrolled to use their cell phones with the proposed web-
based system to record the wounds and operate the nail-
referenced wound size measurement.

After using the system for 1 week, the participants 
would complete a survey about wound care and the sat-
isfaction of the system. (See Additional file 2) The survey 

Table 1  Datasets deployed in the present study on two different 
level (1) individual model, and (2) proposed framework level
Level Dataset name Task # of 

training
# of 
testing

Individual 
model 
level

Nail with 
keypoints

Nail’s keypoints 
localization

135 55

Wound with the 
bounding box

Wound 
localization

732 140

Wound with 
mask

Wound 
Segmentation

721 180

Proposed 
framework 
level

Wound with 
nail*

Wound size 
measurement

N/A 248

N/A: Not available. * including 88 PU and 160 DFU images

Fig. 1  Workflow of the present experiments including data preprocessing, model training, and wound size measurement phases

 

http://140.138.148.125:8345/
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was rated using a 5-point Likert scale (from very satisfied: 
5 to very unsatisfied: 1) in terms of convenience, layout, 
speed, accuracy, and overall rating of the system.

Results
Experiment and results of the individual models
The nail keypoints task
This task was performed using the Mask R-CNN model 
from the PyTorch library without changing the hyperpa-
rameters. Instead, we tuned the model by adjusting the 
confidence-score threshold, which indicates the like-
lihood that the predicted bounding box contains the 
object of interest. The confidence score ranges from 0 
(no object) to 1 (fully contained object). As the threshold 
increases, bounding boxes become tighter, affecting mAP, 
PCC, and mean Euclidean distance (mED) - Table 2.

Setting the threshold to 0.85 reduces mAP and slightly 
decreases PCC, while mED increases. To balance these 
metrics, we choose a confidence threshold of 0.80. The 
correlation between predicted nail width and ground 
truth is shown in Fig. 3.

The wound localization tasks
In the wound localization task, we used YOLOv5 with 
default hyperparameters to optimize performance on the 

Table 2  PCCs and Mean euclidean distances obtained by Mask 
R-CNN with different confidence thresholds
Confidence 
threshold

mAP@0.5(1) PCC(2) Mean Euclidean dis-
tance (in pixels)
Left 
keypoints

Right 
keypoints

0.50 0.977 0.939 528.339 526.048
0.55 0.977 0.939 526.390 524.095
0.60 0.977 0.939 525.925 523.778
0.65 0.977 0.939 526.357 524.114
0.70 0.977 0.939 527.932 525.830
0.75 0.977 0.939 522.985 521.374
0.80 0.977 0.939 518.635 516.536
0.85 0.968 0.938 515.860 514.403
0.90 0.968 0.938 517.506 515.617
0.95 0.968 0.938 494.951 492.504
(1) mAP@0.5: mean Average Precision at an IoU threshold of 0.5. (2) PCC: Pearson 
correlation coefficient

The best Confidence threshold to obtain the best mAP@0.5, PCC, Mean 
Euclidean distance is bold

Fig. 2  Demonstration of the web-based wound size measurement system showing the wound size measured by our system
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testing set by adjusting the confidence threshold from 0.1 
to 0.9 in increments of 0.1 (Table 3).

Similar to the Nail keypoint task, the confidence 
threshold of the wound localization indicates the like-
lihood that the predicted bounding box containing 
the object. The highest mAP@0.50, mAP@0.75, and 
mAP@0.5:0.95 scores (0.822, 0.806, and 0.725, respec-
tively) were achieved at a threshold of 0.3, which also 
produced the best PR curve at an IoU threshold of 0.5. 
The results at the optimal threshold are shown in Fig. 4.

The wound segmentation tasks
Model fine-tuning in this task involves two parameters: 
the loss function and the optimization function. Here, 
the U-net model for the segmentation task was trained 
with different pairs of loss and optimization functions 
(Table  4). The mDSC, mPA and mPP were maximized 
(0.9250, 0.9523, and 0.9068, respectively) while the Dice 

loss function was paired with the Adam optimization 
function. Meanwhile, the mPS was maximized (at 0.9455) 
after the binary cross-entropy loss function paired with 
the Adam optimization function. The predicted results 
of the segmentation task with the optimal parameters are 
displayed in Fig. 5.

We evaluate the model at the end of each phase using 
the prepared dataset during the training process. This 
approach allows us to monitor closely the model’s per-
formance and select the best phase based on the high-
est evaluation metrics for each task. By leveraging this 
method, we can effectively identify the optimal model 
parameters without cross-validation. Our testing set con-
sists of entirely new data from real-world settings, which 
serves as a more reliable benchmark for evaluating model 
performance. Since the testing set is independent of the 
training data, it allows for a clear assessment of the mod-
el’s generalization capabilities. This strategy focuses on 
ensuring the model performs well on unseen data, rather 

Table 3  Mean average precisions obtained by Yolov5 with 
different confidence thresholds
Confidence threshold mAP@0.501 mAP@0.752 mAP@0.5:0.953

0.1 0.819 0.797 0.704
0.2 0.819 0.805 0.723
0.3 0.822 0.806 0.725
0.4 0.818 0.804 0.723
0.5 0.811 0.798 0.715
0.6 0.804 0.799 0.715
0.7 0.799 0.795 0.713
0.8 0.782 0.778 0.704
0.9 0.494 0.494 0.478
(1) mAP value at IoU = 0.5, (2) mAP value at IoU = 0.75, (3) average mAP over 
different IoU thresholds (0.5 to 0.95 in steps of 0.5)

Fig. 3  Correlation plot of predicted nail width versus ground truth (Mask 
R-CNN DL model with a confidence threshold of 0.8)

 

Fig. 4  PR curve of Yolov5 with different confidence thresholds. The curve 
that shows the optimized mAP@0.5 is highlighted in bold. The rest having 
lower value of PR curve are blurred

 

Table 4  Experimental results of the U-net model with different 
pairs of loss and optimization functions
Loss function Optimization 

function
mDSC1 mPA2 mPS3 mPP4

Dice Loss Adam5 0.9250 0.9523 0.9439 0.9068
SGD6 0.8849 0.9256 0.9164 0.8554

Binary Cross 
Entropy

Adam 0.9232 0.9510 0.9455 0.9055
SGD 0.8713 0.9143 0.9302 0.8194

(1) Mean Dice coefficient, (2) mean pixel accuracy, (3) mean pixel sensitivity, (4) 
mean pixel precision, (5) adaptive moment estimation, (6) stochastic gradient 
descent
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than repeatedly partitioning the existing data through 
cross-validation.

To assess the real-time performance of our proposed 
system, we conducted experiments on a server equipped 
with an Intel® Core™ i9-9900 K CPU @ 3.60 GHz, 32GB 
RAM at 2400  MHz, and a Nvidia GeForce RTX 2080Ti 
GPU with 11GB of memory. The tests involved 248 
images captured using various standard smartphones, 
with an average file size of 6.35  MB (± 3.13  MB). The 
images had an average height of 2883.70 pixels (± 846.53) 
and width of 3597.70 pixels (± 1012.43), showing a con-
siderable range of image dimensions. The average pro-
cessing time from image upload to result generation was 

12.11 s (± 4.20 s) per image. The system facilitates quick 
wound assessment and treatment, enabling doctors and 
patients to obtain timely feedback. With an average pro-
cessing time of approximately 12.11  s per image, it is 
manageable for both parties, as doctors are not always 
available to log in and monitor patient status continu-
ously. Besides, the system includes an alert function that 
notifies doctors of severe cases by displaying a notifica-
tion on the home screen, emphasizing patients requiring 
urgent assistance.

Fig. 5  The demonstrations of individual models on testing set on different tasks (A: The predicted keypoints by Mask R-CNN and the corresponding nail 
width; B: The cropped wound by Yolov5; C: The segmented wound by U-net)
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The proposed framework
The properly trained individual models were combined 
into the proposed framework, which implements the 
NKL task for calculating the size of a single pixel (cm2) 
and the WS task for inferring the number of pixels cov-
ered by the wound. The predicted wound sizes were 
aggregated and the input nail width was determined from 
individual images. In the case of missing nail width input 
in the future application, we also set a default nail width 
of 1.09 cm calculated by averaging the nail widths of all 
participants.

The Mask R-CNN model accurately localized all the 
“wound with nail” (without key-points localization) 
in total 248 images in the testing dataset. The YoloV5 
model localized 156 wounds out of 160 DFU images and 
86 wounds out of 88 PU images, constituting 97.76% 
of all wound localizations. Figure A-1 in Additional 
file 3 shows examples of undetected image. The pro-
posed framework yielded better CPP and RSME results 
on individual images when the nail size was manually 
input than when the nail size was set to a default value. 
Moreover, among DFU wound images, both types of nail 
widths yielded excellent PCC and RMSE results (0.979 
and 2.551, respectively, for the manual nail inputs are 
0.875 and 8.081 respectively, for the default nail inputs; 
see Table 5). Figure A-2 in Additional file 3 correlates the 
predicted nail sizes with the ground truth for different 
ways of splitting the target testing dataset.

User evaluation of the proposed system
From January 1st to March 31st 2023, thirty participants 
were included in the user experience evaluation. These 
consisted of 7 doctors, 8 nurses, 7 patients, 6 family 
members, and 2 caregivers. Among these participants, 
7 had no previous experience in wound care while the 
other 23 had varied experiences (range 1–28 years). The 
demographics and profiles of participants were listed in 
Table A-5 in Additional file 3.

Before using our wound measurement system, the 
participants answered some background questions. 90% 

(27/30) of the participants thought wound size measure-
ment is essential in wound care, while only 40% (12/30) 
had real experience of wound size measurement with 
certain tools. Manual measurement with a ruler was the 
most common method (11/12, 91.7%), followed by visual 
estimation (8/12, 66.7%) and some other AI tools (2/12, 
16.7%). Participants were requested to choose one most 
concerning factor about wound size measurement tool, 
and 50% chose “accuracy”, 46.7% chose “convenience” 
and only 3.3% chose “cost”. However, this answer seemed 
to be different between experienced and inexperienced 
wound carers. Most inexperienced wound carers (71.4%) 
chose “convenience” while 56.5% of experienced ones 
chose “accuracy” (Fig.  6-A). After using our proposed 
system, 90% of the participants were very satisfied or 
satisfied with the system’s convenience while 80% were 
very satisfied or satisfied about the accuracy. The overall 
satisfaction rate was 90% and 86.7% of the participants 
would choose our system as their wound measurement 
tool in the future. However, when comparing the satisfac-
tion level among different users, the nurses had a trend of 
higher scores in nearly every aspect. On the other hand, 
the patients or caregivers had relatively low satisfaction 
scores, especially at the layout, but these differences were 
not statistically significant. (Fig. 6-B).

Case report
A 70-year-old diabetic male patient who had peripheral 
artery disease with left 1st to 5th toes amputated. He 
presented with left foot plantar DFU for 3 months and 
underwent artificial dermis graft (Integra LifeSciences, 
US) implantation to promote wound healing. Postop-
eratively, the wound condition had been recorded by a 
caregiver with our proposed system. Figure 7 shows the 
serial wound images with the caregiver’s referencing fin-
gernails. The calculated wound sizes decreased over time 
and were compatible with clinical observation regard-
less of different photo-shooting angles or distances. The 
wound was confirmed to be healed at postoperation 
week 12 and the system didn’t register any wound in that 
image.

Discussion
Recently, wound-size measurements have been auto-
mated using commercial devices with embedded digital 
camera and image processing software or smartphone 
applications with or without add-on sensors. Commer-
cial devices such as Visitrak (Smith & Nephew, London, 
UK), Silhouette Mobile system (Aranz Medical, Christ-
church, New Zealand) and InSight (EKare, USA) require 
manual wound edge tracing and are expensive and not 
easily accessible. Meanwhile, smartphone applications 
can extract measurements through various techniques 
including depth from focus, inertial sensors, and an 

Table 5  The results of the deployed datasets in this study
Nail-size input 
method

Dataset PCC1 RMSE2

Manually input 
nail size

The whole Wound with nail 
dataset

0.875 8.078

The DFUs3 images 0.979 2.551
The PUs4 images 0.846 11.140

Default nail size 
(1.09 cm)

The whole Wound with nail 
dataset

0.759 10.891

The DFUs images 0.875 8.081
The PUs images 0.794 13.112

(1) Pearson Correlation Coefficient (higher cores are better); (2) root mean 
squared error (lower scores are better), (3) Diabetic foot ulcers, (4) Pressure 
ulcers
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original pinch/zoom method [11, 12]. However, the mea-
surements of these methods are less accurate than mea-
surements based on a reference object.

Using a ruler for wound measurement is not always 
practical or available in certain situations, such as when 
photographing a sacral pressure sore in a lateral position 
or during single-person operations. Disposable rulers are 
often used due to disinfection concerns, but they are not 
suitable for long-term wound care. The proposed method 
provides a simple and effective way to measure wound 
size, making it suitable for clinical applications and home 
care services. Fingernails are easily measured body parts 
that can be placed on the wound during photography. In 
our user experience analysis, convenience was prioritized 
by inexperienced caregivers, and our proposed system 
fulfilled their needs, achieving high satisfaction in the 
convenience category. The nail width can be measured 
once and entered into the system for subsequent image 
processing. In the absence of a nail-width input, a default 

value can be used because the variation in fingernail 
width among the population is small (standard devia-
tion = 1 mm in a Korean study [13]).

DL has diverse applications in healthcare, including 
medical data analysis, signal processing, and image analy-
sis [14–21]. Automatic wound measurement involves 
wound segmentation using image processing, ML, or DL 
techniques, along with a scaled reference for calculat-
ing the wound area [22–25]. For instance, Kompalliy et 
al. designed a web-based tool to extract the ulcer and a 
ruler by combination of image processing algorithms and 
manual operation [26]. Similar to our method, Carrión et 
al. used two DL techniques (YOLO and Unet) to measure 
the wound size in a mouse wound model, by detecting a 
ring-shaped splint surround the wound as a known size 
reference object [27]. We elaborated on the advantages 
of previous works, and utilize the most convenient refer-
ence marker with the key-point detection method, and 
this became the core and novel concept of this study.

Fig. 6  The user evaluation report (5: very satisfied, 4: satisfied, 3: neutral, 2: unsatisfied, 1: very unsatisfied)
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Our proposed framework trains three DL models 
individually on different datasets, simplifying the train-
ing process and allowing for easy tuning. Each model 
is specialized for a specific task: Mask R-CNN excels 
in key-point detection, YoloV5 performs well in object 
detection with fast response time, and U-net is a reliable 
segmentation model. To optimize segmentation, we crop 
the wound from the original image before feeding it into 
the segmentation model. As our system is intended for 
homecare usage, the wound photographs are presum-
ably taken by informal caregivers rather than profes-
sional wound recorders. Therefore, wound photographs 
of diverse quality against complex backgrounds are 
expected. Li et al., have proposed composite models for 
wound detection and segmentation [28]. the other stud-
ies applied image preprocessing skills such as chromi-
nance channels of the HSV, YCbCr and normalized RGB, 
color correction, thresholding techniques to improve the 
system performance [29].

The user evaluation results demonstrated high satis-
faction and acceptance of this newly developed system; 
however, the users’ feedbacks still give us information 
for future improvement. In every aspect, the nurses gave 
higher scores which may reflect their good tolerance 
to clinical challenges. Doctors usually had busy daily 
schedules and therefore had lower satisfaction with the 
system speed. Some doctors who specialized in wound 
care would care more about the accuracy, and they sug-
gested to improve the system performance for clini-
cal documentation or research purposes. Surprisingly, 
patients and caregivers had lowest satisfaction, especially 
with the “layout”. Because in this study most patients are 
elders and some of the caregivers were foreign workers 

(e.g. Indonesian, Filipino), and they could not operate 
the system well, either due to language gap or unfamil-
iarity of new technology. These findings indicate that the 
socio-environmental factors impact medical AI system 
performance and the patient/user experience, and similar 
result was also discovered by Google Health group when 
deploying the deep learning detection for diabetic reti-
nopathy in Thailand [30].

In comparison with previously published DL mod-
els, our proposed method is novel, and to the best of 
our knowledge, there is no existing study that employs 
an approach exactly like ours. While some prior stud-
ies have applied deep learning to wound measurement, 
our method introduces unique aspects in terms of data 
sources, and work-flow which sets it apart from existing 
work. In comparison to traditional wound measurement 
tools such as ruler or wound tracing sheet, our proposed 
method is currently less precise and accurate, primarily 
because it relies on analyzing images rather than directly 
measuring the physical wound. Other factors leading to 
the system limitations include variations in image qual-
ity, lighting conditions, and differences in camera angles, 
which can affect the accuracy of the measurements.

Each DL model in the framework has its limitations 
as well. Nail key-point detection may be affected by fin-
ger placement errors, such as finger inclination or cap-
turing the wrong fingers. YoloV5 may slightly over-crop 
detected wounds, leading to incomplete segmentation by 
U-net. Consequently, the derived area in cm2 may slightly 
differ from the actual area. Another limitation lies in the 
dataset size: 135 images for nail key-point localization, 
732 for wound localization, and 721 for wound segmen-
tation. This is relatively small for training DL models, and 

Fig. 7  Process demonstration and outputs of the proposed system in a 70-year-old patient with diabetic foot ulcer treated by artificial dermis grafting
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neither data augmentation techniques were used. These 
factors increase the risk of overfitting and may limit the 
model’s ability to generalize to diverse wound types and 
imaging conditions in real-world scenarios. To improve 
generalization and robustness, future work should aim to 
expand the dataset and incorporate data augmentation 
techniques Applying transfer learning by leveraging pre-
trained models can also be beneficial, as it reduces the 
need for large datasets, shortens training time, and helps 
improve accuracy while mitigating overfitting, even with 
limited medical data. Moreover, education workshops or 
tutorial videos could also standardize the users’ opera-
tions and correct errors.

Despite of these limitations, our approach offers sig-
nificant advantages, such as easy-to-use in an online 
system. It allows doctors for remote wound monitoring, 
reducing the need for patients to visit the hospital fre-
quently. Additionally, it minimizes the requirement for 
constant supervision by healthcare professionals, and 
it can be used independently by patients, with medi-
cal intervention needed only in severe cases. We believe 
our proposed system can find practical use, particu-
larly in homecare settings, with the potential for further 
improvements in performance. By incorporating the 
wound size measurement with other wound information 
(e.g. tissue classification, discharge amount, surround-
ing skin condition), either from AI detection or manual 
input, we can design a clinical decision support system 
to give treatment advice or referral suggestions. With a 
cloud platform to restore the uploaded images, the doc-
tors can monitor patients’ wound condition with these 
objective parameters. We firmly believe this system will 
facilitate telemedical wound care, lower the medical 
expenses and even reduce carbon emissions.

Conclusion
In conclusion, we proposed a novel and convenient 
method of wound-size measurement using fingernails in 
a framework composed of three DL models. The frame-
work will help clinicians and caregivers to monitor their 
patients’ wound conditions with simple equipment.
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