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Abstract 

Background  Multiscale sample entropy (MSE) is a prevalent complexity metric to characterize a time series 
and has been extensively applied to the physiological signal analysis. However, for a short-term time series, the like-
lihood of identifying comparable subsequences decreases, leading to higher variability in the Sample Entropy 
(SampEn) calculation. Additionally, as the scale factor increases in the MSE calculation, the coarse-graining process 
further shortens the time series. Consequently, each newly generated time series at a larger scale consists of fewer 
data points, potentially resulting in unreliable or undefined entropy values, particularly at higher scales. To overcome 
the shortcoming, a modified multiscale Renyi distribution entropy (MMRDis) was proposed in our present work.

Methods  The MMRDis method uses a moving-averaging procedure to acquire a family of time series, each of which 
quantify the dynamic behaviors of the short-term time series over the multiple temporal scales. Then, MMRDis is con-
structed for the original and the coarse-grained time series.

Results  The MMRDis method demonstrated superior computational stability on simulated Gaussian white and 1/f 
noise time series, effectively avoiding undefined measurements in short-term time series. Analysis of short-term 
heart rate variability (HRV) signals from healthy elderly individuals, healthy young people, and subjects with conges-
tive heart failure and atrial fibrillation revealed that MMRDis complexity measurement values decreased with aging 
and disease. Additionally, MMRDis exhibited better distinction capability for short-term HRV physiological/pathologi-
cal signals compared to several recently proposed complexity metrics.

Conclusions  MMRDis was a promising measurement for screening cardiovascular condition within a short time.
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Introduction
Quantifying the dynamic characteristics of a one-dimen-
sional time series, obtained from the complex systems 
to monitor the status of such systems, is becoming more 
and more important, especially with the fast develop-
ment of smart sensors for physiological signal monitoring 
[1]. For the characterization of the one-dimensional com-
plex signals, various measures such as, irreversibility [2], 
similarity analysis [3], Lyapunov exponent [4], entropy 
estimation [5], etc. have been proposed. Entropy, first 
proposed by T.Clausius in 1865 and extended to channel 
communication for assessing the irregularity of informa-
tion by Shannon in 1948, is an appealing approach and 
has been widely applied to the physiological signal anal-
ysis. Extensively used irregularity estimations for time 
series are approximation entropy [6], sample entropy 
(SampEn) [5], permutation entropy [7], etc.. the Values 
of these conventional entropy-based measures increase 
with growth of orderliness and is minimum for a peri-
odic sequence. According to the theory of the physiologic 
complexity, the physiological signals obtained from the 
healthy system exhibit the long-range correlations due to 
the better adaptive ability of the individual and are more 
complex compared to the diseased and aging systems [8]. 
However, the orderliness measured by these conventional 
entropy approaches have no direct relationship with the 
complexity underlying in time series, for example, White 
Gaussian noise (WGn) is assigned a higher SampEn value 
compared to 1/f noise having the long-range correla-
tions, which is against study proposed by Fogedby, sug-
gesting that the SampEn method fails to characterize the 
complexity including in time series [9]. To address this 
shortcoming, Costa introduced the multiscale entropy 
(MSE) method to evaluate the complexity of a time series 
through the SampEn calculation over multiple tempo-
ral scales, instead of the single-scale analysis employed 
by these conventional entropy approaches. their experi-
mental results demonstrated the complexity of heart rate 
variability (HRV) signals in disease and aging conditions 
was lower than that in healthy young condition, which 
is consistent with a universally cognitive that the com-
plexity reduces with aging and disease [10]. Since then, 
MSE has been widely used in various research fields, 
e.g., rainfall time series [11], financial time series [12], 
postural control [13], heart rate variability [14], vibra-
tion of rotary machine [15], etc.. However, the reliable 
MSE analysis needs very large data sets [16], it yields an 
inaccurate measurement or induces undefined entropy 
assessments, for short-term time series [17]. For time 
series with length of N, the length of the coarse graining 
time series shorten to N/s as scale factor is set to s, sug-
gesting that the coarse graining time series significantly 
become short as the scale factor is large. Therefore, the 

modified multiscale entropy methods have been pro-
posed by many scholars with the goal of overcoming the 
above limitation. For instance, Wu et al. proposed com-
posite multiscale entropy (CMSE) aiming at improving 
the stability of the entropy values on large scales, and the 
CMSE-based feature derived from fault bearing vibra-
tion signals improves the linear distinguish ability, com-
pared to the MSE-based feature [18]. Modified multiscale 
entropy (MMSE) was put forward on the basis of per-
forming a moving-average process on the original time 
series in order to avoid the imprecise entropy assess-
ments [17]. Liu et al. in 2018 developed the refined gen-
eralized multiscale entropy (RGME), which considered 
the higher moments in coarse-graining process instead 
of first moment (mean values), their results showed that 
RGME provided the more precise entropy measurements 
of the complexity for the short-term signals and pre-
sent the better separation between the pathological and 
healthy signals in comparison with MSE [8].

However, the reliable MSE analysis requires a large 
dataset for reliable estimation due to the involvement 
of coarse-grained sequences at multiple scales and high 
scales reducing the length of the sequence. A large data-
set makes sure there are enough data points at each 
scale for stable statistical estimates of entropy. Larger 
datasets also serve to capture the underlying complex-
ity and variability within a time series while simultane-
ously reducing the noise impact and ensuring entropy 
measures are responsive to the ordering of samples, thus 
providing more accurate assessments of signal complex-
ity [5, 19, 20], it yields an inaccurate measurement or 
induces undefined entropy assessments, for short-term 
time series [17]. For time series with length of N, the 
length of the coarse graining time series shorten to N/s 
as scale factor is set to s, suggesting that the coarse grain-
ing time series significantly become short as the scale 
factor is large. The assessment of the complexity of the 
downsampled signal is biased by the including artificial 
components in the MSE algorithm. Additionally, the sub-
optimal process for the elimination of the fast temporal 
scales result in the appearance of spurious MSE [21]. 
Therefore, the modified multiscale entropy methods have 
been proposed by many scholars with the goal of over-
coming the above limitation. Valencia et  al. proposed 
refined multiscale entropy to deal with the bias of MSE 
in the elimination of the fast temporal scales associated 
with the use of averaging procedure [21]. Wu et al. pro-
posed composite multiscale entropy (CMSE) aiming 
at improving the stability of the entropy values on large 
scales, and the CMSE-based feature derived from fault 
bearing vibration signals improves the linear distinguish 
ability, compared to the MSE-based feature [18]. Modi-
fied multiscale entropy (MMSE) was put forward on 
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the basis of performing a moving-average process on 
the original time series in order to avoid the imprecise 
entropy assessments [17]. Liu et al. in 2018 developed the 
refined generalized multiscale entropy (RGMSE), which 
considered the higher moments in coarse-graining pro-
cess instead of first moment (mean values), their results 
showed that RGMSE provided the more precise entropy 
measurements of the complexity for the short-term sig-
nals and present the better separation between the path-
ological and healthy signals in comparison with MSE [8].

Measuring the complexity of short-term time series 
is very central across a range of scientific fields such as 
neuroscience [22], cardiovascular science [23], environ-
mental sciences [24],and finance [12]. Timely seizure 
onset detection can aid in achieving early intervention 
in patient care and enhance subsequent patient out-
comes when it comes to neuroscience. In addition, in 
the area of cardiovascular health evaluation, there is 
increasing attention paid to the use of personal health 
monitoring and point-of-care diagnostic tests in brief 
screening windows, such as 5 min [25]. This trend 
thus emphasizes the need to develop highly efficient 
and reliable tools for quick assessment of cardiovas-
cular parameters during short examination periods, 
but the traditional entropy algorithms such as approxi-
mate entropy(ApEn), SampEn, have been reported that 
they are very unstable in the short-term time series 
[26]. Therefore, Porta et al. proposed a local version of 
SampEn to acquire a reliable assessment of complex-
ity and identification of nonlinearities [27]. They also 
employed several strategies to artificially increase the 
number of matches in the SampEn algorithm, but the 
simulation results demonstrated these strategies were 
of no practical use, as they had the inherent risk to 
destroy specific features of the dynamic in the physi-
ological series [28]. Additionally, SampEn is consid-
ered as highly parameter-dependent. Specifically, data 
length N, reconstructed dimension m ( Parameter "m" 
specifically refers to the length of the sequences com-
pared to each other during the computation. In the 
SampEn algorithm, the process computes the condi-
tional probability to measure the resemblance between 
two sequences with varying lengths, designated as 
"m" and "m + 1", where "m" signifies the dimensional-
ity of the reconstructed phase space used in the anal-
ysis [29]), tolerance r (similarity criterion) have direct 
influence on their assessments and an inappropriate 
option of the three parameters may cause inconsistent 
measures, a tiny change in the selection of parameter r 
among these parameters results in a large variation of 
the estimations of complexity [30]. Unstable and incon-
sistent measurement results inevitably occur as multi-
scale entropies mentioned above such as MSE, CMSE, 

MMSE, RGMSE were used to evaluate the complex-
ity of time series due to the fact that these multiscale 
entropies were constructed based on SampEn.

Recently, Li et al. proposed a novel entropy algorithm-
distribution entropy (DisEn) aiming at precluding the 
usage of r in the traditional entropy computations [23]. 
DistEn makes the best of information hidden in a time 
series by quantifying the distribution of vector-to-vector 
distances. Parameter B as the number of bins is intro-
duced in the DistEn measure and the choice of B is 
independent of data analyzed, unlike parameter r used 
in ApEn and SamEn, their results demonstrated that 
the changes of the input parameters, e.g. data length 
N, reconstructed dimension m, bin number B, had lit-
tle influence on the DistEn estimations and DistEn was 
proved to be the best quantifier of short-term HRV 
signals compared to the ApEn and SampEn measures 
[31]. However, DistEn quantifies the complexity of time 
series over only signal scale and may ignore the critical 
information hidden in multiple temporal scale. Subse-
quently, Lee et al. in 2018 proposed multiscale distribu-
tion entropy (MDE) by computing the DistEn values of 
the coarse-grained time series obtained via a moving-
averaged process [32]. In our recent work, we developed 
Renyi distribution entropy (RdisEn) based on distribution 
entropy and Renyi entropy, and numerical experimental 
results showed that RdisEn possesses the superior abil-
ity to differentiate the short-term HRV signals belonging 
to different groups. Additionally, we proposed a coro-
nary artery disease (CAD) detection scheme combining 
RdisEn and wavelet packet decomposition, the proposed 
scheme had achieved 97.5% accuracy, 95% specificity, and 
100% sensitivity respectively in identifying the CAD, out-
performing most of the existing scheme on CAD detec-
tion [1]. Xu et  al. in 2019 put forward multiscale Renyi 
distribution entropy (MRDis) by calculating the RdisEn 
values of the coarse-graining time series achieved from 
the conventional coarse-graining algorithm, to analyze 
the complexity of signals across multiple temporal scales. 
Simulation results on the financial time series demon-
strated that MRDis provided more information by select-
ing an optimal value of order parameter q [33]. However, 
the MRDis maybe not applicable to extremely short-term 
time series due to the limitation of conventional coarse-
graining algorithm.

We present in this paper the modified multiscale Renyi 
distribution entropy (MMRDis) to characterize the com-
plexity of short-term time series. The MMRDis works 
through a moving-average technique to compute Renyi 
distribution entropy for the coarse-grained time series. 
This approach overcomes some limitations of the classi-
cal coarse-graining algorithms, especially shortening the 
length of time series with increasing scale factors.
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MMRDis inherits some robustness from RdisEn and 
gives consistent separation between physiological and 
pathological signals of short-term HRV. We investigated 
its performance on synthetic signals with known degrees 
of complexity to see whether it could glean long-range cor-
relations in short-term data. We also looked at short-term 
HRV signals of varying lengths from healthy elderly, young 
individuals, and congestive heart failure and atrial fibril-
lation patients. Our results confirm MMRDis performing 
stable and consistent characterization of physiological and 
pathological states.

Materials and methods
Entropy methods
In this section, we start with a brief overview of the RDisEn, 
SampEn, MSE, CMSE, RGMSE, and MMSE algorithms, 
followed by an introduction to the proposed MRDis 
method in this study.

Renyi distribution entropy
Given a time series with length N,, The RDisEn algo-
rithm constructed by our previous work is described as 
follows [1]:

(1)	Multidimensional vector reconstruction: (N-m + 1) 
vectors are formed by

 where m denotes embedding dimension.

(2)	Distance matrix definition: D = di,j  between tem-
plate vectors Um

i  and Um
j  is computed by

(3)	 Probability density measurement: the probability is 
obtained by applying the histogram method to the 
distance matrix D, where B is a fixed number of 
bins. The components of the distance matrix D at 
i = j are excluded in order to reduce bias.

(4)	 The RDisEn calculation:

U
m
i

=
{

u(i + k) : 0 ≤ k ≤ m− 1
}

, 1 ≤ i ≤ N −m+ 1

di,j = max
{∣

∣u(i + k)− u
(

j + k
)∣

∣

}

RDisEn(B,m, q) =
1

(1− q) logB2
log2(

B
∑

t=1

p
q
t )

Sample entropy
For a time series U = (u1,u2, · · · ,uN ) with length N, 
the SampEn algorithm is calculated as follows [5]:

(1)	Form m-dimensional vectors as

(2)	 Define the distance di,j = max
{∣

∣u(i + k)− u
(

j + k
)∣

∣

} and 
Um
j  , then a match exists as di,j < r , and then let 

denotes the total number of matched template vec-
tors.

(3)	 Repeat the procedures (1) and (2) for m + 1-dimen-
sional vectors andis acquired to denote the 
total number of matched template vectors for 
m + 1-dimensional vectors.

(4)	 The SampEn calculation:

Multiscale entropy
Multiscale sample entropy
Costa et  al. proposed the concept of classical coarse-
grained algorithm of time series and computed the 
sample entropy value of coarse-grained time series, 
namely multiscale sample entropy [12]. The MSE meth-
odology is implemented via the following two steps:

(1)	Construct coarse-grained time series Zs
1 for a time 

series U = (u1,u2, · · · ,uN ) with length N:

Where s is the scale factor,⌊a⌋ represents the largest inte-
ger and smaller than a, Fig.  1a shows the procedure of 
coarse-grained algorithm for scale 3

(2)	Calculate SampEn demonstrated in Sect. "  Sample 
entropy", of each coarse-grained time series to obtain 
the MSE value.

U
m

i
=

{

u(i + k) : 0 ≤ k ≤ m− 1
}

, 1 ≤ i ≤ N −m+ 1

SamEn(m, r) = − ln
n(m+ 1, r)

n(m, r)

vsj =
1

s

js
∑

i=(j−1)s+1

ui, 1 ≤ j ≤ ⌊N/s⌋
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Composite multiscale entropy
The CMSE methodology is performed via the following 
two steps [18]:

MSE(U ,m, r) = SamEn(Zs
1,m, r) = − ln

n(m+ 1, r)

n(m, r)

(1)	 s coarse-grained time series Zs
2 are constructed by 

refined generalized coarse-grained algorithm for 
each scale factor s, the pth coarse-grained time 
series vsp =

{

vsp,1, v
s
p,2, · · · , v

s
p,k

}

 is computed by.
(2)	 Calculate SampEn demonstrated in Sect. "  Sample 

entropy", of each composite coarse-grained time 
series to obtain the CMSE value.

Fig. 1  Schematic drawing of (a) coarse-grained algorithm, (b) refined generalized coarse-grained algorithm and (c) moving-averaging algorithm 
for scale 3
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Where n(p,m+ 1, r) represents the total number of the 
matched template for m + 1 dimension vectors, Fig.  1b 
shows the procedure of the composite coarse-grained 
algorithm for scale 3.

Refined generalized multiscale entropy
The RGMSE methodology is performed via the following 
three steps [8]:

(1)	s coarse-grained time series Zs
2 are constructed by 

refined generalized coarse-grained algorithm for 
each scale factor s, the pth coarse-grained time series 
vsp =

{

vsp,1, v
s
p,2, · · · , v

s
p,k

}

 is computed by.

Where u =
1
s

js+p−1
∑

j(s−1)+p

ui , the procedure of refined gen-

eralized coarse-grained algorithm for scale 3 is shown in 
Fig. 1b

(2)	 Calculate the total number n(p,m+ 1, r) and 
n(p,m, r) of matched template vectors for a scale 
factors, where 1 ≤ p ≤ s . 

(3)	 Let n(m+ 1, r) and n(m, r) represent the average 
values of n(p,m+ 1, r) and n(p,m, r)

(4)	 RGMSE is calculated for a scale factor s by.

Modified multiscale entropy
The MMSE methodology is performed via the following 
two steps [17]:

(1)	 Construct the coarse-grained time series Zs
3 shown 

in Fig. 1c for a time seriesU = (u1,u2, · · · ,uN ) with 
length N by using the moving-averaging process of 
a time series.

(2)	 Calculate SampEn demonstrated in Sect. "  Renyi 
distribution entropy" of each coarse-grained time 
series to obtain the MMSE values.

Multiscale Renyi distribution entropy
The MRDis algorithm incorporates the following two 
procedures [34]:

(1)	 Construct coarse-grained time series Zs
1 described 

in Fig.  1a for a time series U = (u1,u2, · · · ,uN ) 
with length N:

v
s
p,j =

1

s−1

js+p−1
∑

j(s−1)+1

(u1 − u), 1 ≤ j ≤

⌊

N

S

⌋

, 1 ≤ p ≤ s

RGMSE
(

Zs
2,m, r

)

= −1n
n(m+ 1, r)

n(m, r)

(2)	 Calculate RDisEn demonstrated in Sect. "  Renyi 
distribution entropy" of each coarse-grained time 
series to obtain the MRDis values.

Modified multiscale Renyi distribution entropy
In this work, we proposed MMRDis is based on the mov-
ing-averaging process of a time series, the MMRdis algo-
rithm is composed of two procedures:

(1)	 Construct coarse-grained time series Zs
3,described 

in Sect. " Modified multiscale entropy".
(2)	 Calculate RDisEn demonstrated in Sect. "  Renyi 

distribution entropy" of each coarse-grained time 
series to obtain the MMRDis values.

The recently proposed three coarse-grained algorithms 
of time series are shown in Fig.  1, the classical coarse-
grained process (Fig.  1a) is applied to the original time 
series to divide into non-overlapping sequences with 
length of s, so that the length of the divided time series 
reduces from N to N/s, the variability of the entropy 
assessment grows as the length gets shorter. To allevi-
ate this obstacle, the other two improved coarse-grained 
algorithms were introduced, there were s coarse-grained 
time series acquired from the composite coarse-grained 
algorithm (Fig.  1b), rather than only one obtained from 
the classical coarse-grained process, avoiding the sig-
nificant reduction of the length. Different from the 
non-overlapping sequences acquired from the two above-
mentioned coarse-grained algorithms, the moving-aver-
aging process proposed by Wu et  al. separate the time 
series into some smaller overlapped sequences (Fig.  1c) 
[17]. In their work, they developed modified multiscale 
entropy (MMSE) based on SampEn and the moving-
averaging process and the simulation results showed that 
MMSE outperformed MSE on measuring the complexity 
of short-term time series. In our work, we adopted the 
moving-averaging process so that the original time series 
were separated into several overlapping sequences with s 
data points of each sequence, the length with no dramatic 
reduction changed into N-s + 1, shown in Fig.  1c. The 
probability of generating undefined value was reduced 
and the accuracy of entropy measurement was improved.

Evaluation signals
Synthetic signals
In this work, 20 white Gaussian noises (WGn) and 1/f 
noises with 1000 data points of each noise respectively, 
were used in order to explore the ability of MMRDis to 
correctly differentiate various signals with different com-
plexity levels. Another set of the synthetic signals com-
posed of 20 chaotic signals, MIX(0.2) process, and periodic 
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signals were employed to inspect the performance of 
MMRDis on quantifying the irregularity degree of diverse 
signals. 20 signals of chaotic, periodic and deterministic 
chaos with 1000 samples of each signal were generated by 
the logistic attractor xn+1 = wxn(1− xn) where w = 3.8

,w = 3.5 and w = 3.7 respectively. 20 The MIX(p) process 
is a sinusoidal signal in nature with length N, in which 
N × p randomly selected data points are taken place of 
independent identically distributed signal, and its defini-
tion is presented as MIX = (1− x)z + xy,where x repre-
sents a random variable, the probability is p when x = 1,and 
the probability is 1-p when x = 0, z describes a periodic 
signal in terms of zk =

√
2 sin(2πk/12) , and y is a variable 

with uniform distribution on [−
√
3,
√
3] . Additionally, in 

order to test detection of nonlinear dynamics of the pro-
posed multiscale entropy in this paper, we built surrogate 
series for each above-mentioned deterministic chaos sig-
nal, by via iterated amplitude-adjusted Fourier [28].

Real ECG signals
The Fantasia, BIDMC CHF and MIT-BIH AF module of 
the PhysioNet database were employed to acquire the 
ECG signals of normal, CHF and AF respectively. The 
ECG signals of the Fantasia module were obtained from 
20 healthy young people (age: 21–34) and 20 elderly peo-
ple (age: 68–85), the measured time of each ECG signal 
was approximately 2 h and the sampling rate was 250 
Hz. The ECG signals of the BIDMC CHF module were 
acquired from CHF subjects including 11 men (age: 
22–77) and 4 women (age: 54–63), the measured time 
of each ECG signal was approximately 20 h and the sam-
pling rate was 250 Hz. The MIT-BIH AF module includes 
23 AF ECG signals and the sampling rate of each AF ECG 
signal was 250 Hz. A total of 78 HRV recordings were 
extracted from 40 normal, 15 CHF and 23 AF ECG sig-
nals by using a Pan-Tompkins methodology to determine 
the R peaks of ECG signals [26]. The HRV segments used 
in this study, having various length of 100, 200, 500 and 
1000 respectively, were extracted from each HRV record-
ing. Firstly, 20 healthy young and elderly HRV signals 
were analyzed for inspecting capability of MMRDis to 
classify different physiological (young and elderly) con-
ditions. Subsequently, we further analyzed the normal, 
CHF and AF HRV segments to assess the performance 
of MMRDis on distinguishing the normal from CHF 
and AF condition. To verify the improved stability and 
consistency of the MMRDis metric, we compared the 
performance of the MMRDis metric to those of other 
entropy metrics such as MSE, CMSE, RGMSE, MMSE 
and MRDis. m = 2 and r = 0.15σ frequently used in pre-
vious study, were set in the MSE, CMSE, RGMSE and 
MMSE metrics, m = 2, B = 512, and q = 0.5 were set in the 
MMRDis and MRDis metrics in the following study.

Statistical analysis
To explore the capability of the multiscale entropy 
algorithms mentioned above, to differentiate the HRV 
signals with various lengths from different groups. Sta-
tistical analysis is performed, we firstly verify whether 
the results of the six entropies (MSE, CMSE, RGMSE, 
MMSE MRDis and MMRDis) obey normal distribution 
by employing the Kolmogorov–Smirnov test, the t-test 
methodology is performed to evaluate the statistical dif-
ference between CHF patients and normal subjects as the 
results obey normal distribution, otherwise, the Mann–
Whitney test methodology is conducted. A p-value less 
than 0.05 obtained from the statistical analysis, is consid-
ered statistically significant in general.

Model assumptions
The selected HRV data samples were assumed to accu-
rately represent the heart rate characteristics of both 
healthy individuals and patients, effectively capturing the 
typical variability and patterns of these groups.

Results
Performance of MMRDis on synthetic signals
Figure 2 shows the measurement results of applying MSE, 
RGME, MMDis, MRDis and MMRDis to the analysis of 
1/f noises and WGn, which are widely used to test utility 
of the multiscale entropy methodologies, with length of 
1000 of each noise. As can be illustrated in Fig.  2a, the 
MSE values of 1/f noises remain constant, whereas the 
MSE indicator induces undefined values for WGn as the 
scale factor increases. Additionally, when the scale fac-
tor is 3, the error bars for 1/f noises and WGn overlap, 
indicating no significant statistical difference between 
their MSE values at this scale. We observe from Fig. 2b 
that WGn have the higher RGME entropy values than 
those of 1/f noises across all scales, indicating WGn are 
more complex, which is deviated with previous finding 
[9]. Figure  2d-g shows the performances of MRDis and 
MMRDis on measuring the complexity of 1/f noises and 
WGn for various parameters q (q = 0.1, 0.5, 0.9, 1.1, 1.5, 
2). In Fig. 2d-e, the curves of the MRDis values of 1/f and 
WGn present the similar tendency, that is firstly mono-
tonic increase and then monotonic decrease with the 
growth of scale factor for all parameters q, except q = 0.1, 
where the values of the MRDis metric monotonously 
decrease. And we can find that the distinction between 
1/f and WGn seems to be negligible, Fig. 2f-g shows the 
MMRDis values are defined on all scales and presents 
monotonously increase with the scale factor growing. 
Moreover, there is no difference between the two types of 
noises as scale = 1, in this case MMRDis degenerates into 
RdisEn, suggesting that RdisEn has no ability to distin-
guish 1/f noises from WGn. the curves of MMRDis of 1/f 
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noises are higher than those of WGn for all parameters q 
after scale 1, illustrating the superiority of MMRDis over 
RdisEn in terms of quantifying signals of different com-
plexity by using improved coarse-grained algorithm of 
the time series. Beyond that, we also apply the MMRDis 
entropy with parameter q = 1(MMRDis → MMDis 
inferred by Sect. "  Modified multiscale entropy") to the 
analysis of the two types of noises illustrated in Fig. 2c, 
the distinction between the two types of noises is avail-
able and the entropy values of 1/f noises are higher than 
those of WGn for all scale factors. Considering the MSE, 
MMDis and MMRDis algorithms have an ability to dis-
criminate the two classes of noises, We utilize coefficient 
of variation (CV), referred to the standardized standard 

deviation (SD) and computed by the SD divided by the 
mean, to evaluate the computational stability of MSE, 
MMDis and MMRDis (q = 0.5) [27], tabulated in Table 1. 
Table 1 demonstrates that the CV values of MMRDis are 
smaller than those of MSE and MMDis, indicating that 
the superior performance of MMRDis on the computa-
tional stability for all scale factors. In addition, we explore 
the impact of the combined parameters on the MMRDis 
measurement (N = 200, 400, 600, 800, 1000, B = 200, 400, 
600, 800, 1000, s = 20, q = 0.5, m = 2) for quantifying the 
complexity of 1/f and WGn noises, in comparison to the 
performance of the MSE measurement ((N = 200, 400, 
600, 800, 1000; r = 0.1, 0.3, 0.5, 0.7, 0.9; s = 20, m = 2), 
shown in Fig.  3. Different to the MSE evaluation, the 

Fig. 2  Error bars of (a) MSE values; (b) RMGE values; (c) MMDis values; (d) MRDis with various parameters q (0.1, 0.5 and 0.9) values; (e) MRDis 
with various parameters q (1.1, 1.5 and 2) values; (f) MMRDis with various parameters q (0.1, 0.5 and 0.9) values; (g) MMRDis with various parameters 
q (1.1, 1.5 and 2) values computed from 1/f noises and WGn. Scales from 1 to 20 are employed for each multiscale entropy mentioned above
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MMRDis evaluation is minimally affected by varying 
combined parameters and remains bring about reason-
able values instead of undefined or extreme values for the 
short-term time series, implying MMRDis inherits com-
putation superiority of RDisEn [1].

Figure 4 displays the evaluation results of four entropy 
algorithms (MSE, RGME, MRDis, and MMRDis) for cha-
otic, periodic and MIX(0.2) signals with length 1000 of 
each signal respectively. Noticeable differences among 
the three types of signals for both MMRdis and MRDis 
evaluations are observed, exhibited in Fig. 4c-d, whereas 
there is no obvious distinction between MIX(0.2) and 
periodic signals for the MSE and RGME evaluations on 

most scale factors, suggesting that they fail to classify 
various signals with different randomness (Fig. 4a-b). The 
MMRDis curve of MIX (0.2) signals shows a more stable 
trend compared to the MRDis curve. In addition, we can 
find that smallest values of MMRDis and MRDis entro-
pies are repeated when quantifying the periodic signals 
on 4 multiscale scales, the reason behind the fact is the 
period of the signals used in this work is 4.

Performance of MMRDis on short‑term HRV signals
To further investigate the performance of the proposed 
entropy on measuring the dynamic behaviors existing in 
the short-term physiologic and pathological HRV signals, 

Table 1  CV values for WGN and 1/f noise by using MSE, MMDis, MMRDis methods at scales from 1 to 20

Signal Entropy S = 1 S = 2 S = 3 S = 4 S = 5 S = 6 S = 7 S = 8 S = 9 S = 10

1/f noise MSE 0.05 0.05 0.07 0.08 0.06 0.11 0.14 0.13 0.14 0.14

MMDis 0.011 0.013 0.013 0.014 0.014 0.015 0.015 0.015 0.017 0.017

MMRDis 0.009 0.011 0.011 0.011 0.011 0.011 0.012 0.011 0.013 0.013

WGn MSE 0.03 0.04 0.04 0.06 0.06 0.05 0.09 0.07 0.08 0.07

MMDis 0.013 0.012 0.013 0.013 0.013 0.012 0.014 0.013 0.012 0.014

MMRDis 0.011 0.011 0.011 0.011 0.011 0.010 0.011 0.011 0.011 0.012

Signal Entropy S = 11 S = 12 S = 13 S = 14 S = 15 S = 16 S = 17 S = 18 S = 19 S = 20
1/f noise MSE 0.14 0.21 NA 0.28 0.23 0.21 NA 0.23 NA NA

MMDis 0.017 0.018 0.018 0.017 0.017 0.017 0.017 0.018 0.018 0.019

WGn MMRDis 0.013 0.013 0.013 0.013 0.012 0.013 0.013 0.013 0.014 0.014

MSE 0.10 0.08 0.10 0.11 0.09 0.12 0.11 0.12 0.14 0.15

MMDis 0.014 0.015 0.013 0.013 0.011 0.011 0.009 0.009 0.009 0.011

MMRDis 0.012 0.012 0.011 0.011 0.009 0.009 0.007 0.008 0.008 0.009

Fig. 3  Mean variation of MSE and MMRDis with changing parameters (r and N for MSE and B and N for MMRDis) for 1/f noises and WGn
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we apply the MMRDis algorithm to the analysis of these 
signals with varying length (100, 200, 500 and 1000) and 
compare the results of the proposed entropy to those of 
the MSE, RGME and MRDis metrics.

To maintain the readability and conciseness of the 
manuscript, the detailed p-values obtained from statisti-
cal analysis using MSE, CMSE, RGME, MMSE, MRDis, 
and MMRDis metrics for HRV segments of different 
lengths (N = 100, 200, 500, and 1000) are provided in the 
supplementary materials (Tables S1, S2, S3 and S4).

Performance of MMRDis on short‑term physiologic HRV 
signals
Firstly, to illustrate the non-stationarity of HRV signals, 
we plotted the time series and autocorrelation functions 
of HRV signals from both young and elderly subjects, 
as shown in Fig.  5. These plots clearly demonstrate the 
inherent non-stationarity and variability in HRV data 
across different age groups.The time series plots reveal 
significant variations in both the mean and variance over 
time, indicating the non-stationary nature of the signals. 
the The corresponding autocorrelation function (ACF) 
plots exhibit slow decay and irregular patterns, with sig-
nificant autocorrelations persisting over long lags. This 
lack of rapid decay and the presence of long-term corre-
lations are characteristic of non-stationary signals. Addi-
tionally, the ACF plots display erratic and unpredictable 

fluctuations, further confirming that the statistical prop-
erties of HRV signals change over time.

Then, we explored the impact of the combined param-
eters on the MMRDis measurement (N = 200, 400, 600, 
800, 1000; B = 200, 400, 600, 800, 1000; s = 5; q = 0.5; 
m = 2) for quantifying the complexity of young and 
elderly HRVs, in comparison to the performance of the 
MSE measurement (N = 200, 400, 600, 800, 1000; r = 0.1, 
0.3, 0.5, 0.7, 0.9; s = 5; m = 2), as shown in Fig.  6. The 
results indicate that the MMRDis provides stable and 
consistent entropy estimates across different parameter 
settings, demonstrating its robustness against the non-
stationary nature of HRV signals.This stability is attrib-
uted to the inherent design of the MMRDis method, 
which relies on the global distribution characteristics of 
distances among vectors in the state space. Unlike tradi-
tional methods, which may be affected by variations in 
standard deviation, the MMRDis focuses on the prob-
ability density estimated by a fixed bin number, making it 
less sensitive to changes in variance.

Figures  7,  8  and 9 illustrate the analysis results of the 
MSE, CMSE, RGMSE, MMSE, MRDis and MMRDis 
metrics by using 60 HRV segments acquired from the 
healthy young (Y) and old (O) subjects, with length 
N = 100, 200, 500 and 1000 respectively. Tables S1-S4 tab-
ulate the p-values obtained by using the t-test or Mann–
Whitney methodology for different lengths of the HRV 
segments. The MSE, CMSE and RCMSE measurements 

Fig.4  Error bars of (a) MSE values; (b) RGME values; (c) MRDis values; (e) MMRDis values computed from chaotic, mixsignal and periodic noises. 
Scales from 1 to 20 are employed for each multiscale entropy mentioned above
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are not defined on most of scales, indicating their inabil-
ity to analyze very short-term HRV signals (Fig.  7a-c; 
see Table  S1 for details in footnotes). It is worth men-
tioning that the MMSE value is defined on all scales by 
using the moving-averaging process for various length 
( Fig.  7d), but the distinction between the two classes 
is difficulty on the scales less than 15 (Table S1).We can 
observe in Fig. 7e that the MRDis values firstly increase 
and then gradually decrease, the difference between the 
two groups of HRV signals is unavailable on the scales 
more than 10 (Table S1). Notably, the analysis results of 
the MMRDis estimation shown in Fig.  7f indicates that 
the entropy has a capability to discriminate between the 
healthy young and elderly subjects.

Next, we apply the six entropy algorithms to analyze 
the three types of the HRV segments with length 200, 
500 and 1000 illustrated in Figs. 8, 9 and 10, we can find 

that as the length of signals grows, the range of the MSE, 
CMSE and RCMSE values defined on scale factors are 
extended. The RCMSE and MMSE values are defined on 
all scales for the HRV segments with length 500, the dis-
tinction appears to be apparent between the two types 
of short-term HRV signals (Figs.  9c-d and 10c-d and 
Table S3-S4). The MRDis behaviors depicted in Figs. 8e, 
9 and 10e are similar to Fig. 9e that the mean values of 
MRDis monotonously decrease, the difference between 
the two types of signals is minor as scales are greater than 
15 (Fig. 9e). Similar to Fig. 7f, the variation tendency of 
the MMRDis curves is to increase and then keep con-
stant. Additionally, the mean values of MMRDis for HRV 
signals in healthy young condition are significantly higher 
than those in healthy aging condition (Figs. 8f, 9 and 10f ).

The comprehensive assessment provided by Figs. 7, 8, 
9 and 10 and Tables S1-S4 shows that (1) compared with 

Fig. 5  a HRV signals of young subjects (b) Autocorrelation functions of young subjects’ HRV signals (c) HRV signals of elderly subjects (d) 
Autocorrelation functions of elderly subjects’ HRV signals

Fig. 6  Mean variation of MSE and MMRDis with changing parameters (r and N for MSE and B and N for MMRDis) for the healthy young and old HRV 
segments
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the other five entropy algorithms, the MMRDis values 
proposed in this paper are defined for various length 
of the HRV segments on all scales, (2) There exists sig-
nificant difference between the healthy young and 
elderly groups for all scales, (3) The HRV segments of 
the healthy young subjects include more complexity of 
healthy elderly compared with those of the healthy ole 
subjects, manifesting that the complexity decreases with 

aging, which is consistent with the previous studies on 
the reduced complexity with advancing age.

Performance of MMRDis on short‑term pathological HRV 
signals
To further investigate the performance of the proposed 
entropy on measuring the dynamic behaviors existing 
in the pathological HRV signals, we apply the MMRDis 

Fig. 7  Error bars of the (a) MSE values; (b) CMSE values; (c)RGME values;(d) MSE values; (e) MRDis values; (f) MMRDis values with varying scales 
from 1 to 20, computed from healthy old and young HRV signals with each length N = 100

Fig.8  Error bars of (a) MSE values; (b) CMSE values; (c)RGME values;(d) MSE values; (e) MRDis values; (f) MMRDis values values with varying scales 
from 1 to 20, computed from healthy old and young HRV signals with each length N = 500
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algorithm to the analysis of the healthy (H), CHF and 
AF(A) HRV segments with varying length (100, 200, 500, 
1000) and compare the results of the proposed entropy 
to those of the MSE, CMSE, RGMSE, MMSE and MRDis 
metrics.

Figures  11, 12, 13  and  14 illustrate the simulation 
results of the six entropy algorithms for the HRV seg-
ments with length N = 100, 200, 500 and 1000. For the 
very short HRV segments such as 100, the MSE, CMSE 
metrics are not defined on all scales (Fig. 11a-b) due to 
the following reasons: Firstly, short time series typically 
lack sufficient data points, which can lead to unreli-
able estimates and variable entropy values. Moreover, 

with a limited number of data points, the probability of 
finding matching similar subsequences is lower, result-
ing in greater variability in the SampEn computation 
[35]. At last, as the scale factor increases, the coarse-
graining process further reduces the length of the time 
series. Each new time series generated at a larger scale 
contains fewer data points, which can lead to unreli-
able or undefined entropy values, especially at higher 
scales. This reduction in data points affects the statis-
tical robustness of the entropy calculations, making it 
impractical to define MSE and CMSE across all scales 
[8, 36].The defined range of the MSE, CMSE, RCMSE 
values extend with increasing length of the HRV 

Fig. 9  Error bars of (a) MSE values; (b) CMSE values; (c) RGME values; (d) MSE values; (e) MRDis values; (f) MMRDis values with varying scales from 1 
to 20, computed from healthy old and young HRV signals with each length N = 200

Fig. 10  Error bars of (a) MSE values; (b) CMSE values; (c)RGME values;(d) MSE values; (e) MRDis values; (f) MMRDis values values with varying scales 
from 1 to 20, computed from healthy old and young HRV signals with each length N = 1000
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segments (Figs.  12a-c, 13  and  14a-c), and the RCMSE 
curves of the subjects with AF and CHF are lower than 
that of the healthy subjects. MMSE value is defined on 
all scales, and the difference between the three groups 
is unapparent (Figs. 11, 12, 13 and 14).The MRDis val-
ues present a dramatic decrease as the scale factor is 
more than 5, suggesting weak stability of MRDis on 
the very short-term HRV signals (Fig. 14e). Compared 

to the other five entropies mentioned above, there is 
a significant separation among the MMRDis values of 
CHF, AF and normal HRV segments. Additionally, the 
MMRDis values stay constant with growth of the scale 
factor, indicating insensitivity to the length of signals 
studied, the curves of healthy people is on the top, 
indicating that the complexity of the HRV segments 
under health status is higher than those of the HRV 

Fig. 11  Error bars of (a) MSE values; (b) CMSE values; (c) RGME values; (d) MSE values; (e) MRDis values; (f) MMRDis values with varying scales from 1 
to 20, computed from normal, CHF and AF HRV signals with each length N = 100

Fig. 12  Error bars of (a) MSE values; (b) CMSE values; (c) RGME values;(d) MSE values; (e) MRDis values; (f) MMRDis values with varying scales from 1 
to 20, computed from normal, CHF and AF HRV signals with each length N = 200
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segments under pathological status, shown in Figs. 11f, 
12, 13 and 14f.

To further confirm the capability of the six entropies 
to differentiate the HRV segments obtained from the 
three groups (H,CHF and A) with various lengths (100, 
200, 500 and 1000), statistical analysis is performed to 
evaluate the statistical difference among the three groups 
(Tables S1-S4). Table  S1 demonstrates the comparison 
results of the six entropy algorithms for separating CHF 
from normal, and AF from H HRV segments with each 

length 100. For the MSE, CMSE, RGMSE, MMSE evalua-
tions, it is unavailable for p-value over most scale factors. 
The distinction between the two groups is unclear over 
scales from 12 to 20 by using the MRDis evaluation as the 
p-values are more than 0.05. Compared to the other five 
entropy algorithms, the p-values are all less than 0.05 by 
using the MMRDis evaluation, suggesting that MMRDis 
performs best on differentiating normal subjects from 
CHF patients. In Table S2, the range of available p-values 
for the RGME measurement expands when the length of 

Fig. 13  Error bars of (a) MSE values; (b) CMSE values; (c)RGME values;(d) MSE values; (e) MRDis values; (f) MMRDis values with varying scales from 1 
to 20, computed from normal, CHF and AF HRV signals with each length N = 500

Fig. 14  Error bars of (a) MSE values; (b) CMSE values; (c) RGME values; (d) MSE values; (e) MRDis values; (f) MMRDis values with varying scales from 1 
to 20, computed from normal, CHF and AF HRV signals with each length N = 1000
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HRV signals increases to 200, but it fails to distinguish 
between the three groups for p-value more than 0.05 over 
most scales. Both the MRDis and MMRDis measure-
ments have the capability to discriminate normal subjects 
from CHF patients (p-value < 0.05), and MMRDis per-
forms better than MRDis on discriminating normal sub-
jects from AF patients over scales from 18 to 20. Similar 
to the comparison result shown in Table S2, Tables S3-S4 
exhibit that for lengths 500 and 1000 of HRV signal, the 
MMRDis algorithm is superior to perform better on clas-
sifying the pathological HRV signals compared with the 
other five algorithms.

The synthetic analysis results summarized by Figs. 11, 
12, 13  and  14 and Tables S1-S4 demonstrate that (1) 
MMRDis proposed in this work outperforms the other 
five entropies (MSE, CMSE, RGMSE, MMSE and MRDis) 
for short-term HRV signals (100, 200, 500 and 1000) on 
categorization of CHF, AF patients and normal subjects; 
(2) Results of computations are stable with increases in 
scale factors, implying that MMRDis measurement is less 
sensitive to the length of HRV signal. (3) HRV series of 
pathological conditions such as CHF and AF have lower 
complexity than those from healthy subjects.

We found inconsistencies in the MSE estimation for 
short-term heart rate variability (HRV) time series. Some 
sources of error can be attributed to the explanatory fac-
tors such as sample size, data distribution, and selection 
of parameters. Some showed evidence that MSE meas-
ures are sensitive to these factors, especially in short time 
series. Costa and colleagues introduced MSE and drew 
attention to its dependence on the length of the time 
series [19]. Richman and Moorman discussed the statis-
tical instability of entropy estimation in small samples 
and this is similarly true for MSE [5]. Pincus described 
how data distribution affects approximate entropy calcu-
lations, contributing to the compound effect on MSE, as 
well [37]. Riedl et al. pointed out the importance of noise 
impact on entropy measures including MSE [38]. Lake 
et  al. examined the influence of parameter selection on 
entropy measures [38]. Bandt and Pompe also discussed 
boundary effects and their impact on entropy estimation 
in short time series [7]. Since we took into consideration 
these aspects, we tried to optimize the robustness of MSE 
estimation in HRV time series.

To address these inconsistencies, we propose the 
MMRDis method for entropy estimation; the new 
approach amalgamates Renyi distribution entropy and 
moving average in its multiscale algorithm. The Renyi 
distribution entropy takes into account the global dis-
tribution characteristics of distances between vectors in 
the state space, concentrating its efforts on the specific 
probability density estimated by a fixed number of bins. 
In comparison with the usual methods, this approach 

exhibits greater robustness against variance variations. 
The moving-averaging process also assures time series 
length consistency for all entropy calculations, eliminat-
ing significant reductions. In addition, the results indi-
cated that the MMRDis provided stable and consistent 
entropy estimates under all parameter settings, indicat-
ing robustness with respect to the non-stationary charac-
teristics of short-term HRV signals.

Conclusions
Complexity of time series has served as an indispensable 
characteristic for comprehending the dynamic mecha-
nism of complex systems. Considering the limitation of 
traditional MSE approach suffering from the unreliable 
or undefined estimations for a short-term series. In this 
paper, we proposed a new complexity metric namely 
MMRDis, which outperformed MSE and recently pro-
posed improved multiscale entropy algorithms, such as 
RGMSE and MRDis for a short-term time series. Analy-
sis of these multiscale entropy algorithms on 1/f noises 
and WGn show that MMRDis provide a more accu-
rate and robust measurements and reduces variance of 
the entropy assessments than other multiscale entropy 
algorithms mentioned. Moreover, we apply MMRDis to 
analysis of the short-term physiology/pathological HRV 
signals, derived from frequently used databases, the 
experimental results demonstrate that compared to other 
multiscale entropy algorithms, MMRDis gives the more 
precise estimations and enhance the discriminate ability 
of the short-term HRV signals with different complexity 
degree extracted from groups of the physiology and path-
ological states.

Through our work, MMRDis proposed here presents 
the potential to evaluate the complexity of a short-term 
time series and can be used as a promising index for 
monitoring cardiovascular function in rapid clinical 
examinations. One major limitation is the reliance on a 
single-source dataset, which may not fully encompass 
the diversity of patient data from various regions and 
backgrounds. To address this, future research efforts 
will focus on expanding the dataset to include HRV 
data from a wider range of populations and locations, 
thereby further validating the effectiveness of the pro-
posed MMRDis method. Additionally, our study did not 
extensively investigate the influence of boundary effects 
and noise on entropy estimation. Future work should aim 
to explore these factors more comprehensively to better 
understand their impact and enhance the overall robust-
ness of the MMRDis measure in HRV analysis. These 
steps aim to ensure that MMRDis, as proposed here, is 
robust and applicable across different scenarios, provid-
ing a more comprehensive and accurate analysis of heart 
rate variability.
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